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Abstract: In this article, we delve into the classic Bohr inequality for complex numbers, a fundamental
result in complex analysis with broad mathematical applications. We offer refinements and general-
izations of Bohr’s inequality, expanding on the established inequalities of N. G. de Bruijn and Radon,
as well as leveraging the class of functions defined by the Daykin–Eliezer–Carlitz inequality. Our
novel contribution lies in demonstrating that Bohr’s and Bergström’s inequalities can be derived from
one another, revealing a deeper interconnectedness between these results. Furthermore, we present
several new generalizations of Bohr’s inequality, along with other notable inequalities from the
literature, and discuss their various implications. By providing more comprehensive and verifiable
conditions, our work extends previous research and enhances the understanding and applicability of
Bohr’s inequality in mathematical studies.

Keywords: Bohr’s inequality; Bergström’s inequality; Radon’s inequality

MSC: 26D15; 26D20; 26D99

1. Introduction

Mathematical inequalities play a crucial role in various areas of mathematics. They
allow us to compare and analyze different mathematical quantities, serving as powerful
tools to establish limits, understand relationships, and gain insights into the behavior of
mathematical objects. These inequalities find applications in fields such as optimization,
analysis, probability theory, and mathematical physics. For further reading on this topic,
refer to [1–5] and the references therein.

One well-known inequality in the literature is Bohr’s classical inequality, introduced
by Bohr [6]. It states that for complex numbers z1, z2 and positive numbers r1, r2 > 1
satisfying 1

r1
+ 1

r2
= 1, the following inequality holds true:

|z1 + z2|2 6 r1|z1|2 + r2|z2|2. (1)

Notice that the inequality (1) remains an equality if and only if z2 is equal to (r1 − 1)z1.
The elegance of Bohr’s inequality is found not only in its simplicity, but also in its profound
implications. It offers a beautiful geometric interpretation and has been applied in various
mathematical contexts. For instance, you can explore [7–9] and the references therein for
further insights.
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Building upon Bohr’s foundational work, Archbold [10] presented a generalization of
the inequality to n complex numbers z1, . . . , zn and positive numbers r1, . . . , rn satisfying
∑n

k=1
1
rk

= 1: ∣∣∣∣∣ n

∑
k=1

zk

∣∣∣∣∣
2

≤
n

∑
k=1

rk|zk|2. (2)

This generalization, commonly referred to as Bohr’s inequality, has numerous exten-
sions and generalizations (see, for example, [8,11–14]).

The inequality referred to in the literature as Bergström’s inequality ([15]) states that if
x1, · · · , xk are real numbers and ak > 0 for k = 1, · · · , n, then

(∑n
k=1 xk)

2

∑n
k=1 ak

≤
n

∑
k=1

x2
k

ak
,

with equality if and only if xi
ai
=

xj
aj

for any i, j = 1, . . . , n. A generalization of Bergström’s
inequality was obtained in 1913 by Radon in reference [16].

Let us move on to Radon’s inequality, which states that for p > 0, xk ≥ 0, and ak > 0
for any k = 1, . . . , n, we have:

(∑n
k=1 xk)

p+1

(∑n
k=1 ak)

p ≤
n

∑
k=1

xp+1
k

ap
k

. (3)

Inspired by a previous manuscript [17], which investigates inequalities (2) and (3),
the authors provide a detailed outline of a general form using a real function for these
inequalities and fully characterize the class of functions involved. Furthermore, the article
demonstrates that Bohr’s inequality is a specific instance of Radon’s inequality, with p = 1.
Building on this foundation, our study demonstrates a novel connection between Bohr’s
and Bergström’s inequalities, showing that one can be deduced from the other.

In our main results, we present various refinements and generalizations of the classical
Bohr inequality, covering a wide range of scenarios. We start by introducing a refinement
based on de Bruijn’s inequality, from which we derive generalizations of Bohr’s inequality for
any power greater than or equal to 2. Finally, by leveraging Radon’s inequality, we obtain
further refinements and generalizations of (2) or of another previously obtained generalization.

2. Main Results

In this section, we present our main contributions. Prior to discussing the results, we
introduce three lemmas that will be utilized throughout the manuscript. The first lemma is
derived from [18], while the second one is derived from [19], Theorem 1.6.

Lemma 1. Let a1, · · · , an be a sequence of real numbers and z1, · · · , zn be a sequence of complex
numbers, then ∣∣∣∣∣ n

∑
k=1

akzk

∣∣∣∣∣
2

≤ 1
2

n

∑
k=1

a2
k

[
n

∑
k=1
|zk|2 +

∣∣∣∣∣ n

∑
k=1

z2
k

∣∣∣∣∣
]

. (4)

Equality holds in (4) if and only if there exists λ ∈ C such that ak = Re(λzk) for any
k = 1, · · · , n and ∑n

k=1 λ2z2
k ≥ 0.

Notice that (4) is known as de Bruijn’s inequality and provides a refined version of the
classical Cauchy–Bunyakovsky–Schwarz inequality.

Lemma 2. Let z1, · · · , zn be a sequence of non-zero complex numbers, then∣∣∣∣∣ n

∑
k=1

zk

∣∣∣∣∣ = n

∑
k=1
|zk|
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if and only if there exists α1, · · · , αn positive real numbers such that zi = αiz1 for any i = 1, · · · , n,
where αi =

|zi |
|z1|

.

Lemma 3. Let z1, · · · , zn be a sequence of non-zero complex numbers and r1, · · · , rn be a sequence
of positive numbers. Then, the following conditions are equivalent:

1. The equality rj|zj| = ri|zi| holds for any i, j = 1, · · · , n and there exists a sequence of positive
numbers α1, · · · , αn such that zj = αjz1 for every j = 1, . . . , n.

2. The equality rjzj = rizi holds for any i, j = 1, · · · , n.

Proof. The implication from condition (2) to condition (1) is straightforward, leaving us
to demonstrate the converse. Assuming (1) holds true, let i, j = 1, · · · , n. We observe

|zj| = αj|z1|, or equivalently, αj =
|zj |
|z1|

, given z1 6= 0. Furthermore, from the other condition,
we infer the following:

rj

ri
=
|zi|
|zj|

.

Finally, this leads to

rj

ri
=
|zi|
|zj|

=

|zi |
|z1|
|zj |
|z1|

=
αi
αj

,

thereby concluding the proof.

Now, we are able to obtain our first main result, which is a refinement of Bohr’s inequality.

Theorem 1. Let z1, · · · , zn be a sequence of complex numbers and r1, · · · , rn be a sequence of
positive numbers such that ∑n

k=1
1
rk

= 1, then

∣∣∣∣∣ n

∑
k=1

zk

∣∣∣∣∣
2

≤ 1
2

[
n

∑
k=1

rk|zk|2 +
∣∣∣∣∣ n

∑
k=1

rkz2
k

∣∣∣∣∣
]
≤

n

∑
k=1

rk|zk|2. (5)

The equality holds if and only if rizi = rjzj for any i, j = 1, · · · , n.

Proof. From de Bruijn’s inequality, we have
√

rkzk instead of zk, and 1√
rk

instead of ak∣∣∣∣∣ n

∑
k=1

zk

∣∣∣∣∣
2

=

∣∣∣∣∣ n

∑
k=1

1√
rk

√
rkzk

∣∣∣∣∣
2

≤ 1
2

n

∑
k=1

1
rk

[
n

∑
k=1

rk|zk|2 +
∣∣∣∣∣ n

∑
k=1

rkz2
k

∣∣∣∣∣
]

=
1
2

[
n

∑
k=1

rk|zk|2 +
∣∣∣∣∣ n

∑
k=1

rkz2
k

∣∣∣∣∣
]

. (6)

Now, using the triangle inequality for the modulus in the complex plane, we have

1
2

[
n

∑
k=1

rk|zk|2 +
∣∣∣∣∣ n

∑
k=1

rkz2
k

∣∣∣∣∣
]
≤ 1

2

[
n

∑
k=1

rk|zk|2 +
n

∑
k=1

∣∣∣rkz2
k

∣∣∣]

=
1
2

[
n

∑
k=1

rk|zk|2 +
n

∑
k=1

rk

∣∣∣z2
k

∣∣∣]

=
1
2

[
n

∑
k=1

rk|zk|2 +
n

∑
k=1

rk|zk|2
]

=
n

∑
k=1

rk|zk|2. (7)
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Suppose that the equality holds in (5). Without a loss of generality, we can also assume
that zk 6= 0 for any k = 1, · · · , n. Combining (6) and (7), we obtain the following equalities:∣∣∣∣∣ n

∑
k=1

1√
rk

√
rkzk

∣∣∣∣∣
2

=
1
2

n

∑
k=1

1
rk

[
n

∑
k=1

rk|zk|2 +
∣∣∣∣∣ n

∑
k=1

rkz2
k

∣∣∣∣∣
]

, (8)

and ∣∣∣∣∣ n

∑
k=1

rkz2
k

∣∣∣∣∣ = n

∑
k=1

∣∣∣rkz2
k

∣∣∣. (9)

This indicates that we achieve equality in both the standard triangle inequality for
the modulus of complex numbers and in de Bruijn’s inequality. Then, from (9) and
Lemma 2, there exists α1, · · · , αn positive real numbers such that zk = αkz1 for any
k = 1, · · · , n. On the other hand, from (8), we conclude that there exists λ ∈ C such
that 1√

rk
= Re

(
λ
√

rkzk
)
. Combining such conditions, we have

1√
rk

= Re(λ
√

rkzk) = Re(λ
√

rkαkz1) =
√

rkαkRe(λz1) =
√

rkαk
1
r1

,

or equivalently r1
rk

= αk, and this implies that for any k = 1, · · · , n it holds that

zk =
r1

rk
z1.

On the other hand, if rizi = rjzj for any i, j = 1, · · · , n, it is straightforward to confirm
the equality in (5).

Remark 1. In particular, we note that if all the zk in Theorem 1 are real, then the refinement
recently obtained coincides with the upper bound originally given by Bohr.

From Theorem 1, we proceed to establish an extension of Bohr’s inequality for powers
greater than or equal to 2.

Corollary 1. Let z1, · · · , zn be a sequence of complex numbers and r1, · · · , rn be a sequence of
positive numbers such that ∑n

k=1
1
rk

= 1, and s ≥ 2, then

∣∣∣∣∣ n

∑
k=1

zk

∣∣∣∣∣
s

≤ 1
2

( n

∑
k=1

rk|zk|2
) s

2

+

∣∣∣∣∣ n

∑
k=1

rkz2
k

∣∣∣∣∣
s
2
 ≤ ( n

∑
k=1

rk|zk|2
) s

2

.

The equality holds if and only if rizi = rjzj for any i, j = 1, · · · , n.

Proof. According to Theorem 1 and the convexity of the function f (t) = t
s
2 on the interval

[0,+∞), we have∣∣∣∣∣ n

∑
k=1

zk

∣∣∣∣∣
s

=

∣∣∣∣∣ n

∑
k=1

zk

∣∣∣∣∣
2
 s

2

≤
(

1
2

[
n

∑
k=1

rk|zk|2 +
∣∣∣∣∣ n

∑
k=1

rkz2
k

∣∣∣∣∣
]) s

2

≤ 1
2

(
n

∑
k=1

rk|zk|2
) s

2

+
1
2

∣∣∣∣∣ n

∑
k=1

rkz2
k

∣∣∣∣∣
s
2

≤
(

n

∑
k=1

rk|zk|2
) s

2

.
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Upon examining the previous corollary, it is clear that we relied on two fundamental
properties of the function f (t) = t

s
2 , namely its monotonicity and its mid-point convexity.

Interestingly, these conditions imply convexity (see Remark on page 4 of [20]). Therefore,
we have the following result, the proof of which we omit since it is analogous to the one
given in Corollary 1.

Corollary 2. Let z1, · · · , zn be a sequence of complex numbers and r1, · · · , rn be a sequence of
positive numbers such that ∑n

k=1
1
rk

= 1, and f an increasing, convex function on [0,+∞), then

f

∣∣∣∣∣ n

∑
k=1

zk

∣∣∣∣∣
2
 ≤ f

(
1
2

[
n

∑
k=1

rk|zk|2 +
∣∣∣∣∣ n

∑
k=1

rkz2
k

∣∣∣∣∣
])

≤ 1
2

f

(
n

∑
k=1

rk|zk|2
)
+

1
2

f

(∣∣∣∣∣ n

∑
k=1

rkz2
k

∣∣∣∣∣
)

≤ f

(
n

∑
k=1

rk|zk|2
)

.

Inspired by Theorem 1, which provided a refinement of (2) through an enhanced
version of the discrete Cauchy–Buniakowsky–Schwarz inequality, we revisit a family of
functions initially defined by Daykin, Eliezer, and Carlitz in [21]. Our goal is to utilize this
family of functions to derive new and improved versions of Bohr’s inequality.

In the next lemma, we recall how this family of functions is defined.

Lemma 4. Let a1, a2, . . . , an and b1, b2, . . . , bn be positive real numbers and let f (·, ·), g(·, ·) be
positive functions with two variables. The inequality(

n

∑
k=1

akbk

)2

6
n

∑
k=1

f (ak, bk)
n

∑
k=1

g(ak, bk) ≤
n

∑
k=1

a2
k

n

∑
k=1

b2
k ,

holds if and only if

1. f (a, b)g(a, b) = a2b2,
2. f (ka, kb) = k2 f (a, b) for k > 0,

3. b f (a,1)
x f (b,1) +

a f (b,1)
b f (a,1) ≤

a
b +

b
a holds for any positive real numbers a and b.

By employing the class of functions delineated by the Daykin–Eliezer–Carlitz inequal-
ity, we derive the following refinement of (2).

Theorem 2. Let z1, · · · , zn be a sequence of complex numbers, r1, · · · , rn be a sequence of positive
numbers such that ∑n

k=1
1
rk

= 1, and f , g functions satisfying (1), (2), and (3), as stated in Lemma 4, then∣∣∣∣∣ n

∑
k=1

zk

∣∣∣∣∣
2

≤
n

∑
k=1

f
(

1√
rk

,
√

rk|zk|2
) n

∑
k=1

g
(

1√
rk

,
√

rk|zk|2
)
≤

n

∑
k=1

rk|zk|2.

Proof. Applying Lemma 4 with ak =
1√
rk

and bk =
√

rk|zk|2 for any k = 1, · · · , n, we have∣∣∣∣∣ n

∑
k=1

zk

∣∣∣∣∣
2

≤
(

n

∑
k=1
|zk|
)2

=

(
n

∑
k=1

1√
rk

√
rk|zk|2

)2

≤
n

∑
k=1

f
(

1√
rk

,
√

rk|zk|2
) n

∑
k=1

g
(

1√
rk

,
√

rk|zk|2
)

≤
n

∑
k=1

rk|zk|2.
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For the particular cases of functions f and g, we obtain the following corollary.

Corollary 3. Let z1, · · · , zn be a sequence of complex numbers and let r1, · · · , rn be a sequence of
positive numbers such that ∑n

k=1
1
rk

= 1, then

∣∣∣∣∣ n

∑
k=1

zk

∣∣∣∣∣
2

≤
n

∑
k=1

1 + r2
k |zk|2

rk

n

∑
k=1

rk|zk|2

1 + r2
k |zk|2

≤
n

∑
k=1

rk|zk|2,

and for any t ∈ [0, 1]∣∣∣∣∣ n

∑
k=1

zk

∣∣∣∣∣
2

≤
n

∑
k=1

r−t
k |zk|1−t

n

∑
k=1

rt
k|zk|1+t ≤

n

∑
k=1

rk|zk|2.

Proof. It is enough to see that f (a, b) = a2 + b2, g(a, b) = a2b2

a2+b2 f (a, b) = a1+tb1−t, g(a, b) =
a1−tb1+t with t ∈ [0, 1] are pairs of functions of the Daykin–Eliezer–Carlitz inequality type.

The equivalence between various mathematical inequalities holds significant impor-
tance both logically and historically, as evidenced by a vast body of literature exploring
their connections. In summary, we demonstrate in this article that two of the discussed
inequalities, Bohr’s and Bergström’s inequalities, are interconnected and derivable from
each other.

Theorem 3. The following inequalities are equivalent:

1. Borh’s inequality—Let z1, · · · , zn be a sequence of complex numbers and r1, · · · , rn be a
sequence of positive numbers such that ∑n

k=1
1
rk

= 1 , then∣∣∣∣∣ n

∑
k=1

zk

∣∣∣∣∣
2

≤
n

∑
k=1

rk|zk|2.

The equality holds if and only if rizi = rjzj for any i, j = 1, · · · , n.
2. Bergström’s inequality—Let x1, · · · , xn be a sequence of real numbers and a1, · · · , an be a

sequence of positive numbers, then

(∑n
k=1 xk)

2

∑n
k=1 ak

≤
n

∑
k=1

x2
k

ak
,

with equality if and only if xi
ai
=

xj
aj

for any i, j = 1, · · · , n.

Proof. We start by demonstrating that (2) is a straightforward and specific case of Bohr’s
inequality. To achieve this, it suffices to consider, for any k = 1, · · · , n,

rk =
a1 + a2 + . . . + an

ak

and zk = xk in Theorem 1.
Now, we only need to prove that (2) implies (1). For any k = 1, . . . , n let zk = eiθk |zk|;

then, according to the triangle inequality, we have∣∣∣∣∣ n

∑
k=1

zk

∣∣∣∣∣
2

≤
(

n

∑
k=1
|zk|
)2

. (10)

Now, by using inequality (2) with ak = 1
rk

for any k = 1, . . . , n, then ∑n
k=1 ak =

∑n
k=1

1
rk

= 1 and
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(
n

∑
k=1
|zk|
)2

≤
n

∑
k=1

rk|zk|2. (11)

Finally, combining (10) and (11), we obtain the classical Borh inequality.

Now, we turn your attention to the case rk = n. Specifically, if we consider in (2),
rk = n for any k = 1, · · · , n, we obatin the following inequality:∣∣∣∣∣ n

∑
k=1

zk

∣∣∣∣∣
2

≤ n
n

∑
k=1
|zk|2, (12)

with equality if and only if all zk’s are equal.
The final inequality is also a consequence of the classical Cauchy–Buniakowsky–Schwarz

inequality. For convenience, we denote the following positive number using R,

R = n
n

∑
k=1
|zk|2 −

∣∣∣∣∣ n

∑
k=1

zk

∣∣∣∣∣
2

.

On the other hand, in [22], the authors provide an explicit expression for R, more precisely

R = ∑
1≤i<j≤n

|zi − zj|2 = n
n

∑
k=1
|zk|2 −

∣∣∣∣∣ n

∑
k=1

zk

∣∣∣∣∣
2

.

Futhermore, Rubió-Massegú et al. obtained the following lower bound for R:

R = ∑
1≤i<j≤n

|zi − zj|2 ≥
n
2

(
n

∑
k=1
|zk|2 −

∣∣∣∣∣ n

∑
k=1

z2
k

∣∣∣∣∣
)

. (13)

Notice that from Theorem 1, we obtain a lower bound for R in terms of a finite sum of
positive numbers.

Proposition 1. Let z1, · · · , zn be a sequence of complex numbers, then

0 ≤ n
2

[
n

∑
k=1
|zk|2 +

∣∣∣∣∣ n

∑
k=1

z2
k

∣∣∣∣∣
]
−
∣∣∣∣∣ n

∑
k=1

zk

∣∣∣∣∣
2

≤ n
n

∑
k=1
|zk|2 −

∣∣∣∣∣ n

∑
k=1

zk

∣∣∣∣∣
2

. (14)

Now, we are prepared to enhance inequality (12) utilizing another renowned inequality
for real numbers. Initially, let us examine a result by Pafnuty Chebyshev (see [1]). He
showed that if we have two sequences of real numbers, x1, ..., xn and y1, ..., yn, that are both
increasing or both decreasing, then(

n

∑
i=1

1
n

xi

)(
n

∑
i=1

1
n

yi

)
≤

n

∑
i=1

1
n

xiyi.

Then, in 2012, Nakasuji et al. developed a weighted version of Chebyshev’s inequality
for sequences of real numbers. They proved the following lemma (see [23], Corollary 1):

Lemma 5. If x1, ..., xn and y1, ..., yn are sequences of real numbers and are simultaneously mono-
tone increasing or monotone decreasing, then(

n

∑
i=1

wixi

)(
n

∑
i=1

wiyi

)
6

n

∑
i=1

wixiyi,

where w1, ..., wn are positive numbers such that ∑n
i=1 wi = 1.
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Now, we state the following theorem.

Theorem 4. Let z1, · · · , zn be a sequence of complex numbers and let all w1, ..., wn be a sequence
of positive numbers with ∑n

k=1 wk = 1, then∣∣∣∣∣ n

∑
k=1

wkzk

∣∣∣∣∣
2

≤
(

n

∑
k=1

wk|zk|
)2

≤
n

∑
k=1

wk|zk|2. (15)

Proof. We have, as a consequence of the triangle inequality and Lemma 5, that∣∣∣∣∣ n

∑
k=1

wkzk

∣∣∣∣∣
2

≤
(

n

∑
k=1

wk|zk|
)2

=

(
n

∑
k=1

wk|zk|
)(

n

∑
k=1

wk|zk|
)

≤
n

∑
k=1

wk|zk|2.

In the last inequality, we assume that we reorder the sequence |z1|, · · · , |zn| to be
monotone increasing.

Remark 2. It is worth noting that if we set wk = 1
n in (15), we obtain the following refinement

of (12).

Corollary 4. Let z1, · · · , zn be a sequence of complex numbers, then∣∣∣∣∣ n

∑
k=1

zk

∣∣∣∣∣
2

≤
(

n

∑
k=1
|zk|
)2

≤ n
n

∑
k=1
|zk|2.

In particular, we have

0 ≤
(

n

∑
k=1
|zk|
)2

−
∣∣∣∣∣ n

∑
k=1

zk

∣∣∣∣∣
2

≤ n
n

∑
k=1
|zk|2 −

∣∣∣∣∣ n

∑
k=1

zk

∣∣∣∣∣
2

= R. (16)

Combining inequalities (13), (14), and (16), we obtain the following lower bound for R.

Proposition 2. Let z1, · · · , zn be a sequence of complex numbers, then

max{R1, R2, R3} ≤ R,

where

R1 =
n
2

(
n

∑
k=1
|zk|2 −

∣∣∣∣∣ n

∑
k=1

z2
k

∣∣∣∣∣
)

,

R2 =
n
2

[
n

∑
k=1
|zk|2 +

∣∣∣∣∣ n

∑
k=1

z2
k

∣∣∣∣∣
]
−
∣∣∣∣∣ n

∑
k=1

zk

∣∣∣∣∣
2

,

and

R3 =

(
n

∑
k=1
|zk|
)2

−
∣∣∣∣∣ n

∑
k=1

zk

∣∣∣∣∣
2

.

Remark 3. The following numerical examples will illustrate the incomparability of the lower
bounds obtained in Proposition 2.
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Consider the following cases:

1. If z1 = 1 and z2 = 2, then one may verify that R2 = 1 > 0 = R3.
2. If z1 = 1 and z2 = 2i, then R1 − R3 = 4 and this implies that R1 > R3.

3. Now, if we consider for any n ≥ 2, zk = e
2(k−1)πi

2n with k = 1, · · · , n, then ∑n
k=1 z2

k = 0 and

R2 − R3 =
n2

2
− n2 = −n2

2
< 0⇒ R2 < R3,

and

R1 − R2 =

∣∣∣∣∣ n

∑
k=1

zk

∣∣∣∣∣
2

− n

∣∣∣∣∣ n

∑
k=1

z2
k

∣∣∣∣∣ =
∣∣∣∣∣ n

∑
k=1

zk

∣∣∣∣∣
2

> 0,

thus we have R1 > R2.
4. Now, if we consider for any n ≥ 2, wk = e

2(k−1)πi
n with k = 1, · · · , n, then ∑n

k=1 zk = 0 and

R1 − R3 =
n2

2
− n

2

∣∣∣∣∣ n

∑
k=1

z2
k

∣∣∣∣∣− n2 = −n2

2
− n

2

∣∣∣∣∣ n

∑
k=1

z2
k

∣∣∣∣∣ < 0,

i.e., R1 < R3. On the other hand,

R1 − R2 =

∣∣∣∣∣ n

∑
k=1

zk

∣∣∣∣∣
2

− n

∣∣∣∣∣ n

∑
k=1

z2
k

∣∣∣∣∣ = −n

∣∣∣∣∣ n

∑
k=1

z2
k

∣∣∣∣∣ < 0,

which allows us to show that R1 < R2.
This illustrates that the lower bounds obtained in Proposition 2 are not directly comparable.

Now, we are able to derive a generalization of Bohr’s inequality for a power dif-
ferent from 2. This motivation stems from the relationship between this inequality and
Radon’s inequality.

To achieve this generalization, it is necessary to recall the following result obtained
in [24], Theorem 2.3.

Lemma 6. Let x1, · · · , xn be a sequence of real numbers, a1, · · · , an be a sequence positive numbers,
p ≥ 0, and m ≥ 1, then (

∑n
k=1 xkam−1

k

)p+m

(
∑n

k=1 am
k
)m+p−1 ≤

n

∑
k=1

xp+m
k

ap
k

, (17)

with equality if and only if xi
ai
=

xj
aj

for any i, j = 1, · · · , n.

Theorem 5. Let z1, · · · , zn be a sequence of complex numbers, p ≥ 0, m ≥ 1, and r1, · · · , rn be a
sequence of positive numbers, then∣∣∣∣∣ n

∑
k=1

zkrm−1
k

∣∣∣∣∣
p+m

≤
(

n

∑
k=1
|zk|rm−1

k

)p+m

≤
(

n

∑
k=1

rm
k

)m+p−1 n

∑
k=1

r−p
k |zk|p+m. (18)

The equality ∣∣∣∣∣ n

∑
k=1

zkrm−1
k

∣∣∣∣∣
p+m

=

(
n

∑
k=1

rm
k

)m+p−1 n

∑
k=1

r−p
k |zk|p+m,

holds if and only if zi
ri
=

zj
rj

for any i, j = 1, · · · , n.
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Proof. We note that for the usual triangle inequality for the modulus of complex numbers,
we have the first inequality.

On the other, if we replace xk by |zk| in (17), as well as ak by rk, then we have(
n

∑
k=1
|zk|rm−1

k

)p+m

≤
(

n

∑
k=1

rm
k

)m+p−1 n

∑
k=1

r−p
k |zk|p+m.

Now, we assume that holds the equality∣∣∣∣∣ n

∑
k=1

zkrm−1
k

∣∣∣∣∣
p+m

=

(
n

∑
k=1

rm
k

)m+p−1 n

∑
k=1

r−p
k |zk|p+m.

Then, according to Lemma 6, we conclude that for any i, j = 1, · · · , n, we have |zi |
ri

=
|zj |
rj

. On the other hand, according to Lemma 2, we conclude that there exists α1, · · · , αn such

that zk = αkz1. Finally, according to Lemma 3, we obtain that zi
ri
=

zj
rj

for any i, j = 1, · · · , n.

If zi
ri
=

zj
rj

for any i, j = 1, · · · , n, it is straightforward to confirm the equality in (18).

Now, we present a generalization and refinement of Bohr’s inequality.

Corollary 5. Let z1, · · · , zn be a sequence of complex numbers, p > 0, m ≥ 1, and r1, · · · , rn be a

sequence of positive numbers such that
n

∑
k=1

r
−m

p
k = 1, then

∣∣∣∣∣ n

∑
k=1

zkr
−(m−1)

p
k

∣∣∣∣∣
p+m

≤
(

n

∑
k=1
|zk|r

−(m−1)
p

k

)p+m

≤
n

∑
k=1

rk|zk|p+m.

The equality ∣∣∣∣∣ n

∑
k=1

zkr
−(m−1)

p
k

∣∣∣∣∣
p+m

=
n

∑
k=1

rk|zk|p+m

holds if and only if r
1
p
i zi = r

1
p
j zj for any i, j = 1, · · · , n.

Proof. To obtain this statement is enough to consider r
− 1

p
k instead of rk in Theorem 5.

Remark 4. By considering specific values of the parameters in Theorem 5, we derive well-known
inequalities and refinements that have been previously obtained by various authors. For instance,
setting m = p = 1 yields the classical Bohr inequality.

In the following statement, we obtain a generalization of Bohr’s inequality and a new
refinement. This generalization was previously obtained by Vacić and Kečkić in [25].

Corollary 6. Let z1, · · · , zn be a sequence of complex numbers, s > 1, and r1, · · · , rn be a sequence
of positive numbers, then∣∣∣∣∣ n

∑
k=1

zk

∣∣∣∣∣
s

≤
(

n

∑
k=1
|zk|
)s

≤
(

n

∑
k=1

r
1

(1−s)
k

)s−1 n

∑
k=1

rk|zk|s.

The equality ∣∣∣∣∣ n

∑
k=1

zk

∣∣∣∣∣
s

=

(
n

∑
k=1

r
1

(1−s)
k

)s−1 n

∑
k=1

rk|zk|s (19)
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holds if and only if r
1

(s−1)
i zi = r

1
(s−1)
j zj for any i, j = 1, · · · , n.

Proof. To obtain this series of inequalities, it is sufficient to replace rk by r
1

(1−s)
k , m = 1,

and p = s− 1 in (18).

Remark 5. In [25], it was established by the authors that the equality in (19) is attained if and
only if

(1) For any i, j = 1, · · · , n hold ri|zi|s−1 = rj|zj|s−1 and zi z̄j ≥ 0.

We show that condition (1) is equivalent to the one obtained in Corollary 6.
Assuming that (1) holds, if we denote zk = eiθk |zk|, where θk ∈ [0, 2π) for any k = 1, · · · , n,

then the condition zi z̄j ≥ 0 implies that θi = θj for any i, j = 1, · · · , n. Equivalently, we can say
that there exists α1, · · · , αn such that zk = αkz1. From the other condition in (1), we deduce that

r
1

(s−1)
i |zi| = r

1
(s−1)
j |zj|

for any i, j = 1, · · · , n. Thus, using Lemma 3, we have

r
1

(s−1)
i zi = r

1
(s−1)
j zj

for any i, j = 1, · · · , n.

It is evident that if r
1

(s−1)
i zi = r

1
(s−1)
j zj for any i, j = 1, · · · , n, then condition (1) trivially

holds as well.
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