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ABSTRACT: The equilibrium and flow properties of a polymer liquid confined in a brush-coated channel are
studied by molecular dynamics simulations using a dissipative particle dynamics (DPD) thermostat. We focus on
the regime of high-grafting density, where the brush progressively becomes a stiff and smooth, soft surface and
layering of the polymer melt at the brush-melt interface is observed. We use the Gibbs criterion to localize the
brush-melt interface and analyze its equilibrium fluctuation in terms of a capillary wave Hamiltonian augmented
by an elastic term that accounts for the deformability of the brush. Poiseuille and Couette flows are investigated,
and the slip length and location of the hydrodynamic boundary are computed. In the high-grafting regime, the
brush roughness decreases and slippage is observed. The results are compared to the effective channel width,
which is defined via the integrated flow rate for Poiseuille flow. Evidence of local changes of the near-surface
viscosity is provided, and the consistency of the Navier slip boundary condition is investigated.

I. Introduction

The properties of fluids at the nanoliter scale have attracted
abiding interest for fundamental and applied research.1,2 Because
of the large area-to-volume ratio, the properties of the confining
boundaries influence the flow behavior. Commonly, the effect
of surfaces enters the macroscopic hydrodynamic description
via the Navier-Stokes equation as boundary condition. This
hydrodynamic boundary condition encodes the molecular struc-
ture and dynamics at the surface by a few parameters (e.g., slip
length3 and boundary position). It is independent from the type
and strength of flow, but it is a material property of the surface.
The interplay between the equilibrium structure at the interface,
the flow at the surface, and the concomitant boundary condition,
however, is only incompletely understood.

Much effort has been directed toward tailoring surface
properties. Molecular simulations are well suited to investigate
how changes of the molecular conformations at surfaces,
adsorption layers, or coatings influence the surface free energy
and stress. This information enters into the macroscopic
description in form of a boundary condition. Thus, computing
the parameters of the boundary condition via molecular simula-
tion is a first step toward a multiscale modeling of microfluidic
devices from the molecular structure to the length scale of
micrometers.

Much of the equilibrium behavior on large length scales is
dictated by the surface free energy. For instance, the contact
angle of a droplet on a surface is given by Young’s equation,4

which describes the balance of the surface and interface tensions
at the three-phase contact line. Similarly, the dynamic properties
are often described in terms of a balance between viscous and
friction stress of the flow at the surface. In the Navier slip
condition, this balance is used to define the slip length.3

In this paper, the flow of a polymer liquid over a dense brush
comprised of identical polymers is studied by molecular
dynamics simulations of a coarse-grained polymer model.5

Polymer brushes are a stable and robust surface coating with
potentially useful properties such as a pronounced reduction of
friction,6 which is useful for increasing the flow at a fixed
pressure difference, or nonspecific protein adsorption, which
can be exploited to avoid clogging of microfluidic channels.
The properties of polymer brushes in an explicit solvent of
homopolymers7-12 as well as the flow of polymers over hard
surfaces13-19 have previously been studied by simulations. Here,
we simultaneously investigate the equilibrium position of the
brush-melt interface, its fluctuations, and the liquid flow in its
vicinity and explore to what extent the different static and
dynamic estimates of the position of the soft, fluctuating
interface coincide.

The properties of the brush-melt interface can be altered by
the grafting density.20-24 Already this deceptively simple system
exhibits a rich wetting behavior as a function of grafting density
encompassing both first- and second-order wetting transitions
as well as autophobicity.9,22,25,26 This autophobic regime
between polymer brushes or networks and chemically identical
chains has been experimentally observed.27-29 The equilibrium
behavior of this soft, deformable surface is dictated by the
interdigitation between brush and melt. Since these properties
stem from the rather universal aspects of the conformational
entropy of long, flexible molecules in a dense melt and are not
dominated by enthalpic interactions of the constituents, this
problem is particularly well suited for coarse-grained modeling.

Our paper is arranged as follows: In the next section, we
discuss the coarse-grained description of the brush-melt
interface in equilibrium and under flow. Then, we use molecular
simulations of a coarse-grained model to determine the param-
eters of the coarse-grained description: the position and tension
of the brush-melt interface, its coupling to the solid substrate,
and the slip length. In particular, different measures of the
location of the brush-melt interface are studied as a function
of the grafting density. The paper closes with a brief summary
and concluding remarks.

II. Model and Simulation Details

We used a coarse-grained bead-spring model5 of polymers,
which has been applied to a variety of thermodynamic conditions
and physical regimes such as dilute solutions, melts, and
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glasses.7,25,30-32 The interaction between neighboring beads
along the same polymer is modeled by a finitely extensible
nonlinear elastic (FENE) potential:

where the maximum allowed bond length is R0 ) 1.5σ, the
spring constant is k ) 30ε/σ2, and rij ) |ri - rj| denotes the
distance between neighboring monomers. Excluded volume
interactions at short distances and van der Waals attractions
between segments are described by a truncated and shifted
Lennard-Jones (LJ) potential:

with

where the LJ parameters, ε and σ, define the units of energy
and length, respectively. Temperature is given in units of ε/kB,
with kB being the Boltzmann constant. ULJ(rc) is the LJ potential
evaluated at the cutoff radius. We work in the regime of poor
solvent conditions, in which the LJ cutoff is twice the minimum
of the LJ potential, rc ) 2 × 21/6σ. Under these conditions, the
effective attraction among monomers are included giving rise
to liquid-vapor phase separation33,34 and droplet formation16,35

below the Θ-temperature, Θ ) 3.3ε/kB. The bare substrate is
modeled as an ideally flat and impenetrable wall, which interacts
with the polymer segments via an integrated Lennard-Jones
potential:

where Aw ) 3.2ε and σw ) 1σ are sufficient to make the liquid
wet the bare substrate.25,34,36

In the following, we consider short chains comprised of N )
10 monomers. The equilibrium properties at temperature kBT/ε
) 1.68 have been previously studied.36 The density of the melt,
which coexists with a vapor of vanishingly low density, is Fm

) 0.61σ-3 and the end-to-end distance of the polymers is Re )
�〈Re

2〉 ) 3.66σ. This corresponds to an invariant degree of
polymerization, Nj ≡ (FRe

3/N)2 ) 8.94. Brush molecules are
tethered with an end bead at a distance of 1.2σ from the wall.
Their lateral position is randomly chosen and immobile. The
grafting density, Fg, denotes the number of grafted brush chains
per unit surface area. The simulations at different grafting
densities are performed at constant channel widths, Dw ) 30σ
(Fg
/≡ FgRe

2 ) 0.80, 5.89, 10.31) and Dw ) 40σ for higher values
of grafting density (Fg

/ ) 13.40, 17.95, 27.06, 35.10, and 43.80).
In some simulations, Dw ) 50σ has been utilized with a smaller
sample in ŷ: Ly ) 9.09σ. The surface area of the simulation
cell is Lx × Ly ) 21.00σ × 18.19σ. As the grafting density
increases and the brush height, Fg

//�Nj grows, the melt region
shrinks for constant distance Dw between walls.

We use a DPD thermostat37,38 to maintain constant temper-
ature across the channel in equilibrium and under flow. The
dissipative and frictional forces are applied in a pairwise form,
such that the sum of thermostatting forces acting on a particle
pair equals zero. The forces are given by

where for each vector, a, we define aij ≡ ai - aj, γ is the friction
constant, and σ characterizes the noise strength. Friction and
noiseobey therelationσ2)2kBTγ, and thefluctuation-dissipation
theorem will be satisfied if39

θij is a random variable with zero mean and second moment:

We use the standard weight functions

where rc is the cutoff radius. Alternatively, one could choose a
different set of functions, obeying eq 7, to improve the efficiency
of the thermostat. This may be important for nonequilibrium
simulations.40

The Hamiltonian equations of motion41,42 for monomer i take
the form

where Fi is the total conservative force on each particle, obtained
from the gradient of the LJ and FENE potentials, and mi is the
mass of each monomer. Fw is the force on the particle exerted
by the wall. We set mi ) 1 in the following. Fi

D and Fi
R are the

forces due to the DPD thermostat according to eq 5 and 6,
respectively. The equations of motion (10) are integrated using
the velocity Verlet algorithm41,42 with a time step of dt ) 0.002τ,
where τ ) σ(m/ε)1/2 denotes the LJ time unit. The grafted beads
of the brush chains interact with other beads with LJ and FENE
potentials, but its positions are held fixed during the simulation.
The LJ potential among grafted beads is not taken into account.

The short chains obey Rouse-like dynamics with a diffusion
coefficient, D ) 0.05σ2/τ. This defines the longest single-chain
relaxation time, τ* ) Re

2/D ) 268τ. Couette flow was imposed
by moving the walls at constant velocity, Vw, in opposite
directions,11 which gives rise to an average shear rate, γ̇ ) 2Vw/
Dw. We quantify the shear by the Weissenberg number Wi )
γ̇τ*/2. For a typical condition, Vw ) 1σ/τ and Dw ) 40σ, we
obtain Wi ) 6.7.

Additionally, we study Poiseuille flow by adding a constant
body force, fx, for each monomer (except the immobile grafting
points) in the direction parallel to the walls.

III. A Coarse-Grained Description of the Brush-Coated
Surface

Molecular dynamics simulation provides detailed information
about the structure and its spatial dependence at the solid
substrate and the brush-melt interface. Descriptions of the large
scale properties, like wettability or flow, do not regard the subtle
packing effects and profiles of orientations of the extended
molecules at the surface, but they rather describe these molecular
details in form of coarse-grained parameters. For the equilibrium
properties, one routinely utilizes an effective interface Hamil-
tonian that describes the system in terms of the interface
position, the interface tension, and the free energy it takes to
place the brush-melt interface at a position z, the interface
potential g(z). For flow properties, one describes the interface

UFENE ) {-1
2

kR0
2 ln[1 - ( rij

R0
)2] for rij e R0

∞ for rij > R0

(1)

U(r) ) ULJ(r) - ULJ(rc) (2)

ULJ(r) ) 4ε[(σ
r )12

- (σ
r )6] (3)

Vwall(z) ) |Aw|(σw

z )9

- Aw(σw

z )3

(4)

Fi
D ) ∑

j(*i)

Fij
D; Fij

D ) -γωD(rij)(r̂ij·vij)r̂ij (5)

Fi
R ) ∑

j(*i)

Fij
R; Fij

R ) σωR(rij)θijr̂ij (6)

[ωR]2 ) ωD (7)

〈θij(t)θkl(t')〉 ) (δikδjl + δilδjk)δ(t - t') (8)

[ωR]2 ) ωD ) { (1 - r/rc)
2 r < rc

0 r g rc
(9)

ṙi )
pi

mi

ṗi ) Fi + Fw + Fi
D + Fi

R (10)
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by the position of the hydrodynamic boundary and the slip
length. In the following, we will compute and compare the
equilibrium and dynamic parameters that enter a coarse-grained
description of the deformable, brush-coated surface.

A. Coarse-Grained Description of Equilibrium Prop-
erties. The equilibrium properties of the brush-melt interface
can be described by an effective interface Hamiltonian, Hcap,
which is commonly used to discuss interface fluctuations and
wetting properties. Rather than describing the details of the
molecular conformations, we utilize a description in terms of
the local interface position, zG(x, y). zG describes the local
distance of the brush-melt interface from the solid substrate,
and it depends on the two lateral coordinates, x and y. The
effective interface Hamiltonian43

is comprised of two terms. The first one describes the free energy
costs of the excess area that is created by interface fluctuations
or capillary waves. It is proportional to the interface tension,
σint, of the brush-melt interface. The second term describes
the coupling of the interface and the solid substrate. Interface
fluctuations deform the polymer brush, and the concomitant free
energy costs strongly suppress long wavelength fluctuations. In
the following we assume that the interface potential can be
expanded around the equilibrium brush height, zjG, and takes
the form

The free energy penalty of a surface deformation of molten
brushes has been considered within the strong stretching
approximation. These calculations typically consider an incom-
pressible brush and a sharp brush-melt interface. Under these
conditions, there are no fluctuations with large wavelength, i.e.,
k ∼ 1/q2.44-46 In our simulations, however, the brush is
compressible (but the equation of state of the Lennard-Jones
fluid is not quantitatively describable by a second-order virial
expansion). Thus, a spatially homogeneous displacement of the
brush-melt interface (with q ) 0) is possible. To obtain an
order of magnitude estimate of the free energy change associated
with a homogeneous motion of the brush-melt interface, we
assume that each chain acts like an entropic spring, i.e., k ∼
FgkBT/Re

2.
Different schemes to locate the interface position have been

devised;47 here we use a simple integral criterion. To this end,
we subdivide the simulation cell into a square grid of columns
with lateral extensions ∆x and ∆y, which span the simulation
cell in z-direction.48 Typically, we use ∆x ) ∆y ) 1σ such that
there are 20 × 20 columns. In each column, characterized by
(x, y), we compute zG(x, y) as the location of the Gibbs dividing
surface. To minimize the effect of bulklike density fluctuations
far away from the interface, the integral criterion is only applied
to a narrow interval [z-:z+] around zG. As illustrated in Figure
1, zG(x, y) is chosen such that

where Fx, y(z) denotes the segment density of melt chains in a
column and Fm

bulk is the density at the center of the channel.
The choice of the width of the interval [z-,z+] is a

compromise. On the one hand, it should be large enough to
bracket the fluctuations of the interface. On the other hand, it
should be small enough to minimize the effect of bulklike

density fluctuations far away from the interface. The effect of
bulklike fluctuations on interface fluctuations and their coupling
have been the subject of much debate.47,49-55 To estimate the
effect of the interval width, we assume that bulk and interface
fluctuations decouple. Then, the additional fluctuations due to
bulklike density fluctuations are of the order 〈δzG

2〉bulk ∝
κTkBT|z+ - z- |/[2∆x∆y] where κT ≈ 1σ3/ε denotes the isothermal
compressibility. Since bulklike density fluctuations are uncor-
related on lengths larger than the microscopic scale set by the
screening length �, their effect on large length scales is
significantly smaller. Thus, different methods of computing the
local interface position differ in the large-q behavior; however,
they yield identical results in the limit of qf 0. Therefore, we
believe that our observation k f const instead of k ∼ q-2 is
not related to the specific technique by which we compute the
interface position.

It is useful to discuss the behavior as a function of the lateral
wavevector, q ) (qx, qy), that characterizes the deformation of
the brush-melt interface; i.e., one considers a deformation of
the form34,48,56,57

Inserting an interface deformation of the form (14) into eq
11, one finds that the different Fourier components decouple
and

Since each mode is independent and quadratic, the equipartition
theorem dictates

Therefore, the spectrum of fluctuations of the local brush-melt
interface position provides information about the tension of the
brush-melt interface and its deformability. We will use this

Hcap[zG(x, y)] ) ∫ d2(x, y)(σint

2
[∇ zG]2 + g(zG)) (11)

g(zG) ) k
2

(zG - zjG)2 (12)

∫z-

z+
dz Fx,y(z) ) (z+ - zG(x, y))Fm

bulk (13)

Figure 1. Profiles of the segment density of brush and free chains (melt)
for Fg

/ ) 10.31. A sketch of the quantities defined for the calculation
of the Gibbs dividing surface ZG(x,y) is shown. The shaded areas Nu

and Nl are the geometrical regions that must be equated to determine
the position ZG(x,y;t) of the interface. Inset: snapshot of the simulated
system. Liquid monomers are shown in light gray and brush monomers
in dark gray. The position, zG, agrees with the main panel, but the z-scale
is much reduced. The coordinate system is indicated with arrows; x̂
defines the flow direction.

zG(x, y) )
cc(0)

2
+ ∑

qx,qy

cc(q) cos(qxx + qyy) +

∑
qx,qy

cs(q) sin(qxx + qyy) (14)

Hcap(cc(q)) )
LxLy

4
(σintq

2 + k)cc(q)2 (15)

〈cc
2(q)〉 )

2kBT

LxLy(σintq
2 + k)

(16)
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coarse-grained description to analyze our simulation data in
section IV.A.2.

In general, the two parameters of the effective interface
Hamiltonian, σint and k, are wavevector-dependent. The q
dependence of the interface tension has attracted abiding
interest,47,49-55 and an expansion in terms of even powers of q
is commonly assumed. These effects have been observed inter
alia at polymer-polymer interfaces and melt-vapor inter-
faces.34,56,58 Details at large wavevectors, qσ ∼ O(1), may
depend on the details of the method by which the local interface
position is extracted from the simulation. For this reason we
focus on the small q behavior, which is not affected by the
details of the algorithm to compute the local interface position.

B. Coarse-Grained Description of Flow Properties. In order
to capture the salient features of the brush-melt interface under
flow, one has to provide a boundary condition to the hydrody-
namic equations that describe the flow on large time and length
scales far away from the surface. Commonly, the Navier slip
condition is utilized3

which is based on the equality of frictional stress, σfric ) λVx(zb),
and viscous stress, η∂Vx/∂z, at the surface. λ denotes the friction
coefficient, and η is the bulk viscosity of the liquid. This
boundary condition is characterized by two parameters: zb

characterizes the position of the hydrodynamic boundary, and
b ) η/λ denotes the slip length. Note that for a soft surfaceslike
a brush-coated solidsthe position, zb, at which the boundary
condition is to be applied is not obvious, and both parameters
have to be computed. If eq 17 serves as a boundary condition
for the Navier-Stokes equation, which describes the flow of
the liquid far away from the surface, the parameters zb and b
should not depend on the type and strength of the flow, but
they are material parameters of the surface.

We will use Couette and Poiseuille flows to determine the
parameters of the boundary condition and test its consistency.
Couette flow far away from the surface (i.e., at the center of
the channel) is described by a linear velocity profile

where γ̇ denotes the shear rate and zC is the position where the
linear profile at the center extrapolates to zero. If one drives
the flow by a volume force, gx ) Fm

bulkfx, where fx denotes the
force that acts on each melt segment, one will obtain a parabolic
velocity profile

at the center of the channel. zP denotes the location where the
velocity profile of Poiseuille flow at the center extrapolates to
zero. Using these predictions of the Navier-Stokes equation
in eq 17, one obtains59

A necessary condition for the consistency of the Navier slip
condition is zP g zC. The condition zP ) zC characterizes the
limit of no-slip boundary condition, b ) 0. If zP < zC, the Navier
slip condition will fail to provide a consistent boundary condition
to the macroscopic, hydrodynamic description which solely

depends on the surface but is independent of the type and
strength of the flow.

IV. Results

A. Equilibrium Properties. 1. Density Profiles. The density
profiles across the channel are presented in Figure 2 for
Poiseuille flow with a small volume force, fx ) 0.008ε/σ. Profiles
are symmetrized around the center of the channel. The complete
range of grafting densities Fg is shownsfrom the mushroom
regime (Fg

/ ) 0.80) in which the liquid reaches the rigid wall,
over the brush regime, for which a brush-melt interface is
formed (Fg

/ ∈ [5.89, 10.31]), up to very high grafting densities,
where the brush behaves like an elastic solid surface with a
very small interpenetration of the melt. Under these conditions,
flow hardly affects the profile of the brush layer.

At low grafting densities, the free chains of the melt penetrate
the brush, and there is a broad brush-melt interface.11 Upon
increasing the grafting density, we observe a gradual growth
of the layering at the solid substrate. The brush-melt interface
becomes thinner, and for the highest grafting densities, the brush
gradually approaches the behavior of an attractive solid surface.

The thickness, Lbrush, of the brush can be quantified by the
first moment of the brush density profile, Fb(z)

The factor 2 ensures that in the case of a brush of uniform
density and a sharp brush-melt interface, Lbrush coincides with
the position of the brush-melt interface.

∂Vx(z)

∂z |zb
) λ

η
Vx(z)|zb

≡ 1
b
Vx(z)|zb

(17)

Vhydro,C(z) ) γ̇(z - zC) (18)

Vhydro,P(z) )
gx

2η
(z - zP)(Dw - zP - z) (19)

b ) √(zP - zC)(Dw - zP - zC) (20)

zb ) zC + b (21)

Figure 2. Density profiles of brush and melt for the whole range of
grafting densities. Data correspond to Poiseuille flow with a small body
force, fx ) 0.008ε/σ. For the three lower grafting densities, the
equilibrium profiles are presented in dotted lines.

Lbrush ) 2
∫ dz zFb(z)

∫ dz Fb(z)
(22)
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We note that the high density inside the brush gives rise to
a strong attraction between brush and melt. For the highest
values of grafting density, Fg

/, it is difficult to equilibrate the
brush due to a glassy-like state at such a high densities, but the
profiles are stable during the course of the simulation. As shown
in Figure 3, oscillations of the melt density signal the layering
and ordering in the melt.

The profile FCM(z) of the center of mass density, which is
presented in Figure 4, also exhibits a gradual increase of layering
upon increase of the grafting density.

2. Fluctuations of the Brush-Melt Interface. We analyze the
fluctuations of the brush-melt interface by computing the local,
instantaneous Gibbs dividing surface on a grid of 20 × 20 points
for 3000 up to 24 000 configurations which are separated by
300 MD time steps. We have verified that the interface
fluctuations (Figure 5) are sampled over a significant number
of uncorrelated configurations beyond the relaxation time of the
Fourier mode with the smallest wavevector.

First, we calculated the variance of the local interface
positions, (〈h2〉)1/2 ≡ [〈(zG(x,y) - zjG)2〉x,y;t]1/2. This quantity
characterizes the roughness of the brush-melt interface on the
length scale of the binning size, σ. Figure 5 presents the data
for various Fg

/. For Fg
/ < 5.89, there is no brush-melt interface

and the melt reaches the wall without important influence of
the grafted chains. For Fg

/ > 6, we observe a decrease of the
roughness in accord with a thinning of the brush-melt interface
and a stiffening of the stretched brush.

We have extracted the local, instantaneous interface position,
zG(x,y), and calculated the y-averaged Fourier components, cc(qx)

) cc(qx, qy ) 0). According to eq 16, the curve 1/〈c(qx)2〉 vs qx
2

should be linear within the interval, in which the effective
Hamiltonian description is valid. Figure 6 presents simulation
data for a very wide range of grafting densities. For large
wavevectors, qx, the coarse-grained interface description breaks
down, and the granularity of the beads and details of the
interaction potentials matter. In Figure 6, this limit is marked
by a vertical, dashed line, and we have not used the data for
larger wavevectors in our analysis. Previous work has shown
that the asymptotic limit q f 0 is approached beyond several
molecular diameters.48,60,61 Using the rather large range of the
smallest four or five qx values for the linear fit, we extract the
tension of the brush-melt interface, σint, and the elastic constant,
k, of the binding potential.

Figure 7 shows the values of the normalized interface tension,
σintσ2/kBT (top panel), and brush elastic constant, kσ4/kBT
(bottom panel), as a function of grafting density. The vertical
line indicates the crossover toward a fully developed brush-melt
interface. For smaller values of Fg

/, the structure and tension of
the “brush-melt” interface resemble the surface of the melt
close to the solid substrate. Since the pressure corresponds to
the coexistence value, the rise of the density resembles the
properties of a liquid-vapor interface whose value is 0.1kBT/
σ2. On the other hand, k decreases with Fg

/ because the brush is
easier to deform for decreasing grafting densities.

For larger grafting densities, Fg
/ > 6, we observe a slight

increase of the σint which saturates at large Fg
/ within the rather

Figure 3. Melt density profiles for different grafting. The density has
been adjusted such that its value at the center equals the coexistence
density, F0 = 0.61σ-3. The curves were shifted in z by zG such that the
interface position is located at z/Re ) 0 for all the densities. The onset
of layering in the melt at very high grafting densities is clearly observed.

Figure 4. Number density of the center of mass of molecules FCM(z)
across the channel, normalized with the effective channel width Deff )
Dw - 2zG.

Figure 5. Mean fluctuation of the interface (〈h2〉)1/2 as a function of
grafting density. In all the cases, a binning size of ∆x ) 1σ has been
used. The dotted curve only is a guide for the eye. The vertical dashed
line indicates the limit for which the brush-melt interface is completely
built up.

Figure 6. Mean amplitude of the Fourier modes 〈c(qx)2〉 vs qx
2. From

this graph is extracted the interface tension σint and the elastic constant,
k, of the brush layer. Only data to the left of the dashed line have been
analyzed, and the curves connecting the data points are guides to the
eye only.
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large uncertainties of the simulation data. In this regime of
grafting densities, the elastic constant k first increases linearly
with Fg

/ and saturates at large Fg
/.

To rationalize the linear increase of k for Fg
/ j 15, we used

a simple scaling model. The excess free energy of a stretched
chain in the brush can be written as

where h is the brush height, b the statistical segment length, b2

) Re
2/N, and V the segmental volume (or second order virial

coefficient). The first term of the right-hand side of eq 23 is the
stretching free energy, and the second one accounts for the
excluded volume interaction among segments. The equilibrium
height h0 can be found by minimizing eq 23 with respect to h,
yielding h0 ∼ N(Vb2Fg/4)1/3.

If we now perform a Taylor expansion around the equilibrium
height h0 up to second order, one obtains

Equation 24 expresses the excess free energy per chain. If we
identify the brush height h with the position of the brush melt
interface, zG, one obtains for the interface potential

i.e., each chain acts like an entropic spring and the elastic
constant takes the form k = (6kBTFg)/Re

2 ) (6/Re
4)kBTFg

/. This
simple scaling consideration rationalizes the linear dependence
of k on the grafting density. Using the value Re ≈ 3.66σ, we
depict the prediction by the solid line in Figure 7.

B. Flow Properties. 1. Couette Flow. Figure 8 presents the
symmetrized velocity profile of Couette flow with wall velocity,
Vw ) 1σ/τ, i.e.,Wi ) 6.7. The position, z ) 0, indicates the
wall location, and the coordinate system is defined at the wall
comoving frame. The density profiles are also shown to correlate
the flow profile with the position of the interface determined in
the previous section. At small and intermediate grafting densi-
ties, we observe that the velocity of the melt attains the value
of the wall.

High grafting density gives rise to a stronger attraction
between the brush and melt because the density inside the brush
increases in our compressible model, but this effect is more
than compensated by the decrease of the roughness of the
brush-melt interface. In fact, the melt velocity, at high grafting
densities, remains smaller than that of the boundary. This
phenomenon we denote by apparent slip. If one extrapolated
the linear velocity profile of the melt, then the melt would attain
the velocity of the wall at some location inside the brush.11 At
that position, however, the melt density is virtually zero.

The velocity profiles for different shear rates are presented
in Figure 9. Data for the velocity are omitted for densities
smaller than 0.05Fm

bulk. Lines indicate the linear velocity profiles
and have been fitted to the central region of the channel with a
width of 10σ ≈ 3Re. We note that the slope of the velocity
profile changes on the melt side of the brush-melt interface.
At F/ ) 35.1, the velocity gradient, ∂Vx/∂z, is smaller at the
interface than at the center. Assuming that the viscous stress is
continuous through the brush-melt interface, this observation
indicates an increased local viscosity of the melt in the vicinity
of the interface, which is compatible with the increase of the
local density.

From the Couette flow profiles, we estimate the position zC

) zb - b, where the linear velocity profile at the center
extrapolates to zero. In case of a no-slip boundary condition,
zC will characterize the position at which the hydrodynamic

Figure 7. Top: tension of the brush-melt interface, σint, as a function
of grafting density Fg

/, as extracted from interface fluctuations. Bottom:
elastic constant, k, of the brush as a function of the grafting density.
The vertical dashed line indicates the limiting case, in which the
brush-melt interface is completely built up. For lower grafting densities,
the melt reaches the solid surface, and the interface is not completely
developed. The solid line indicates the linear dependence of the scaling
model.

Fchain

kBT
∼ h2

Nb2
+

VN2Fg

2hb2
(23)

Fchain(h)

kBT
-

Fchain(h0)

kBT
=

3

Nb2
(h - h0)

2 (24)

g(z) =
3kBTFg

Re
2

(z - zjG)2 (25)

Figure 8. Symmetrized velocity profile for Couette flow. The wall
velocity is 1σ/τ (Wi ) 6.7). The frame reference is set at the wall
comoving frame. The melt velocity profile, setting z/Re ) 0 at the wall
position, is shown in open circles. The brush velocity profile, following
the wall velocity (V ) 0), is presented in solid squares, and the melt
density (scaled by a factor 6) in solid circles and lines. The latter shows
the layering in the vicinity of the melt.
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boundary condition is to be applied, i.e., zC ) zb. For the shear
rate considered, zC is largely independent of γ̇. This observation
agrees with the insensitivity of the profiles. Moreover, it has
been suggested that if the melt (fluid) and the brush (substrate)
can efficiently exchange momentum, slippage will be rather
independent from shear rate.62 This condition is fulfilled in our
model.

Figure 11 shows the position zC, Lbrush, and zG for different
grafting densities. All these measures increase monotonously
with grafting density. For intermediate and high grafting
densities, zG and zC agree, and for very high grafting densities
also Lbrush approaches the other values. At low grafting densities,
however, there are differences: (i) At intermediate and low
grafting densities, the brush profile differs from the square well

form, and Lbrush does not provide a quantitative estimate of the
broad brush-melt interface. (ii) At very low grafting densities,
the melt slips past the smooth substrate, and zC adopts negative
values.

2. Poiseuille Flow. Applying a constant force to each segment,
we generate Poiseuille flow and observe a parabolic velocity
profile, Vx(z), at the center. The simulation results for different
grafting densities together with parabolic fits to the flow behavior
at the center are shown in Figures 12 and 13 for an external
force fx ) 0.008ε/σ and channel widths, Dw ) 30σ and 40σ )
10.93Re. The interface position is indicated in Figure 13 by
dashed lines which present the melt density. Velocity data
corresponding to a liquid density below 0.05Fm

bulk are omitted
from the graph. In accord with the behavior in shear flow,
slippage is observed at very low grafting densities, and apparent
slip occurs at very high grafting densities.

As we increase the grafting density, the central region
occupied by the melt becomes narrower and the overall flow
velocity decreases. From parabolic fits to the hydrodynamic
behavior at the center, we extract the position, zP, and the
curvature of the velocity profile at the center (see eq 19). The
latter quantity in conjunction with the known body force can
be used to calculate the viscosity of the melt. The results are
shown in Figure 14. For all but the largest grafting density, we
obtain a value η ) 1.86(2) (in LJ units), which is consistent
with previous simulations11,16 and indicates that bulklike
behavior is observed at the center.

Upon increasing the grafting density, the melt regions narrows
and the overall flow rate decreases. The total flow rate

Figure 9. Symmetrized velocity profiles at different shear rates for
grafting densities, Fg

/) 13.40 (top panel) and Fg
/) 35.10 (bottom panel).

z/Re ) 0 defines the wall position. The linear fit at the center of the
liquid is shown. The horizontal lines indicate the wall velocity, and
the melt density is also shown for comparison.

Figure 10. zC as a function of shear rate at high grafting densities. A
negative value indicates that the boundary lays inside the channel (close
to the brush-melt interface). zC as well as the density profile does not
strongly depend on shear rate. The dominant effect is the increase of
the effective brush thickness for higher grafting densities. Lines are a
guide to the eye.

Figure 11. Brush thickness Lbrush (squares), zC, and zG as a function of
grafting density. The maximum extension limit of the brush is indicated
by the dotted-dashed horizontal line.

Figure 12. Symmetrized liquid velocity profile for Poiseuille flow
simulations as a function of grafting density. The volume force is fx )
0.008ε/σ, and the channel width Dw ) 40σ. The center of the channel
is at z ) 20σ (z/Re ) 5.46). The quadratic fit, which corresponds to
the solution of Navier-Stokes equation, is also shown. Only data with
15 e z/σ e 25 have been used for the parabolic fits.
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is an experimentally accessible quantity. Vm,x and Fm are the
velocity and density of the melt. The inset in Figure 15 shows
the profiles Fm(z)Vm,x(z) for high grafting densities. Assuming a
parabolic velocity profile and a no-slip boundary condition, we
solve the incompressible Navier-Stokes equation and compute
the total flow rate:

Comparing the measured flow rate to the prediction, we define
an effective channel width,12 Deff ) [(Qm/Ly)(12η/Fm

bulkfx)]1/3,
where all quantities have been computed independently.

The effective width, Deff, as a function of the grafting density
is shown in Figure 16, which also depicts the channel width
extracted from the position, zG, of the brush-melt interface.
Qualitatively, both data agree. The small differences can be
traced back to several causes: (i) layering of the melt at the
brush-melt interface, (ii) increase of density and viscosity at
the interface, and (iii) apparent slip at very high grafting
densities.

3. Hydrodynamic Boundary Condition. Given the apparent
slip at very low and very high grafting densities and the
ambiguities of defining the position of the soft brush-melt
interface, we also utilized the two types of flow to extract the
slip length and the position of the hydrodynamic boundary
simultaneously.

First, we note that the necessary condition, zP > zC, for the
parameters, b and zb, of the Navier slip condition to be material
parameters of the surface is not fulfilled at intermediate grafting
densities, as shown in Figure 17. The difference zP - zC is small

but negative, and a similar behavior has also been observed in
dynamic single-chain-in-mean-field simulations.59 This is high-
lighted in the inset of Figure 17. The failure of the Navier slip
condition at intermediate grafting densities can be traced back
to an increased viscosity of the melt at the surface compared to
the bulk. This is plausible because at intermediate grafting
densities the brush chains dangle into the melt and increase the
friction, and the velocity of the melt reaches the surface velocity
(i.e., microscopically there is no apparent slippage). The local
increase of viscosity at the brush-melt interface was already
observed in simulations of brushes exposed to monomeric
solvents.63 The failure of the Navier slip condition indicates

Figure 13. Symmetrized velocity profile (symbols) and density profile
for the polymer liquid (dashed line). T ) 1.68ε/kB; fx ) 0.008ε/σ. The
channel width is Dw ) 30σ until Fg ) 10.31 and Dw ) 40σ for larger
values of grafting densities. The area of the sample is A = 20 × 20σ2.

Qm ) Ly∫0

Dw
dz Fm(z)Vm,x(z) (26)

Qm
/ ) LyFm

bulk
fx

12η
D3 (27)

Figure 14. Viscosity estimated from Poiseuille flow with body force
fx ) 0.008ε/σ as a function of the grafting density.

Figure 15. Flow rate for Poiseuille flow in the high grafting interval.
The dashed line is a guide for the eyes The inset shows the symmetrized
profile F(z)Vx(z) for all the grafting densities. The center of the channel
is in the origin of coordinates z/Re ) 0.

Figure 16. Effective channel width extracted from flow rate (full circles)
and using the mean position of the Gibbs dividing surface (open
squares) for the high grafting density interval. Lines are a guide to the
eye.
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that changes of liquid structure close to the boundaries are
important and cannot be consistently parametrized by the two
parameters of the hydrodynamic boundary condition.17 At very
high grafting densities, however, the brush-melt interface
becomes very narrow. There is an increased melt velocity at
the brush-melt interface because the liquid density is increased
compared to the bulk due to the attraction between brush and
melt (see Figure 9). This effect is, however, counterbalanced
by the apparent slippage at the brush melt interface, which is
observed in Figure 9; i.e., the velocity of the melt does nowhere
reach the wall velocity. This apparent microscopic slippage is
sufficient to restore the Navier slip condition.17

Second, for very small grafting densities, F* ) 0.28, we
observe slippage. The position of the hydrodynamic boundary,
zb, is close to the solid grafting surface, and the slip length is
quite large, b ) 4.8σ. In the opposite limit of very high grafting
densities, we also observe slippage. The slip lengths, b, are much
smaller and on the order of a bead diameter. The position, at
which the hydrodynamic boundary condition is to be applied,
coincides with the brush-melt interface. For this high grafting,
the extrapolation of the velocity profiles at the center deviate
from the near-surface data as highlighted in Figure 18 for Fg

/ )
35.10, in which zC an zP together with the position of the
interface zb are explicitely indicated. The simulation results are
compiled in Table 1.

V. Concluding Remarks

In this work, we performed molecular dynamics simulations
using a DPD thermostat to study the structure and dynamics of
the brush-melt interface in equilibrium and under flow as a
function of the grafting density. In analogy to the equilibrium
wetting properties,9,22 three regimes can be identified in the
dynamics: (i) At very low grafting densities, the properties of
the solid, grafting surface dominate; the smooth substrate used
in our study gives rise to slip. (ii) At intermediate grafting
density, there is a broad brush-melt interface. We find evidence
that this results in an increase of the effective shear viscosity
in the vicinity of the brush-melt interface. In this regime, the
Navier slip condition fails to serve as a boundary condition to

the Navier-Stokes equation; the parameters depend not only
on the brush but also on the type of flow. (iii) At very high
grafting densities, the brush-melt interface becomes narrow,
and the brush resembles an impenetrable elastic solid. In this
case, we observe slip. Compared to the equilibrium wetting
behavior, however, the grafting densities at which the crossover
occur is shifted to higher values.

The brush-melt interface is a prototypical example of a soft,
deformable substrate. We expect that similar behavior is found
if the brush and melt chains were comprised of a different
number of segments or if the segments were chemically
different. Qualitatively, our findings are expected to carry over
to interfaces between a polymer network and a melt. It has been
suggested that the failure of the Navier slip condition is related
to the increase of the viscosity at the surface. In fact, it has
also been observed in polymer melts in contact with strongly
attractive surfaces.17 Other mechanisms, e.g., topographic
surface structures or chain absorption, may also lead to similar
effects, and we hope that our work stimulates the development
of alternative boundary conditions for the Navier-Stokes
equations that can consistently capture the properties of these
soft surfaces.
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