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Abstract

A Web service is a Web accessible software that can be published, located and invoked by using standard
Web protocols. Automatically determining the category of a Web service, from several pre-defined categories,
is an important problem with many applications such as service discovery, semantic annotation and service
matching. This paper describes AWSC (Automatic Web Service Classification), an automatic classifier
of Web service descriptions. AWSC exploits the connections between the category of a Web service and
the information commonly found in standard descriptions. In addition, AWSC bridges different styles for
describing services by combining text mining and machine learning techniques. Experimental evaluations
show that this combination helps our classification system at improving its precision. In addition, we report
an experimental comparison of AWSC with a related work.
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1 Introduction

The software industry has broadly adopted Ser-
vice Oriented Architectures by using Web service
technologies. A Web service [25] is a Web acces-
sible software that can be published, located and
invoked by using the standard Web infrastruc-
ture. Current technologies for publishing Web
services, for example UDDI', enable providers to
manually assign a category to their services from
a number of predefined choices such as business,
educational, finance, scientific, etc. By classify-
ing their services, providers allow consumers to
search and browse available services by category
or domain, this is, by taking advantage of services

1UDDI http://www.uddi.org/
2UNSPSC http://wuw.unspsc.org/
3SIC http://www.osha.gov/pls/imis/sicsearch.html

meta-data and thus reducing the search space.

Assigning a proper category to a service can be
a tedious and error prone task due to the large
number of categories usually present in Web ser-
vice registries. Commonly used taxonomies such
as the United Nations Standard Products and
Services Code (UNSPSC)? or the Standard In-
dustrial Classification (SIC)? contain hundreds of
categories. From a service consumer point of view
the situation is similar, this is, developers want-
ing to use a service have to manually browse pub-
lished services by category. The problem is that
determining the right category where to look for
is often very difficult. This, besides being time
consuming, may hinder the reuse of published ser-
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vices.

Techniques for automatically classifying Web ser-
vices, this is, determining their category, will help
to take advantage of the described UDDI infras-
tructure effortlessly. For example, these tech-
niques will assist publishers by suggesting several
candidate categories for the services they aim to
publish. On the other hand, automatic classi-
fication methods will help service consumers by
allowing them to query-by-example UDDI reg-
istries. In other words, users will provide a partial
Web service description, and an automatic clas-
sifier will determine the most suitable categories
where to look for the needed functionality. As a
result, both service providers and consumers will
be able to better exploit Web service technologies.
Besides, several recent academic efforts [12, 19]
have shown that an accurate automatic classifica-
tion system is very important for Semantic Web
service [26] annotation tools.

Some approaches have been proposed for auto-
matically or semi-automatically classifying Web
services [20, 5, 19, 12, 2]. However, these ap-
proaches have shown some limitations (see Sec-
tion 4). First, some of them have low accuracy.
Second, some of these approaches propose to clas-
sify Web services basing on the definitions of op-
eration arguments that belong to a particular cat-
egory. The main limitation of these matching ap-
proaches is that they do not attempt to reduce the
distance between different styles for defining ar-
guments present in standard descriptions. Third,
some of these methods do not exploit a Web ser-
vice interface description and its associated tex-
tual documentation. Finally, some of these meth-
ods assume the existence of additional sources of
information, such as semantically annotated ser-
vices, which might be either more expensive [17]
or more challenging [26] to produce than manu-
ally classifying Web services.

This paper describes a novel method -called
AWSC (Automatic Web Service Classifier) for au-
tomatically classifying Web services, this is, de-
termining the category of a Web service, given
a set of predefined categories. In this paper we
show that:

e By exploiting the dependencies between the
category of a Web service, its provided
operations and its textual documentation,
namely argument definitions and comments
written by developers, we build a classifica-
tion system.

e By bridging different coding conventions
(e.g., Hungarian notation, Java Bean nota-
tion) and different styles for defining ser-
vice arguments the classification accuracy
can be improved.

e AWSC achieves better precision than a re-
lated approach for classifying Web services.
Our approach has been validated in two
parts. First, by testing our classification
approach on a group of 235 hand-classified
Web services. Second, by comparing our
Web service classification approach against
a related work using a group of 391 services
organized in 11 categories.

The rest of this paper is organized as follows. The
next section describes AWSC, its design and its
algorithms. Then, in Section 3 we report the eval-
uation of our approach. Section 4 discusses the
most relevant previous approaches. Finally, con-
cluding remarks and future lines of research are
described in Section 5.

2 AWSC (Automatic Web
Service Classifier)

The goal of AWSC is to determine the list of
candidate categories of a Web service description
from several predefined categories such as busi-
ness, educational, finance, scientific, etc. The re-
sulting list of candidate categories is ordered ac-
cording to the confidence AWSC has about each
alternative being the right one. A Web service
is described by a WSDL (Web Service Descrip-
tion Language) document, a well structured stan-
dard for describing, in a textual manner, a Web
service. WSDL is an XML format for describ-
ing a service as a set of operations, whose in-
vocation is based on exchanging messages. In
object-oriented terms, a WSDL document de-
scribes a service as an interface, an operation as
a method, and a message as a method argument.
The structure of messages, i.e., arguments, are de-
fined abstractly by using the XML Schema Def-
inition (XSD) [7]. Fig. 1 shows a WSDL docu-
ment and its corresponding relevant information
(in bold) for AWSC. We will use this example
in the rest of the section for clarifying the main
stages of AWSC.

Conceptually, we propose to classify a target Web
service based on already classified similar ser-
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Overview of a WSDL document
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<types>
<xs:element name="GetRate">
<xs:complexType>
<xs:sequence>
<xs:element name="srcCurrency" type="xs:string"/>
<xs:element name="destCurrency" type="xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</types>
<message name="GetRateSoapIn">
<part name="parameters" element="s0:GetRate" />
</message>
<portType name="CurrencywsSoap">
<operation name="GetRate">
<documentation>

This method returns the currency
conversion ratio between two countries
</documentation>
<input message="s0:GetRateSoapin" />
<output message="s0:GetRateSoapOut" />
</operation>
</portType>

Figure 1: Standard Web service description

vices. To this end, AWSC compares a Web ser-
vice description with other descriptions that have
been manually classified. Fig. 2 depicts the over-
all process used by AWSC to classify a Web ser-
vice. We propose a two-stage process to classify
a Web service. AWSC uses text mining tech-
niques at the first stage, namely preprocessing,
to extract relevant information from a WSDL
document. These techniques have been designed
for preprocessing textual documentation, opera-
tions and arguments accompanying descriptions
of Web services. AWSC uses a supervised docu-
ment classifier at the second stage, namely classi-
fication. This classifier deduces a sequence of can-
didate categories for a preprocessed Web service
description. The rest of this section will explain
in detail the stages of the approach.

2.1 Text mining preprocessing for
Web service descriptions

Text mining, also known as intelligent text anal-
ysis, refers to the process of extracting interest-
ing and non-trivial information and knowledge
from unstructured text [11]. In general, auto-
matic document classifiers support classification
of documents seen as objects that are character-
ized by features extracted from their contents,
where these features may be pulled out using text
mining techniques. In particular, AWSC employs
text mining for extracting features from Web ser-
vice descriptions. In this context, a feature is a

term that is relevant to a particular category of
services.

WSDL is a well structured and standard XML
document format for describing Web services.
Accessing a Web service description to extract
category related terms is considered as a feasible
task [12]. Nevertheless, Web service documenta-
tion are mostly comments written by developers,
as Sabou et al. [23] assert. In general these com-
ments are written in English, have a low gram-
matical quality, punctuation is often ignored and
several spelling mistakes and snippets of abbre-
viated text are present. Also, different services
are implemented by different development teams,
and these teams may use different coding conven-
tions. In addition, WSDL is a very flexible format
for defining the structure of a message. WSDL
allows publishers to define the same message in
many styles, which may be syntactically different
from each other. Broadly, a style deals with how
exchanged data is encapsulated. As a result, two
services conceived for a particular task may have
a syntactically different interface, such as send-
Mail(ns:email e) and sendMail(xs:string from, to,
subject, body).

As we will show in Section 3, these characteris-
tics of WSDL degrade the next phase of AWSC,
namely classification. Therefore, it is necessary
to preprocess WSDL documents before classify-
ing them. To address these problems we have de-
signed some text mining preprocessing techniques
that take into account the particularities of ser-
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Figure 3: Text mining process.

vice descriptions. Fig. 3 depicts the overall text
mining process. We have developed a parser that
extracts and preprocesses the textual description
within a WSDL file by taking advantage of its
well structured format. We have implemented
this tool in Java by using WSDL4J* and WSIF?
libraries. This tool parses a WSDL document and
pulls out the comments associated with the ser-
vice, its operations and arguments (sub-step 1 a).

Besides, in sub-step 1 b, by executing a type en-
largement algorithm our tool attempts to bridge
the different encapsulation conventions men-
tioned. Here, if an argument data-type is non-
primitive (i.e., is not an integer, string, boolean
or float) the tool looks for the definition associ-
ated with this composed type and invokes a type
enlargement algorithm, which extracts the names
of the elements that are encapsulated in the com-
posed type. This algorithm defines how to expand
xsd:complex and xsd:element types, and then de-
fines rules to break down other cases, e.g., arrays
of “something”, into these base cases. The type
enlargement algorithm is:

procedure enlarge(type, follow):string
if follow is false then
r = type.name
else
if type is complex then
for Vs € type.secuence Elements do
r += s.name
end for

4WSDL4J http://sourceforge.net/projects/wsdl4j
SWSIF http://ws.apache.org/wsif

else
if type is element then
for Ve € type.children do
r += enlarge( ¢, false )
end for
end if
end if
end if

return r

In a second activity, by splitting combined words
AWSC attempts to bridge different naming con-
ventions. In general, developers combine a verb
and a noun for denoting the name of an opera-
tion, such as getQuote or get_quote. Then, every
distinct operation and message that follows each
naming denomination would be treated as a dif-
ferent word. To bridge different naming conven-
tions, our tool searches for combinations of words
and splits them into verbs and nouns. We also
consider combinations of more than two words,
e.g., for “getQuoteFor” the tool dumps “get”,
“quote” and “for”. Table 1 summarizes the rules
for splitting combined words.

In a third activity, by removing symbols and stop
words AWSC cleans WSDL documents. We use
a list of about 600 English stop words and a list
of stop words related to Web services, such as
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Notation Rule

Source Result

Java Beans
Hungarian

W

Special symbols | Splits when either “_” or

Splits when changing text case.
Splits when changing text case.
occurs. get_Quote

getZipCode get Zip Code
wAccountNum | ul Account Num
get Quote

Table 1: Rules for splitting combined words.

request, response, soap and post. In general, re-
moving special characters and stop words is a sim-
ple but useful technique for filtering non-relevant
terms [8]. Nevertheless, the stop words elimi-
nation process is notably improved by splitting
combined words. Because of developers’ coding
conventions, some stop words are not removed.
Besides, operations and arguments having simi-
lar features are treated as being non-similar. By
splitting combined words many stop words are
removed, many relevant nouns arise and many
words are recognized as being common (non--
relevant). Finally, we employ the Porter stem-
mer [21] to remove the commoner morphological
and inflectional endings from words, reducing En-
glish words to their stems.

We will show the text mining preprocessing stage
of AWSC with an example using the description
of a Web service for finding currency exchange
rates (see Fig. 1). Table 2 shows the original
comment and the collection of stems generated
by applying the preprocessing techniques. By
using our text mining process we pulled out all
relevant stems. For example, by preprocessing
the message “GetRateSoapOut” we removed the
stop words “get”, “soap” and “out”, while the
relevant word “rate” arose. By expanding el-
ements data-type definitions we included more
occurrences of the relevant words in the result.
For example, by expanding the data-type associ-
ated with the message “GetRateSoapln” we de-
rived the stems “src”, “currenc”, “dest” and “cur-
renc” from the combined words “srcCurrency”
and “destCurrency”. In Section 3, we will eval-
uate how this text mining process improves the
overall accuracy of our classification approach.

2.2 Web services classification

Document classification refers to the process of
assigning an electronic document to one or more
categories based on its contents [24]. Automatic
document classifiers support classification of doc-
uments seen as objects characterized by features

extracted from their contents. In general, when
some external mechanism, such as human feed-
back, provides information on the correct classi-
fication for documents, we talk about supervised
document classification. This approach consists
of two phases: (1) training phase, and (2) clas-
sification phase. During the training phase, such
a learning system receives a collection of catego-
rized documents and builds a classifier. Then,
during the classification phase, this classifier de-
duces one or more categories for a new document.
The cornerstone behind AWSC supervised clas-
sification approach is the fact that there are de-
pendencies between the category of a Web service
and its description. As in a related approach [12],
AWSC also considers the dependencies between
the category of a Web service, the operations and
their input and output arguments. Concretely,
AWSC assumes that:

1. The category of a Web Service depends on
its textual comments

2. and its method signatures.

The hypothesis about the dependency between
categories and Web service documentation has
been evaluated in related approaches [12, 23].
Conversely, according to the mentioned different
styles used for defining the interface of a Web ser-
vice operation, the second part of this hypothesis
is not obvious unless we attempt to bridge dif-
ferent encapsulation and naming approaches. It
is desirable to measure the dependencies between
categories and arguments, i.e., operation inter-
faces. To this end, we conducted several experi-
ments with variables representing both arguments
and categories of services for assessing the degree
of dependency between the category and the sig-
nature of an operation (see Section 3). These ex-
periments showed that the degree of dependency
increases proportionally to the number of times
an argument appears in the services of this par-
ticular category, but this dependency is offset by
how common the argument is in the whole collec-
tion, for the data-set used in the experiments.
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Table 2: Example of results obtained by the preprocessing technique.

Extracted words

Preprocessed stems

CurrencywsSoap GetRate This method returns the
currency conversion ratio between two countries

currenc rate method
currenc convers ratio

GetRateSoapIn GetRateSoapOut GetRate srcCurrency countr rate rate rate src

destCurrency

currenc dest currenc

As a result of the previous experiments, we pro-
pose a supervised classifier based on Rocchio’s
algorithm with TF-IDF. Rocchio is a learning
algorithm, originally designed to use relevance
feedback in querying full-text databases [22],
which has been adapted to text classification [14].
This algorithm has a configurable word weighting
method. TF-IDF is a word weighting heuristic
that determines that a word is important for a
document if it occurs often on it. Instead, words
that occur in many documents are rated as less
important because of their low inverse document
frequency. Formally: for each term t; of a docu-
ment d, tfidf; = tf; e idf;, with:

tf = — (1)
Z?il g

where the numerator (n;) is the number of occur-
rences within d of the term being considered, and
the denominator is the number of occurrences of
all terms within d (Ty), and:

g Dl
idf; = log m (2)

where |D| is the total number of documents in
the corpus and |{d : t; ed}| is the number of doc-
uments where the term ¢; appears.

The overall phases of the classification algorithm
are described subsequently. Initially, the algo-
rithm represents every document as a vector v =
(eo, ..., €n). Each element e; represents the impor-
tance of a distinct word w; for that document.
This importance is calculated according to the
selected word weighting method, TF-IDF in this
case. Documents with similar content have simi-
lar vectors. Then, during the training phase, each
category C; is represented as a vector ¢;. This
vector stands for the documents that belong to
category C;. Formally:

— azlfﬁcld_
|D — C;

C: =
' |Cil

B

with C; being the sub-set of the documents from
category i, and D the amount of documents of the
entire data-set. First, both the normalized vec-
tors of C}, i.e. the positive examples for a class,
as well as those of D — C;, i.e. the negative ex-
amples for a class, are summed up. The centroid
vector is then calculated as a weighted difference
of the positive and the negative examples. The
parameters o and (§ adjust the relative impact of
positive and negative training examples. Accord-
ing to [14], we use @ = 16 and § = 4. Addi-
tionally, Rocchio requires that negative elements
of the vector are set to zero. During the clas-
sification phase, a new document is represented
as a vector and then compared to the vectors as-
sociated with all categories by using cosine simi-
larity [24]. Finally, the category that maximizes
vector similarity is deduced.

By treating each preprocessed WSDL as a docu-
ment we have developed a Rocchio classifier for
Web services. In this way, we first employ the
preprocessing method described in Section 2.1 for
pulling out all stems contained in each WSDL file.
Then, the resulting collection of stems stands for
a document associated with a Web service. Sec-
ond, for representing these documents in a vector
space and building the classifier, AWSC uses a
software that performs statistical text classifica-
tion named Rainbow [16].

In Section 3, we show how the accuracy of this
classifier surpasses that of two well-known classi-
fiers and discuss a related approach.

3 Evaluation

This section describes the experimental evalua-
tion of AWSC. First, we measured the dependen-
cies between categories and method signatures.
We have assessed that an argument is more sig-
nificant to a category, if it has a high importance
in the given category but a low importance in
the whole collection of categories. Here, ”impor-
tance” refers to the TF-IDF value for an argu-
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ment. We have verified our hypothesis on a subset
of the Web services collection presented in [12].
This subset is composed of 235 hand-classified
Web services, as shown in Table 3. This collec-
tion was obtained from SALCentral and XMeth-
ods repositories. It contains a plain text descrip-
tion for each service and the WSDL document
associated with each service.

Then, we pulled out argument declarations from
each WSDL document. As a result, complex type
arguments were expanded and their names were
reduced into stems. Afterwards, we worked out
a comma separated file whose first column repre-
sents the category associated with the Web ser-
vice, and the second one represents input argu-
ments. We tried to find out interface patterns
within category related services by using Associ-
ation Rules, specifically, the Tertius [9] algorithm
from Weka. Some discovered rules are presented
below. The number on the right of each rule is
a measure of how much evidence exists for that
rule (a.k.a. confirmation value):

1. input = send — category = ¢z (0.1531)
2. input = zip — category = ¢o (0.1001)

input = quot — category = ¢; (0.0818)

- W

input = chang — category = ¢3 (0.0788)

5. input = messag — category = ¢z (0.1069)

Although the results from our first experiment
have shown that there were some degrees of de-
pendency between the category of a service and
its inputs, the discovered rules were far away from
becoming the bases of a classification system,
mainly due to the variety of argument names that
Web services can employ. We conducted a second
experiment, with the same data-set, to measure
the degree of dependency between the interface
of a Web service and the category this service be-
longs to. We normalized the occurrences of an
argument within a category as shown in Table 4.

The second experiment has shown that the im-
portance of an argument to a particular category
increases proportionally to the number of times
an argument appears in the services of this par-
ticular category, but this importance is offset by
how common the argument is in the whole col-
lection. For example, the stem “quot” was as-
sociated with the category “financial”, whereas
the stem “search” was connected to all cate-
gories. Then, an operation with an argument

named “quot” had a good chance of being part
of a service that belonged to the category “finan-
cial”. Conversely, if an operation had an argu-
ment named “search”, we were not able to deduce
its category accurately. This result is coherent
with the word weighting method used by AWSC,
namely TF-IDF.

Second, we have shown that by using Rocchio
with TF-IDF, AWSC achieves better results than
using K-NN [4] and Naive Bayes [15] (see Ta-
ble 5), using the aforementioned data-set. De-
spite K-NN might have a limited ability to deal
with data-sets with unrepresentative features, we
think that it was worth testing its performance
because of its simplicity and efficiency. To com-
pare the Rocchio classifier with the two just men-
tioned, we drove a repeated holdout experiment.
In the simplest form of a holdout experiment, ob-
servations are chosen randomly from the initial
sample to form the validation data and the re-
maining observations are retained as the training
data. In the repeated mode, results from suc-
cessive tests with different training sets, but of
the same size, are mediated. Then, we used the
same corpus and destined the same number of
instances to the training and classification phases
(90% of the entire collection destined to the train-
ing phase), to run successive tests with each clas-
sifier. We evaluated one thousand random distri-
butions for every classifier by using the Rainbow
toolkit [16] and Weka [10].

Third, we measured the accuracy of AWSC with
different training set sizes. We have shown that
AWSC accuracy averaged 85%, when at least
210 Web services were randomly chosen for train-
ing (less than 50 services per category). Besides,
the average accuracy improved near-linearly as
we increased the number of services destined to
the training phase. It is worth noting that with
a small training set (60% of the collection), the
accuracy averaged almost 81%. To evaluate how
many training samples were required to begin de-
ducing accurately, we drove four repeated holdout
experiments. We evaluated four random distribu-
tions (60%, 70%, 80% and 90% of the entire col-
lection destined to the training phase). For each
distribution we executed one thousand rounds,
and calculated an average again. The average ac-
curacy is shown in Fig. 4.

Fourth, we compared the accuracy obtained by
using type expansion and verb noun separation
versus not using them. The achieved results have
shown that by applying our proposed text min-
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Table 3: Web services collection.

Service category Samples | Unique words
Country Information (¢p: countryInfo) 50 1404
Financial (c;: financial) 49 2954
Communication (co: communication) 41 791
Unit Conversion (c3 : converter) 49 1067
Search Engine (c¢4: search) 46 2135

Table 4: Importance of the stems within a particular category.

Stem/Category Co 1 Co c3 N

Zip 0.329 0.062 0 0 0

quot 0 0.434 0 0 0
messag 0 0.031 0.443 0 0.022

chang 0 0.031 0 0.559 0
search 0.019 0.031 0.109 0.014 0.253

code 0.307 0.238 0.093 0 0
quer 0 0.041 0 0 0.159

Table 5: Comparison between different classifiers.

Classifier Average Accuracy
K-NN 39.59%
Naive Bayes 79.38%
Rocchio 85.08%

86

Non épplying text mining.‘  —

85 - Applying text mining. . |

84 |
83 b
82 b
81

80 |

Average Accuracy [%]

79

78 |

7

76

60 70 80
Training-set size [%]

Figure 4: AWSC classification accuracy varying the training set size (with/without text mining).
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Figure 5: Comparison between Assam and AWSC.

ing process over this data-set improves the over-
all accuracy of the Rocchio classifier in, at least,
5%. Then, we conducted another repeated hold-
out experiment. We first adapted our text min-
ing process for omitting the techniques just men-
tioned. Notably, the resulting extracted text dif-
fered from the original results in having more
unique words per category. For example, there
were 2954 unique words in the “financial” cate-
gory after preprocessing, and 7548 words before.
This was caused by the inclusion of many irrel-
evant words, as explained in Section 2.1. The
inclusion of such irrelevant words does not con-
tribute to the classifier. On the contrary, it is
expected that such words could harm the classi-
fier performance [8]. At this point, we had two
collections of documents, the collection of prepro-
cessed Web service descriptions and the collection
of Web service descriptions per se. Therefore, we
trained two Rocchio TF-IDF classifiers for run-
ning successive tests with each one. It is worth
noting that we also compared how these classi-
fiers worked when varying the training set size.
Fig. 4 shows the results.

Finally, we compared AWSC to a related proposal
named Assam [13]. In order to compare them,
we reproduced the experiment reported in [13]
with the same data-set and evaluation methodol-
ogy, but using our classifier. It is worth noting
that Hess et al. only reported the accuracy of
their classification approach. Assam was evalu-
ated with a group of 391 Web services divided
in 11 categories, which has been made publicly
available. Its accuracy was evaluated with a toler-
ance value and by driving a leave-one-out experi-

ment. Leave-one-out is a cross-validation method
for evaluating classifiers [27]. A tolerance value
of t represents that the correct classification is
included in a sequence of t + 1 suggestions. Basi-
cally, in a leave-one-out experiment one observa-
tion is arbitrary chosen from the initial sample to
form the validation data and the remaining obser-
vations are retained as the training data. There-
fore, we preprocessed the 391 Web services. Af-
terwards we built the classifier and drove a leave-
one-out experiment. AWSC accuracy surpassed
Assam accuracy in, at least, 9% with two values
of tolerance: ¢t = 0 and ¢ = 1. The results are
shown in Fig. 5.

To sum up, we have shown that Rocchio with
TF-IDF is a proper classification technique for
Web services. Besides, our text mining tech-
niques have improved the classifier accuracy in,
at least, 5%, resulting in an average accuracy of
85%. It is worth noting that this accuracy has
been achieved with less than 50 services per cat-
egory destined for training. In order to conduct
a more formal comparison of these classifiers it
would be necessary to assess the standard devi-
ation statistic of Assam and AWSC, however to
the best of our knowledge the authors did not re-
port it in [13] or [12]. Finally, we have shown
that AWSC achieved more accuracy than others
classifiers and Assam. Although we have eval-
uated AWSC with a well known set of Web ser-
vices, the reported results may vary with different
data-sets.
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4 Related Work

During the past few years some efforts and re-
search have been placed on assisting the developer
to classify Web services. As a result, some semi-
automatic and automatic methods have been pro-
posed. The different approaches are based on
argument definitions matching [20, 5], document
classification techniques [19, 13] and semantic an-
notations matching [2]. In the rest of this section
we review and discuss these approaches.

MWSAF [20] is an approach for classifying Web
services based on argument definitions matching.
First, MWSAF translates these definitions into
a graph. MWSAF also translates real word for-
mal descriptions of categories (a.k.a. ontologies)
that have been specified by using Semantic Web
languages. Then, MWSAF uses graph similarity
techniques for comparing both. Likewise, Duo
et al. [5] translate a definition into an ontology,
instead of into a graph. Then, an ontology align-
ment technique attempts to map one ontology
onto another [6]. The main limitation of these
matching approaches is that they do not attempt
to reduce the distance between different coding
conventions. In fact, MWSAF achieves low accu-
racy, which is shown in its experimental evalua-
tions.

METEOR-S [19] describes a further improved
version of MWSAF. The problem of determining
a Web service category is abstracted to a docu-
ment classification problem. The graph match-
ing technique is replaced with a Naive Bayes
classifier. To do this, METEOR-S extracts the
names of all operations and arguments declared
in WSDL documents of pre-categorized Web ser-
vices. The main limitation of this approach is
that it assumes independence between the name
of an operation and its arguments. Clearly, the
name, or header, of an operation and the name of
its arguments might be related, e.g., print(Style,
Document) method signature. Therefore, this
classifier seems to be based on a false premise.
Although METEOR-S proposes a document clas-
sification approach, natural language documen-
tation, usually present in WSDL files and service
registries, is not considered. However, METEOR-
S experimental results, for the same small data--
set previously mentioned, shows an accuracy im-
provement with respect to MWSAF.

Assam [12] is an ensemble machine learning ap-

6 Categorized Web services Repository, http://msi.ucd.ie/RSWS

proach for determining Web service category. As-
sam combines the Naive Bayes and SVM [3] ma-
chine learning algorithms to classify WSDL files
in manually defined hierarchies. Assam takes into
account Web service natural language documen-
tation and descriptions. As reported, this ap-
proach is more accurate than similar approaches,
even though its authors used a repository of
391 Web services divided into 11 categories for
experimenting, which makes the validation of As-
sam stronger than the others. This repository®
has been made publicly available, which by itself
has been an important contribution to the field.
The evaluation shows that when suggesting a do-
main for annotating a Web service the accuracy
was 60% for a tolerance value of ¢ = 0, and it
trended towards 90% for ¢ = 10.

Previous efforts for classifying Web services have
several shortcomings. First, the classification ap-
proach proposed by MWSAF has shown low ac-
curacy. Even though this work was evaluated
with a set of only 24 services divided in two cat-
egories, the resulting accuracy was 0.625. Sec-
ond, the classification-based version of MWSAF
shown better accuracy, but this version is based
on the false premise that an operation and its
argument names are independent. In addition,
this approach does not consider natural language
documentation. Third, Assam uses an ensemble
machine learning technique that suffers from low
accuracy when ¢ = 0 (automatic mode). Fourth,
the computational complexity of the techniques
described in [20] and [5] is directly proportional
to the number of entities (classes, properties,
etc.). Therefore, both approaches might have
problems handling a large number of ontologies.
Finally, the described proposals classify new ser-
vices based on the information present in their
descriptions. Conversely, [2] use semantically an-
notated services as additional sources of informa-
tion. The problem of this work is that there are
too few annotated services, because of the im-
portant effort required to semantically annotate
Web services [17]. Therefore, this semantic ap-
proach proposed suffers from a cold-start problem
because it assumes that a corpus of previously an-
notated services is available.

5 Conclusions

Despite the important benefits Web services pro-
vide, Web service technologies are not as broadly
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shared and reused across application, enterprise,
and community boundaries as one may expect.
One of the factors that hinders the adoption of
Web Services is that manually assigning a proper
category for a Web service description is very dif-
ficult. We aim to provide an approach for easing
this. We tackle the complex task of automatically
classifying services by exploiting standard WSDL
descriptions.

Text mining and machine learning have shown to
be suitable techniques for automatic classification
and labeling of documents. We propose AWSC,
a novel method that combines text mining and
machine learning techniques for classifying Web
services. As reported, Rocchio with TF-IDF is a
proper classification technique for Web services.
Besides, by combining the text mining and clas-
sification stages of AWSC the resulting accuracy
was improved in, at least, 5%, using a well known
data-set. We have shown that the average accu-
racy of AWSC Web services classifier was 85%),
even with a few services destined for training. In
addition, we have shown that AWSC accuracy
surpassed a related work based on Naive Bayes
and SVM in, at least, 9%.

Although we have evaluated AWSC with a well
known set of Web services, the reported results
may vary with different data-sets. It would be
interesting to evaluate AWSC with more data--
sets. However, as far as we know no other data-set
or benchmarks have been made publicly available
yet.

The main limitation of AWSC is that it assumes
that a corpus of previously classified services is
available. This generates the inability for dynam-
ically creating categories without re-building the
classifier. To cope with such a requirement, an in-
cremental clustering [1] approach might be more
suitable than a classification one.

We are analyzing clustering approaches to eval-
uate how these methods impact on the overall
performance of AWSC. In addition, we are plan-
ning to incorporate semantic annotating support
to AWSC. The idea is to transparently associate
Web services to semantic meta-data based on sim-
ilar services that have been previously annotated.
In this context, a sensible classification system as
AWSC may “guide” the annotating process by
deducing a handful set of similar services.
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