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Controlling open quantum systems using fast transitions

Pablo M. Poggi, Fernando C. Lombardo, and Diego A. Wisniacki
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Unitary control and decoherence appear to be irreconcilable in quantum mechanics. When a quantum system
interacts with an environment, control strategies usually fail due to decoherence. In this article we implement
a time-optimal unitary control protocol suitable for quantum open systems. The method is based on successive
diabatic and sudden switch transitions in the avoided crossings of the energy spectra of closed systems. We show
that the speed of this control protocol meets the fundamental bounds imposed by the quantum speed limit, thus
making this scheme ideal for application where decoherence needs to be avoided. We show that this method can
achieve complex control strategies with high accuracy in quantum open systems.
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I. INTRODUCTION

Quantum control is a fundamental goal in different areas,
including physical chemistry, nanoscience, and quantum in-
formation processing [1–3]. In fact, as the manipulation of
quantum systems will be the basis for future technological
applications, the development of different control strategies is
a task of major interest nowadays.

An unitary control scheme consists of engineering the
time dependence of one or several external parameters (i.e.,
electric fields) which manipulate the temporal evolution of
a quantum system in order to obtain a desired target state.
But, real systems interact with their environment to a greater
or lesser extent. No matter how weak the coupling between
the system and the environment is, the evolution of an
open system will be characterized by nonunitary effects like
decoherence and dissipation [4]. Decoherence, in particular,
is a quantum effect whereby the system loses its ability to
exhibit coherent behavior. It is a serious obstacle in quantum
information processing in general, and in quantum control
in particular [5]. Control faces major difficulties when dealing
with open systems, as the control field cannot fully compensate
the dissipative and decohering effects from the environment.
Facing this threat requires a control protocol not only to
assure high fidelity but also to be implemented in a time span
shorter than the decoherence time [6,7]. Nevertheless, quantum
mechanics imposes fundamental limits on the maximum
rapidity with which a state can evolve to an orthogonal state.
Known as the quantum speed limit (QSL), it is a physical bound
that any control strategy should take into account [8–10].

In this paper we implement an efficient method for
controlling a quantum system in contact with an environment.
The method is based on the knowledge of the spectrum
of the closed system as a function of a suitable external
parameter and requires that the system behaves locally—
near avoided crossings—as the Landau-Zener (LZ) two-level
model [11,12]. Although this characteristic may seem rather
restrictive, it is, in fact, a general property of systems with
interaction between its energy levels [13,14], at least in the
low-energy region. We apply a well–defined series of fast
(diabatic) and sudden (steplike) variations of the control
parameter, which allows us to travel through the state space
of the system and reach the desired target state. The speed of

this control protocol meets the fundamental bounds imposed
by the QSL, thus making this scheme ideal for application to
open systems. We show that this method is very successful
to accomplish ambitious control goals in systems exposed to
an important environmental decoherence. Additionally, this
method avoids the need of using optimization algorithms
in order to find a time-optimal control function, and thus
various potentially encumbered subjects such as monotonicity,
convergence, and performance of the algorithm.

II. CONTROL STRATEGY AND QSL

The building block of this strategy is the LZ model for a
quantum system with two interacting levels. In the diabatic
basis {|0〉,|1〉} the Hamiltonian of this system can be written

HLZ =
(
αλ #

2
#
2 −αλ

)

= αλ σz + #

2
σx, (1)

where # is a constant and we set h̄ = 1 along the Letter.
The eigenvalues of HLZ form a hyperbola in the (λ,E) plane
[as shown in Fig. 1(a)], whose vertex represents an avoided
crossing (AC) with an energy gap #. The eigenvectors of the
Hamiltonian form the so-called adiabatic basis, {|φ0〉,|φ1〉},
where the notation makes explicit the asymptotic correspon-
dence between both basis when λ → −∞. When λ → +∞,
this correspondence is exchanged. The classic LZ theory
describes the transition probability of the system when the
initial state is |ψ(−∞)〉 = |0〉 and the parameter λ is swept
linearly in time, i.e., λ(t) = v t , yielding the famous LZ
formula,

P1(t → ∞) = 1 − exp
(

− π#2

4v|α|

)
. (2)

This result defines a critical velocity vc = π#2

4|α| which de-
termines two limiting control scenarios. In the first place,
we have the fast diabatic (D) transitions, in which v % vc

in such a way that P1(t → ∞) & 0, leaving the initial state
unchanged. On the other hand, the adiabatic (A) transitions,
in which v ' vc and thus P1(t → ∞) & 1, take place when
the state evolves slowly following the adiabatic curve and
finishes in state |1〉. For a closed quantum system in which
the transitions between neighboring levels are well described
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by the LZ model, this scheme provides a quantitative binary
(A-D) recipe for determining the appropriate velocity of the
driving field at each of the avoided crossings (ACs) [15–17].
However, in the presence of an environment, decoherence
is bound to act within the long periods of time required by
adiabatic transitions, rendering the effective dynamics of the
system nonunitary and thus preventing the system from being
controlled.

To overcome this problem we propose an alternative method
in which we use the so-called sudden-switch transitions
[16,18]. Consider the LZ system prepared initially in the state
|ψ(0)〉 = |0〉. We now consider λ(t) to be a piecewise constant
function with initial value λ(0) = −λ0, with λ0 % #/|α| [13].
In this way, the initial state is approximately an instantaneous
eigenstate of the Hamiltonian HLZ(0). If now λ(t) undertakes
a sudden variation to λ = 0 and the system is left to evolve for
a time T, the final state is given by

|ψ(T )〉 = cos
(
#

2
T

)
|0〉 + sin

(
#

2
T

)
|1〉. (3)

It is clear that choosing T = π
#

yields |ψ(T )〉 = |1〉. The final
step in the evolution is a second sudden switch of the control
parameter from 0 to +λ0. Once again, the instantaneous
eigenstates of the Hamiltonian will be approximately those
of σz, in such a way that |ψ(t)〉 will be a stationary state
for t > T , since |ψ(T )〉 = |1〉. In sum, we have driven the
system from |0〉 to |1〉 in a time T = π

#
with a probability

of 1. In this way, this scheme represents a sort of shortcut
to adiabaticity, as the final state of the system is the same
as if the parameter λ(t) had been modified adiabatically.
The total evolution time has been dramatically shortened,
since an adiabatic passage through the AC requires a total
time much larger than a critical time of the order of #−2

(recall the critical velocity expression from the LZ formula).
Moreover, the total evolution time T is precisely the shortest
possible time in which this two-level system can change its
state, as a consequence of the time-energy uncertainty prin-
ciple. This can be seen as follows. Bhattacharyya [9] derived
from the Mandelstam-Tamm inequality [19] the expression
τ ! arccos(

√
Pτ )/#H , in which Pτ is the quantum nondecay

probability, i.e., Pτ = |〈φ|φτ 〉|2, where |φt 〉 = exp(−i H
h̄
t)|φ〉.

In the context of control theory, τ can be chosen as the total
time of the control protocol (for the two-level system), in
such a way that

√
Pτ = |〈ψ(0)|ψgoal〉|. Evaluating this result

for the Hamiltonian (1), with |ψ(0)〉 = |0〉 and |ψgoal〉 = |1〉
we get the minimum possible τ to be τQSL = π/2#H0. #H0
can be calculated straightforwardly recalling from (1) that
H0 = H (λ = 0) = #

2 σx . This yields the result τQSL = π
#

= T ,
i.e., exactly the total evolution time of the sudden-switch
transition, which makes it the best possible candidate for
replacing slow adiabatic driving at an avoided crossing, as its
time optimality favors the prospect of avoiding decoherence.

III. CONTROLLING THE DISSIPATIVE LZ MODEL

We now show how our control method gives satisfactory re-
sults when applied to the LZ Hamiltonian coupled to a bosonic
environment. We propose a master equation approach in the
weak coupling and high temperature limit, which becomes
independent of the particular election of time dependence of

FIG. 1. Fidelity as a function of the dimensionless time parameter
τ = t# for sudden-switch variations of the control parameter.
(a) Energy spectrum as a function of parameter λ for the LZ
Hamiltonian (1). The asymptotic correspondence between the dia-
batic and adiabatic states has been made explicit. (b) Fidelity as a
function of τ for adiabatic passages through the AC. In both fidelity
plots, the solid line corresponds to the closed-system case, and the
dashed curves to the system coupled to a bosonic environment. The
temperature of the bath was fixed at θ = 10#.

the control parameter. Assuming bilinear coupling of the form
σz ⊗

∑
j cj qj (the qj ’s being the position operators of the

environmental oscillators), the master equation for the reduced
density matrix ρ(t) results [4]

ρ̇(t) = −i(H ′(t)ρ(t) − ρ(t)(H ′)†(t)) − γ0θ

2
[σz,[σz,ρ(t)]]

+ i
γ0#

4
[σyρ(t)σz − σzρ(t)σy], (4)

where γ0 is the (dimensionless) coupling constant between
the system and the environment at equilibrium temperature
θ (we set the Boltzman constant kB = 1). H ′(t) = λ(t)σz +
#
2 (1 − i γ0

2 )σx is the renormalized non-Hermitian effective
Hamiltonian of the system. This differential equation describes
the nonunitary evolution of the reduced density matrix ρ(t) of
the system which, in the small coupling limit, will be mainly
due to the double-commutator term. We wish to study how this
nonunitary dynamic affects the fidelity of the control scheme,
defined in this context as F(t) = Tr[ρ(t)ρgoal].

It has been shown [20,21] by different analytical approaches
that while diabatic (ρgoal = |0〉〈0|) transitions in a dissipative
LZ do not seem to suffer decoherence and thus achieve high
fidelity, adiabatic (ρgoal = |1〉〈1|) variations of the control
parameter render poor final state fidelity even for weak
coupling. This can be seen in Fig. 1(b), where the fidelity
as a function of time is plotted for different values of γ0. As
λ(t), being swept slowly, reaches the AC, the system becomes
extremely sensitive to decoherence and rapidly becomes
mixed. The fidelity then fails to achieve the desired value of 1.
For sufficiently large γ0, the state loses its purity and evolves
to ρ = I , for which Ffinal = 1

2 . However, the desired transition
to ρgoal = |1〉〈1| is indeed achieved with high probability if
the system is driven by the sudden switch method. In Fig. 1
we show how the fidelity in this case evolves favorably even
in the presence of the environment, making this method much
more robust under the action of external influences, due to its
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time optimality. Moreover, the difference in the total evolution
time between both methods is remarkable, as the adiabatic
driving takes up to three orders of magnitude more time
than the sudden-switch method. In sum, this represents a
time optimal, relatively decoherence-resistant control recipe
for achieving “adiabatic” (P1 & 1) transitions at an AC in the
energy spectrum of a system. This scheme could be useful in
adiabatic quantum computation protocols [22] where a system
is required to evolve to the ground state of a complex target
Hamiltonian. It is commonly argued that the evolution time
required by such protocols becomes too large for complex
systems, as it scales exponentially with the inverse of the
square of the gap between neigboring levels. Sudden quenches,
as described above, allow the system to evolve from one branch
to the other of the ground level in an avoided crossing in
a much shorter time span, proportional to the inverse of the
gap. Together with the diabatic transitions, this updated binary
control protocol (which we will refer to as S-D) renders a
shorter control time and high fidelity at each AC, even in the
presence of a dissipative environment.

IV. CONTROLLING A DISSIPATIVE
MULTILEVEL SYSTEM

We will show now how to apply our control method to a
more complex multilevel system. Consider two interacting
spin- 1

2 particles SA and SB, with dynamics given by the
Hamiltonian,

H = #A σ (A)
x + ωB σ

(B)
z + #B σ

(B)
x + δ σ (A)

z σ (B)
z , (5)

where σ
(X )
i represents the ith Pauli operator in Hilbert

space associated with particle X and all energy parameters
are fixed but ωB = λ#A. In Fig. 2 we show the energy

FIG. 2. (Color online) Spectrum of the four–level system (5),
i.e., dimensionless energy ε = E

#
as a function of parameter λ. The

remaining parameters of the Hamiltonian were set as #A = 50 and
#B = 0.05#A. The side ACs have a gap of # = 2.43, while the
central ACs have wider gaps of size 2#. The capital letters refer to
the diabatic state corresponding to each energy branch at λ → ±∞.
The symbols " and ⊕ refer to the initial and target states, respectively,
which are joined by a path following the energy levels. Full segments
of the path symbolize diabatic variations of the control parameter,
while dashed lines refer to sudden-switch transitions.

spectrum associated with Hamiltonian (5) as a function of λ.
This spectrum resembles the one corresponding to realizable
systems like a qubit in a cavity or a Josephson junction
qubit [23]. The spectrum is found to have four ACs where
the levels interact; two of them are located at λ = 0 while
the other two are placed symmetrically at λ = ±λc. We
choose the parameter δ = 0.5#A, in such a way that two of
the ACs have a gap # and the remaining two have a wider
gap of 2#. The correspondence between the instantaneous
eigenstates of the Hamiltonian H (λ) and the diabatic basis
{|φA〉,|φB〉,|φC〉,|φD〉} has been made explicit in the figure.
Since we are especially interested in studying how the fidelity
of the method evolves in the presence of decoherence, we once
again consider a thermal bosonic environment coupled to the
subsystem SA bilinearly as σ (A)

z ⊗
∑

j cj qj . The master equa-
tion for the reduced density matrix of the composite system, in
the small coupling and high temperature limit, turns to be iden-
tical in form to (4), where σz and# are to be replaced with σ (A)

z

and #A.
We now pose the problem of starting from an initial state

ψ(0) = φA and driving the system to ψgoal = φC . For that
purpose, we design a path in the energy spectrum, which can
be seen in Fig. 2. This path requires the control parameter to be
swept following the sequence D-S-D-S (where D stands for a
diabatic transition and S for sudden-switch transition) in order
to achieve the desired navigation of the spectrum. In Fig. 3 we
show the time dependence chosen for λ(t) in order to achieve
this evolution. The high-slope linear segments correspond to
diabatic transitions, and two of the constant segments have a
lengthπ/# andπ/2#, respectively, as required by the sudden-
switch method.

In Fig. 3(b) we show the evolution of the probabilities
of finding the system in each of the various diabatic states,
when the driving field of Fig. 3(a) is applied to the closed
system (γ0 = 0). The fidelity in this case is F(t) = PC(t), i.e.,
the black curve in the figure. There, it can be seen how the
state remains unchanged, as expected, after the first diabatic
passage. Then, as the control parameter undertakes the first
sudden switch, the state evolves to φD in a time π/#. Next,
two successive diabatic transitions take place when the control
parameter is swept linearly with high speed, after which the
state of the system is still φD . Finally, a second sudden switch
evolves the system from φD to φC , now in a time π/2#. Each
step of the protocol is successful, yielding an elevated final
fidelity of F(T ) & 0.99. Moreover, the total time of evolution
has barely added up to 2π/#, which represents an excellent
time performance. The results of applying the same control
protocol to the system coupled to the environment (γ0 -= 0)
are shown in Fig. 3(c). In this case, the nonunitary fashion of
the evolution manifests itself through the decay of the purity
of the state in time, although the rapidness of the control
protocol allows it to act in a time interval shorter than the
decoherence time, making the system follow the desired path
and consequently achieving a fairly high fidelity. Moreover, as
most of the total evolution time is due to the sudden-switch
transitions, which are time optimal, it is bound to expect that
there is no room for improving the final state fidelity with this
or any other kind of unitary control. In Fig. 4 we show how the
final fidelity F varies as the coupling with the environment is
increased. There it can be appreciated how the S-D method
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FIG. 3. (Color online) (a) Control parameter λ as a function
of the dimensionless time parameter τ = t#, designed to achieve
the path displayed in the spectrum of Fig. 2 (see text for details).
(b) Probabilities of finding the four-level system in each of the four
diabatic states as a function of τ . The dotted gray vertical lines indicate
the times at which the two steps of the sudden switches are performed.
(c) Same as (b) but when the method is applied to the system coupled
to an environment, with γ0 = 10−3. The final fidelity is ∼0.85. The
dashed curve represents the evolution of the purity of the state. The
parameters of the system are the same as those specified in Fig. 2.
The temperature was set to θ = 20#.

yields a fidelity of over 0.8 for γ0 # 10−3, and becomes
unsuccessful for sufficiently large γ0, as can be expected due
to the presence of a strongly decohering environment. For
comparative purposes, a similar plot is shown with the results
obtained applying the previous A-D method to the four-level

FIG. 4. Final fidelity F(T ) as a function of the dimensionless
coupling constant γ0, for the four-level system, using S-D and A-D
control methods.

system, where we can see that the old method fails even for
small coupling.

V. FINAL REMARKS

We have implemented an efficient method to control the
state of a quantum open system. The method is based on
the navigation in the energy spectrum of the closed system,
using fast variations of a control parameter (which are already
familiar schemes used in NMR, quantum optics, and cavity
and circuit QED, for engineering quantum dynamics). The
success of this method to overcome the adverse influence of
decoherence relies on the speed in which the transitions are
performed. We show that the sudden transitions occur in the
quantum speed limit. The method was successfully applied in a
system with four energy levels to reach desired target states that
lie far in the spectrum from the initial state. We stress that our
proposed control function has a simple analytical form even
for complex multilevel systems, as opposed to those obtained
through optimization methods (see, for example, [24]). This
fact makes our method very attractive for future experimental
applications where several of the requirements of the method
are fulfilled, but decoherence appears as an obstacle for the
quantum control.
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