
1

Vol.:(0123456789)

Scientific Reports | (2024) 14:18860 | https://doi.org/10.1038/s41598-024-69747-z

www.nature.com/scientificreports

Constructing neural networks
with pre‑specified dynamics
Camilo J. Mininni 1* & B. Silvano Zanutto 1,2

A main goal in neuroscience is to understand the computations carried out by neural populations that
give animals their cognitive skills. Neural network models allow to formulate explicit hypotheses
regarding the algorithms instantiated in the dynamics of a neural population, its firing statistics, and
the underlying connectivity. Neural networks can be defined by a small set of parameters, carefully
chosen to procure specific capabilities, or by a large set of free parameters, fitted with optimization
algorithms that minimize a given loss function. In this work we alternatively propose a method to
make a detailed adjustment of the network dynamics and firing statistic to better answer questions
that link dynamics, structure, and function. Our algorithm—termed generalised Firing-to-Parameter
(gFTP)—provides a way to construct binary recurrent neural networks whose dynamics strictly
follows a user pre-specified transition graph that details the transitions between population firing
states triggered by stimulus presentations. Our main contribution is a procedure that detects when a
transition graph is not realisable in terms of a neural network, and makes the necessary modifications
in order to obtain a new transition graph that is realisable and preserves all the information encoded
in the transitions of the original graph. With a realisable transition graph, gFTP assigns values to the
network firing states associated with each node in the graph, and finds the synaptic weight matrices
by solving a set of linear separation problems. We test gFTP performance by constructing networks
with random dynamics, continuous attractor-like dynamics that encode position in 2-dimensional
space, and discrete attractor dynamics. We then show how gFTP can be employed as a tool to explore
the link between structure, function, and the algorithms instantiated in the network dynamics.

Keywords  Neural networks, Brain dynamics, Model fitting

Neural network models play a crucial role in neuroscience, as they enable the formulation of explicit hypotheses
that establish connections between behaviour and neurophysiology. Networks can be constructed from the bot-
tom up, taking experimental evidence to define the neuron input-output mapping and their connectivity1,2. Then,
the emergent properties of the system can be studied, expecting that they recapitulate experimental observations
not used as model hypotheses. On the other hand, a normative approach is also possible, in which we start from
the function the network is proposed to have, together with a few assumptions about network connectivity and
neuron activation dynamics, and then we fit the free parameters of the model to obtain the best task perfor-
mance, as measured by a loss function. This approach has increasingly gained momentum due to advances in
deep learning that have provided researchers with new tools and hardware to fit increasingly complex models
to increasingly complex tasks3. The models obtained have reproduced experimental observations regarding the
nature of neural coding, distributed representation and population dynamics4–8. Modelling approaches of this
kind stem from a paradigm that proposes to understand neural computation as algorithms instantiated in the low
dimensional dynamics of large neural populations9,10. With neural recording technology allowing more simulta-
neous measurements11, fitting neural networks with many neurons, capable of complex dynamics is going to be
more and more necessary. Nonetheless, network optimization is a complex endeavour. The way fitted networks
solve the task and represent information depends on the choice of all hyperparameters, hindering our ability
to understand how each hypothesis influences networks behaviour. A fitting algorithm may converge preferen-
tially to a specific family of solutions, giving no information about how many other networks there are that can
solve the task in qualitatively different ways. The existence of multiple synaptic weight configurations that lead
to the same network output makes it difficult to relate network function to its connectivity12. Furthermore, it is
possible that a low error network exists, yet the optimization algorithm fails to find it. Training is usually easier
if networks have many neurons (with many parameters), hence there is a bias towards choosing networks with
more neurons than the minimum required, making the number of weight configurations even larger. However,

OPEN

1Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas,
Buenos Aires, Argentina. 2Instituto de Ingeniería Biomédica, Universidad de Buenos Aires, Buenos Aires,
Argentina. *email: cmininni@fi.uba.ar

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-69747-z&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2024) 14:18860 | https://doi.org/10.1038/s41598-024-69747-z

www.nature.com/scientificreports/

some of these shortcomings can be handled by leveraging the particular goals of modelling in neuroscience.
First, we expect our network to solve tasks like the ones solved by animals in behavioural experiments. These
tasks are usually easy to solve, in the sense that we already know how to solve them. We can even enumerate
more than one algorithm that solves the same task. Second, we usually have some hypotheses about how the
modelled system represents and processes information. For instance, we may have evidence that neural popula-
tions in the prefrontal cortex handle working memory demands by instantiating discrete attractors that encode
relevant stimuli13,14, or that networks in the entorhinal cortex encode position in a 2D continuous attractor15–17.
Therefore, it would be of interest to have a network that solves a task through a given a priori dynamics, and then
study how the underlying connectivity relates to function. This approach could be achieved, at least in principle,
by algorithms that maximise some target emergent properties that can be quantified and included in the loss
function, or with algorithms that find an approximation to a target dynamics that is low dimensional, like in the
1D or 2D attractor examples mentioned above. However, as the constraints on the target dynamics increase, the
optimization problem becomes harder. In a previous work we presented an algorithm to construct recurrent
neural networks that follow a target dynamics18. Networks were composed of binary neurons19–21, and their
dynamics were specified in the form of a graph—termed the transition graph —in which each node represents
a network activation state, and each arc a transition between states triggered by a given stimulus the network
receives as input. This approach is closely related to previous work that connected neural networks with finite
state machines22–28. For instance, Minsky showed that any finite state machine can be represented in a neural
network by assigning one neuron to each of the machine’s (input, state) pairs, and connecting neurons according
to the machine’s transition function22. Later, Alquézar and Sanfeliu29 gave a formal proof of Minsky’s construc-
tion, and generalised it to neural networks with orthogonal inputs and network states. Although this method
allows great control of network dynamics, the requirements of one neuron per (input, state) pair and the use of
orthogonal representations reduce its appeal for neuroscience modelling applications. In the present work we
address these limitations by introducing a new algorithm, termed generalised Firing-to-Parameter (gFTP), which
constructs neural networks that unfold a specific user-define dynamics. The algorithm takes a transition graph as
input, decides if there is a neural network capable of following the transition graph exactly, and if not, expands the
original graph to construct a new graph that fulfils two conditions: it is realisable in terms of a neural network,
and it retains all of the information present in the original graph. Then, we define the network firing states asso-
ciated with each node in the graph, in such a way that they comply with a set of linear constraints that directly
stem from the graph structure. Finally, weight matrices are found with the accelerated perceptron algorithm30.

In the following, we start by giving a detailed step-by-step description of the rationale behind gFTP, through
a set of simple examples. Next, we evaluate its performance on random transition graphs, graphs instantiating
a discretised version of a 2-dimensional continuous attractor that encodes position, and graphs instantiating a
discrete attractor dynamics. Then, we show how gFTP can be employed in combination with an optimization
algorithm as an exploratory tool to disentangle the multiple dependencies between structure and function.
Finally, we analyse the underlying differences in dynamics and connectivity subserving two different ways of
solving the same behavioural task.

The generalised firing to parameter algorithm
We will introduce an algorithm that constructs a neural network that follows a given user-defined dynamics.
If this is not possible, the algorithm finds a new equivalent dynamics that preserves the encoded information.
We will first describe the neural network model, how the dynamics is specified, and the conditions necessary
for the dynamics to be realisable by a neural network (see Table 1 in “Methods” for a quick reference to symbols
and their definitions).

Network model and consistency conditions
We will consider recurrent neural networks composed of binary neurons, whose activations can take values 0 or
1 (Fig. 1a). Neurons receive inputs from sensory neurons and from all other neurons in the network.

The network state at iteration k is dictated by the map:

where u is the Nneu-dimensional vector of network preactivations, y is the Ns-dimensional vector encoding the
presence of Ns different stimuli in a one-hot fashion, z is the Nneu-dimensional vector of network activations, and
H the Heaviside function. The ith row vector in matrix Wy collects the synaptic weights of the connections from
stimulus to the ith neuron in the recurrent network, while the ith row vector in matrix Wr collects the synaptic
weights of the connections the ith neuron receives from all neurons in the network (Fig. 1b).

We want to find matrices Wy , Wr and a set of network activation vectors Z = {zv} such that stimuli trigger
transitions between these network activations in accord with a desired, user-specified target trajectory in state
space. We will specify a target trajectory as a multi digraph, in which each node v in the graph represents a net-
work activation state zv , and the arcs represent transitions triggered by stimuli. Formally, we define a labelled
multi digraph G = (V ,K , S, fs , ft , lG) , where V is the set of Nv nodes v1,v2, . . . vNv , K ⊂ N is the set of transitions
specified (the arcs in the graph), S ⊂ N is the set of stimuli (the arc’s labels) that act as the network’s inputs, fs
is the function that takes an arc and gives its source node, ft is the function that takes an arc and gives a target
node, and lG the function that takes an arc and gives its label (the stimulus that triggers that transition) (Fig. 1c).

(1)u(k) = Wyy(k)+Wrz(k − 1)

(2)z(k) = H(u(k))

3

Vol.:(0123456789)

Scientific Reports | (2024) 14:18860 | https://doi.org/10.1038/s41598-024-69747-z

www.nature.com/scientificreports/

Equivalently, a matrix G can be constructed, such that row i in G is of the form (lG(k), fs(k), ft(k)) , specifying the
ith transition. Each node v ∈ V will be encoded by its unique and specific vector z.

We define matrices Y , Zs and Zt as the matrices that collect in each of their column the activations of the
sensory neurons ( Y ), and the activation of the recurrent network in a source state ( Zs) and in a target state ( Zt ),
for each transition/column k (i.e. Y(:, k) = yG(k,1) , Zs(:, k) = zG(k,2) and Zt(:, k) = zG(k,3), with yi being the input
when the network is receiving stimulus i, and zi being the activation state when the network state is vi (Fig. 1d)).
A network that instantiates graph G must satisfy:

with

This is a problem of linear separability. Matrix W exists iff two conditions are met: 1. rank(C) = rank((CT ,UT))
(i.e. the augmented matrix (CT ,UT) and matrix C present the same linear combinations), and 2. the signs of
values in U are consistent with Zt . If Zs and Zt are chosen properly, then a W that is a solution for Eq. (3) exists
and can be found with recently proposed accelerated versions of the perceptron algorithm30. Finding suitable
Zs and Zt matrices is a hard combinatorial problem. However, we can leverage some regularities to reduce its
complexity. For a start, we must decide if such Zs , Zt exist in the first place, since it could be the case that, for
some transition graphs, the interdependencies between source and target nodes preclude its instantiation in the
shape of any neural network. In this sense, we must find out if the graph is realisable, and if not, we must find a
way to turn the graph into a realisable graph, without losing the critical aspects of the target dynamics.

There is a set of linear combinations that directly stems from the transition graph, and can be detected and
corrected if needed. Let’s consider two transitions that start from the same source node v, but are triggered by
different stimuli:

(3)WC = U, s.t. H(U) = Zt ,

(4)C =

(

Y
Zs

)

(5)W =
(

Wy ,Wr

)

Figure 1.   Recurrent neural networks that follow a pre-specified transition graph. (a) Recurrent networks
of binary neurons receive connections from neurons that encode stimuli in a one-hot fashion. (b) Example
of synaptic weight matrices Wy and Wr . The network is composed of 3 sensory neurons and 12 recurrently
connected neurons. (c) Example of transition graph that defines the desired network dynamics. Each node
represents a different network activation state. Directed arcs depict transitions from source to target states that
are triggered by different stimuli, encoded by the sensory neurons and shown with arrows of different colours.
(d) Example matrices Y, Zs , and Zt.

4

Vol:.(1234567890)

Scientific Reports | (2024) 14:18860 | https://doi.org/10.1038/s41598-024-69747-z

www.nature.com/scientificreports/

where usi ,v , usj ,v are the preactivations after the network receives stimulus si or sj , starting from the same node v.
Subtracting both sides of the equations we get:

Since both transitions start from the same node, the inputs that a neuron receives that come from the other neu-
rons in the recurrent network cancel, and the difference in u only depends on the input from the stimuli. Vector
δi,j := Wy(ysi − ysj) is a constant that does not depend on the source node v. Hence, vector δui,j,v := usi ,v − usj ,v
does not depend on v either, since it must be equal to δi,j , regardless of v. For a given neuron n:

Relations (10, 11) show that activation states of target nodes reached from the same source node determine one
delta value for each pair of stimuli and for each neuron. In other words, each neuron will have a delta value for
each pair of stimuli, and this value is a constant that must by fulfilled by the activation states in target nodes
that come from a common source node. For instance, a pair (zsi ,v1(n), zsj ,v1(n)) adopting values (1, 0) implies
that δi,j ≥ 0 for neuron n, meaning that assigning (0, 1) to the pair (zsi ,v2(n), zsj ,v2(n)) results in an inconsistency,
regardless of the identity of nodes v1, v2 . Not taking this fact into consideration will lead to Zs and Zt that are not
realisable in any neural network. Moreover, it could be the case that the graph itself does not allow any Zs , Zt to be
realisable. Consider for example the upper graph in Fig. 2a (and its associated matrix G ). If a neuron differentiates
v1 from v2 , by firing when the network is in state v1 ( zv1 = 1 ) and not firing in state v2 ( zv2 = 0 ), then δ1,2 > 0 .
This in turn means that the neuron must not fire in state v3 ( zv3 = 0 ), because if it fired then δ1,2 < 0 , leading
to a contradiction to the value of delta defined by transitions 1 and 2. We say that the value of zero assigned to
v2 “propagates” to v3 . This value propagates from v3 to v1 too ( zv3 = zv1 = 0 ), where we started. But this is in
contradiction with the original value for zv1 . The inconsistency is circumvented only when v1 and v2 are not dif-
ferentiated by any neuron, but in this case there would be only two network states instead of three. Therefore,
the graph is unrealisable as it is. However, the graph can be modified to make it realisable. Let’s consider the
modified graph in Fig. 2b. We have replaced v1 in transition 6 with a new node ( v4 ), and added transitions for
this new node as source, equal to the transitions of the node it replaced (transitions with v1 as a source node). The
new node encodes the same information as the replaced node, i.e. the occurrence of stimulus s2 starting from v3 .
It also leads to the same transitions too (going to v1 through s1 , and going to v2 through s2 ). Therefore, the new
graph (Fig. 2b) is realisable, and all the information encoded in the network states is preserved. It is important to
recall that the contradiction in delta values that takes place in the graph of Fig. 2a occurs because delta propagates,
and because node v1 appears twice as target, once triggered by s1 and another by s2 . On the other hand, since
the new node v4 only appears once as target, its addition cannot lead to a new contradiction. The new node is a
twin of the node it replaces, in the sense that it leads to the same targets through the same stimuli. We will say
that a transition graph is delta consistent if there are Zs , Zt and U such that relations (10, 11) are satisfied. If this
is not the case (because differentiating some nodes leads to a conflict with relations (10, 11)) then the graph is
termed delta inconsistent. We will name “expansion” to the action of replacing a target node with a new node at
a set of conflicting transitions, as we did with the graph of Fig. 2a. Each expansion removes one inconsistency.

Detecting inconsistencies by searching for cycles in auxiliary graph D
In the graph of Fig. 2a we see that the inconsistency appears because we differentiate v1 from v2 , defining δi,j in
the process. Assigned values “propagate” to other nodes, reaching back to one of the nodes we already defined.
Therefore, the inconsistency occurred because we tried to differentiate two nodes that are part of a certain kind
of cycle. To make this intuition more precise we define a labelled directed multi digraph D = (V ,A,C, gs , gt , lD),
where V is the set of nodes, A ⊂ N is the set of arcs, C = {δi,j : (i, j) ∈ S × S}, the set of labels for the arcs, gs the
function that takes an arc and gives its source node, gt the function that takes an arc and gives its target node,
and lD the function that takes an arc and gives its label (lower graph of each panel in Fig. 2). An arc a from
source node vi to target node vj exists in D if vi = vj , and there exist arcs a1, a2 and source node vs in G such that
ft(a1) = vi , ft(a2) = vj and fs(a1) = fs(a2) = vs . This arc will have label lD(a) = δm,n , being m and n the stimuli
through which vi and vj are reached, respectively. In other words, two nodes are connected by an arc in D if in
graph G these nodes are target nodes of the same source node. The label of the arc is δm,n , the delta associated
with the stimuli that lead to each of the connected nodes. The direction of the arc is given by the sign of δm,n .

(6)
(

Wy ,Wr

)

(

ysi
zv

)

= usi ,v

(7)
(

Wy ,Wr

)

(

ysj
zv

)

= usj ,v

(8)
(

Wy ,Wr

)

(

ysi − ysj
zv − zv

)

=
(

usi ,v − usj ,v
)

(9)Wy

(

ysi − ysj

)

=
(

usi ,v − usj ,v
)

(10)(zsi ,v(n), zsj ,v(n)) ∈ {(1, 0), (0, 0), (1, 1)} ⇔ zsi ,v(n) ≥ zsj ,v(n) ⇔ usi ,v(n)− usj ,v(n) ≥ 0

(11)(zsi ,v(n), zsj ,v(n)) ∈ {(0, 1), (0, 0), (1, 1)} ⇔ zsi ,v(n) ≤ zsj ,v(n) ⇔ usi ,v(n)− usj ,v(n) < 0

5

Vol.:(0123456789)

Scientific Reports | (2024) 14:18860 | https://doi.org/10.1038/s41598-024-69747-z

www.nature.com/scientificreports/

Self loops ( gs(a) = gt(a) ) are not included in D because they represent cases in which δ = 0 , which does not
constrain assignments to z in any way.

Now we can understand inconsistencies in terms of graph D: if it is possible to go from one node of graph D
to another node, travelling arcs of the same label/delta, and reach the node from where we started, then graph
G has at least one inconsistency. This is because nodes in D are connected if they are linked by deltas, and the
direction of the arc is defined by the delta sign, which means that assigning different z values to any pair of nodes
within this kind of cycle will necessarily lead to a contradiction of deltas, as relations (10, 11) will not hold.
Therefore, we can decide if an inconsistency exists by exploring D in search of cycles formed by arcs of the same
label (simply referred to as cycles from now on). If any such cycle exists, then there is at least a pair of nodes
that cannot be differentiated without getting a delta inconsistency. To assure delta consistency, we must break
all these cycles by breaking any of their arcs. Since an arc exists when two nodes are targets of the same source
node, the arc can be broken by expanding one of the nodes of the arc, at all transitions in G that allow the arc to
exist. The expansion breaks the cycle. We have to repeat the process of cycle search and expansion until no cycles
are left. The final graph will be delta consistent, and will hold all the information encoded by the original graph.

Detecting equivalent labels
So far we have considered the example of Fig. 2a in which there are only 2 stimuli and hence one delta. Let’s now
consider a graph with 3 stimuli and 2 deltas. In Fig. 2c we can see a subset of a transition graph (some target
nodes are left unassigned) which shows no cycles, hence nodes v1 , v2 and v3 can be differentiated. However, in the
graph of Fig. 2d, node v1 and v2 are connected by two arcs with different labels. Differentiating these two nodes
will define two deltas, and they will have the same sign. We call Arc label superposition when two or more deltas
are linked in this way, since defining one delta necessarily defines the other. Arcs with superimposed labels are
equivalent in the sense that they can be traversed as if they had the same label, and should be treated as if they
were of equal label while searching for cycles.

Arc superposition can be parallel, like in the example above (superimposed arcs have the same direction),
but can also be antiparallel (arcs in opposite directions). In this case, differentiating v1 from v2 defines two deltas,
but the graph cannot be traversed in the same way as when superposition goes in the same direction. Consider
the graph in Fig. 2e, which is equal to the previous graph, except for the last two transitions, where the target
nodes were switched. In this case, it is easy to check that no inconsistency occurs. Yet, a cycle would be detected
if the algorithm so far described is executed. This issue is solved by noting that an antiparallel superposition

Figure 2.   Example graphs G (upper left of each panel), matrix G (upper right of each panel, with columns
showing stimulus, source node and target node), and their associated graph D (lower left of each panel). (a)
Graph D forming a cycle of 3 nodes. If a neuron is active in one node and not active in the other node, we
arrive at an inconsistency. (b) Inconsistency in (a) is resolved by adding node v4 with same targets as v1 (node
v1 is expanded). The associated graph D has no cycles. (c) A graph with 3 nodes and 3 stimuli (dashes stand for
unassigned target nodes). Graph D has no cycles because it is not possible to flow from a green arc to a cyan arc.
(d) Green and cyan arcs in graph D are superimposed, putting them in the same traversable set. Hence, there is
a cycle. (e) Green and cyan arcs in graph D are superimposed but they have opposite directions. These deltas are
linked, but arcs labelled with one of these deltas must be inverted. (f) Same graph D as in (e), but cyan arcs have
been inverted. All arcs belong to the same traversable set, but no cycles are present. Graph G is consistent. (g)
Arcs green and cyan are not directly superimposed but they are linked: defining δ1,2 or δ2,3 also defines δ1,3 . (h)
Composed superposition appears any time two nodes are reachable by more than one path (regardless of arcs
direction).

6

Vol:.(1234567890)

Scientific Reports | (2024) 14:18860 | https://doi.org/10.1038/s41598-024-69747-z

www.nature.com/scientificreports/

implies that deltas have opposite signs, meaning that the graph should be traversed in opposite directions for
arcs of superimposed labels. Hence, for each case of antiparallel superposition we flip the direction of all arcs
that share the label with one of the antiparallel superimposed arcs (Fig. 2f), with the precaution of only flipping
arcs that weren’t already flipped.

Finally, we can see that the parallel and antiparallel superpositions shown so far are particular examples of a
broader definition of superposition. Consider the graph in Fig. 2g. In this case, differentiating v1 from v2 defines
δ1,2 but also δ1,3 . In the graph of Fig. 2h differentiating v1 from v2 defines δ1,2 but also one of the other two deltas:
δ4,2 (parallel to δ1,2 ) or δ4,1 (antiparallel to δ1,2 ). It is clear that superposition can occur between two arcs that do
not share their source and target nodes. We say it is a composed superposition. With this in mind, we are able to
propose a more general way of detecting arc label superposition. Superimposed deltas can be represented as a
partition P of the set of labels C (i.e. P = {Ci}i , with ∩i,j(Ci , Cj) = ∅ ∀i �= j,∪iCi = C). Then, for each element of
the partition, there is one traversable set of arcs Vtrav(Ci) = {(vs , vt) : lD(a) ∈ C〉, vs = fs(a), vt = ft(a), a ∈ A}. We
initialise the partition as the finest possible, i.e. P = {{ci}}i with ci ∈ C . Then, to detect a composed superposition
we first partition graph D into disjoint complete paths. Each complete path is a path within a traversable set such
that the first node in the path is never a target node in the traversable set, and the last node is never a source
node in the traversable set. We select one complete path within a given traversable set, taking arc direction into
consideration (path 1). Then, we search for a second path (path 2) that connects two nodes of the path 1, but with
the condition that (1) we do not take arc direction into consideration for this connection, and (2) arc labels in
path 2 are from any traversable set except the traversable set of path 1. If such path 2 exists, then the label of the
arcs in path 1 is superimposed to exactly one of the labels of the arcs in path 2, (chosen at random from all labels
encountered in path 2). Since for path 2 we did not take arc direction into consideration, superimposed arcs in
this path could be traversed in two possible directions. If the direction matches the direction of arcs in path 1,
then we have parallel superposition. If the direction is opposite to the direction in path 1, then we are in a case
of antiparallel superposition, hence the direction of all arcs in graph D labeled by the superimposed label found
in path 2 must be inverted. Once the superposition is detected, elements of the partition P and the associated
traversable sets are merged to account for the new superimposed deltas. Note that this way of detecting composed
superposition will also detect simple parallel and antiparallel superpositions as the ones in examples of Fig. 2d, e.

In summary, the process of constructing a consistent transition graph from a given target graph starts by
initializing partition P as stated above and computing its associated traversable sets. Then, we partition each
traversable set into disjoint complete paths and detect the composed superpositions. Partition P and travers-
able sets are modified according to the presence of parallel and antiparallel superpositions. Antiparallel arcs
are inverted, but arcs that were flipped once are not flipped again. We merge elements of P and traversable sets
according to the superpositions encountered. Next, we find cycles in graph D by choosing a set C from P, and
then a source node from Vtrav(C) . We perform depth first search (DFS), traversing the graph through arcs that
are members of Vtrav(C) . When no cycles are encountered within one traversable set, a new C is chosen and its
associated Vtrav(C) explored. When a cycle is encountered, a node from the cycle is expanded, graph G and D are
updated, and the process is restarted from the superposition detection step. If all traversable sets were explored
and no cycles were found, the process stops and returns the final consistent graph Gcons (see the Supplementary
Information for pseudocode of the gFTP algorithm and its subfunctions).

Construction of Z
s
 and Z

t

To construct matrices Zs , Zt we must find the activation values for each neuron in the network at each node in
the consistent graph, in such a way that each node has its own unique associated activation vector that encodes
the node (these constitute the column vectors in Zs , Zt ), and the vector of activation states across transitions
satisfies relations (10, 11) for each neuron (each of the row vectors in Zs , Zt ). Finding such activation states is a
constraint satisfaction problem which we solve with a backtracking algorithm, where there is one binary decision
for each node and the constraint to satisfy is delta consistency. Values 1 or 0 are assigned to nodes, and if delta
consistency is sustained, we search for nodes that are obliged to have a certain value, either 1 or 0, such that delta
consistency is not violated, i.e. assigned values are “propagated” to other values, according to deltas defined so
far (for example, if δij = u1 − u2 > 0 and z1 = 0 , then z2 must be 0 in order to keep delta consistency). Value
propagation using delta consistency helps in reducing the number of combinations to try. To reduce it further,
nodes are explored in decreasing order of their in-degree in graph Gcons . This follows from the assumption that
nodes that appear more times as targets in G have more instances to satisfy a given delta. This should make their
assignment more difficult and critical to following assignments, and thus they should be assigned first. Details
on our backtracking algorithm for constructing Zs and Zt can be found in the “Methods” section.

Overview of the gFTP algorithm

1.	 Graph D is constructed from graph G.
2.	 Arc superpositions are detected and traversable sets are updated.
3.	 Graph D is traversed through DFS.
4.	 If a cycle is found, one of its nodes is expanded.
5.	 Steps 1 to 4 are repeated until no cycles are present.
6.	 Matrices Zs and Zt are constructed.
7.	 Matrices Wy and Wr are obtained with the accelerated perceptron algorithm.
8.	 If the perceptron learning error is not zero, new matrices Zs and Zt are constructed and concatenated to the

previous ones.

7

Vol.:(0123456789)

Scientific Reports | (2024) 14:18860 | https://doi.org/10.1038/s41598-024-69747-z

www.nature.com/scientificreports/

9.	 Steps 7 and 8 are repeated until step 7 achieves zero error.

See Fig. 3 for a graphical representation of the main steps taken by gFTP when constructing a consistent
graph (Fig. 3a) and constructing matrices Zs , Zt , Wy and Wr (Fig. 3b).

Figure 3.   Graphic depiction of gFTP main stages. (a) Main steps to attain a consistent transition graph. gFTP
takes a user-defined transition graph as input. An auxiliary graph D is constructed, which contains information
about possible inconsistencies. Arc superpositions are detected (in this case, superposition between a complete
path, connecting nodes 1, 2, and 3, and the arc between nodes 1 and 3 (an antiparallel superposition, since
we can go from 1 to 3 though green arcs, and from 3 to 1 through a cyan arc). Detected superpositions are
applied to traversable sets (all arcs in D are now green because they must be treated as if they were of the same
label; cyan arcs were inverted because superposition was antiparallel). Depth First Search (DFS) is conducted
to search for cycles. The absence of cycles indicates that graph G is consistent. Cycle presence requires the
expansion of one node in G that composes the cycle in D after applying superpositions (node 2 was expanded
in this case, but expansion of node 1 was also possible). A new cycle of the algorithm is executed starting from
the expanded graph. (b) Main steps to obtain matrices Zs , Zt , Wy , Wr from Gcons . A row vector of ones and
zeros is constructed in each iteration (vector’s elements are neuron’s output in each transition). This vector must
differentiate at least two nodes of Gcons , not already differentiated by previous row vectors in Zt . It must also be
delta consistent. These row vectors are generated and concatenated, forming Zt , until all nodes are differentiated.
Matrix Zs is constructed with the same vectors, sorted according to transitions in Gcons . An accelerated
perceptron is trained, where each row of [ Y;Zs ] is a sample to classify, and each column of Zt a set of classes.
The algorithm stops if the perceptron training error reaches zero in less than max_iter iterations, and outputs all
matrices. If the error is above zero after max_iter iterations, a new round of vectors that differentiate all nodes
are generated and concatenated to Zt , Zs.

8

Vol:.(1234567890)

Scientific Reports | (2024) 14:18860 | https://doi.org/10.1038/s41598-024-69747-z

www.nature.com/scientificreports/

Results
Algorithm performance
We employed gFTP to construct networks from three kinds of transition graphs: random transition graphs
(Fig. 4a), transition graphs that encode position in 2-dimensional space (Fig. 4b), and transition graphs that
instantiate discrete attractor dynamics (Fig. 4c) (see details in “Methods”).

We measured the wall-clock elapsed time during execution of the algorithm for each kind of transition graph
(see “Methods” section). The complexity of the graph was adjusted by setting the number of nodes or stimuli in
random graphs, the side-length of the arena in 2-dimensional space encoding graphs, or the number of nodes
in the case of discrete attractor graphs. We separately measured the time required to obtain a consistent graph
(consistency time, Fig. 5) and the time to construct Zs , Zt , Wy , Wr matrices (construction time, Fig. 6). Wall-
clock elapsed time and total number of executed steps until consistency were well fitted by a power function and
not an exponential (Fig. 7), suggesting polynomial time complexity to obtain a realisable graph from a starting
random graph. The number of nodes in the consistent graphs was higher than in the initial graphs (except for

Figure 4.   Examples of the transition graphs evaluated (before expansion) (a) random graph with 15 nodes
and 3 stimuli. A source node i has target nodes taken at random from i − 2 to i + 2 . (b) Transition graph of a
network that encodes 25 discrete positions in a 2-dimensional square space, of side length = 5. There are five
stimuli, associated with displacement to the right (green), left (black), up (blue), down (red), and a fifth stimulus
(pink) associated to stillness. (c) Transition graph with 3 nodes acting as attractors (depicted with bigger
markers). Each stimulus leads to one specific attractor through a short-distance path. Graph shown is before
completing nodes without source.

Figure 5.   Time performance during consistency assessment. (a–d) Execution time (upper row), and number of
nodes (lower row), until a consistent graph is obtained for the three types of transition graphs tested. G: initial
graph, Gcons : consistent graph obtained after successive cycle detection and node expansion. (a) Random graphs
with 3 stimuli and increasing number of nodes. The grey line is the identity function. (b) Random graphs with
10 nodes and increasing number of stimuli. (c) 2-dimensional space coding graphs, with 5 stimuli and (length of
arena)2 number of nodes (grey line). (d) Discrete attractor graphs, with 3 attractors, one stimulus per attractor
that leads to it, and an increasing number of nodes. The x axis shows (nominal) number of nodes in the graph
(before adding new source nodes to sourceless nodes). The y axis of the lower panel shows the final number of
nodes in G after correcting for sourceless nodes, and the final number of nodes in Gcons . Median ± [25th, 75th]
percentiles are shown, computed over 30 networks for each condition.

9

Vol.:(0123456789)

Scientific Reports | (2024) 14:18860 | https://doi.org/10.1038/s41598-024-69747-z

www.nature.com/scientificreports/

the discrete attractors graphs), and the relation between these two numbers was almost linear. Execution times
differed considerably between graph types. Lower consistency times were found for discrete attractor graphs,
followed by random graphs with 3 stimuli, random graphs with 6 stimuli, and 2-dimensional space coding graphs.
Neither consistency nor construction times were fully explained by the number of nodes in the final graphs,
suggesting that the shape of the graphs was an important factor in determining the number of steps necessary for
making the graph consistent, and for constructing the network. The number of neurons Nneu in the constructed
network grew linearly with graph size, and was close to the number of nodes in the final graph. This implies
that, in most cases, 1 neuron per node was enough, since gFTP adds neurons to the network in multiples of the
number of nodes in the consistent graph.

Robustness of the expanded transition graph
Networks found by gFTP will unfold a dynamics Gcons if the network initial activation state is one of the z vec-
tors in Z. Conversely, if this initial state departs from vectors in Z, we do not have any a priori guarantee that
the network will follow Gcons . It is of interest to study how robust the network dynamics is to perturbations of
its initial state. We generated transition graphs from the three analysed types, constructed the networks with
gFTP, and simulated them, taking as initial activation state one activation state from Z and perturbing it by flip-
ping a fraction fflip of the neurons’ outputs (substituting zeros with ones and vice versa). Interestingly, almost
all networks eventually returned to one of the states in Z, therefore resuming the dynamics as specified in Gcons
(834 of 840 networks converging to Gcons , computed across all fflip values and graph types). In other words, most
networks did not show any other stable dynamics reachable from the perturbed states, other than the dynam-
ics specified in Gcons . This was the case for fflip values from 0 to 0.5. We measured how long it took networks
dynamics to converge to Gcons by computing Tconv , defined as the number of iterations elapsed from the perturbed
starting point until an activation state within Z was reached. The Tconv distribution was long-tailed but could be
made more symmetric by taking its logarithm (Fig. 8a–c, blue line). Its value ranged from tens of iterations (for
random and discrete attractor graphs, Fig. 8a, c) to the thousands (for 2-dimensional coding graphs, Fig. 8b),
surpassing in many cases the number of neurons and nodes in Gcons (random graphs: Nneu = 56 , CI = [52, 61] ,
Nv = 45 , CI = [43.5, 47] ; 2D encoding graphs: Nneu = 66 , CI = [60, 71] , Nv = 56 , CI = [55, 58] ; discrete attrac-
tor graphs: Nneu = 49 , CI = [47, 51] ; Nv = 41 , CI = [40, 42] ; median ± [25th, 75th] percentiles computed on
networks across all fflip values).

Since gFTP stops adding neurons as soon as a solution is encountered, it could be the case that networks
constructed were too small, and that adding more neurons could lead to more robust dynamics. Hence, we
explored the effect that neuron number had on robustness, by constructing networks with exactly 200 neurons
(3 times the biggest median network size, Fig. 8a–c, red line). In this case, convergence was faster for low values
of fflip in the case of random graphs, and for the whole range of fflip in the case of discrete attractor graphs. Low
fflip values translated in low Tconv in some cases (the case of fflip < 0.2 and Nneu = 200 in random and discrete
attractor graphs), but overall the effect was small, meaning that even changing a reduced fraction of neurons
resulted in a transient dynamics spanning tens to thousands of iterations (in the case of 2D attractors), until the
network returns to Gcons . Therefore, networks are indeed sensitive to small changes in their initial states, but
almost always converge to the dynamics they were fitted to. The sensitivity depends on the kind of dynamics, and
can be reduced by increasing the neuron number, at least for random and discrete attractors graphs.

Figure 6.   Time performance during network construction. (a–d) Execution times until successful construction
of matrices Zs , Zt , Wy and Wr (upper row), and number of neurons in the retrieved network (lower row) for the
graphs analysed in Fig. 5. Median ± [25th, 75th] percentiles are shown.

10

Vol:.(1234567890)

Scientific Reports | (2024) 14:18860 | https://doi.org/10.1038/s41598-024-69747-z

www.nature.com/scientificreports/

Figure 7.   Polynomial execution time to attain delta consistency. (a, b) Execution time until consistency as
a function of the number of nodes in G (before expansion). (a) Times are not well fitted by an exponential:
linear fit f (x) = ax + b , a = 0.0019, CI = (0.0016, 0.0021) , b = −0.40 , CI = (−0.65,−0.15) , d.f . = 58 ,
R − squared = 0.78 ; log fit a = 0.84, CI = (0.78, 0.90) , b = −3.5 , CI = (−3.8,−3.2) , d.f . = 58 ,
R − squared = 0.93 . (b) Times are well fitted by a power function: linear fit a = 1.93, CI = (1.80, 2.07) ,
b = −3.46 , CI = (−3.77,−3.15) , d.f . = 58 , R − squared = 0.93 . (c, d) Number of executed steps ( Nsteps ) as
a function of the number of nodes ( Nv ) in G (before expansion). (c) Steps number are not well fitted by an
exponential: linear fit a = 0.0016, CI = (0.013, 0.0020) , b = 4.4 , CI = (4.1, 4.7) , d.f . = 58 , R − squared = 0.65 ;
log fit a = 0.84, CI = (0.78, 0.90) , b = −3.5 , CI = (−3.8,−3.2) , d.f . = 58 , R − squared = 0.99 . (d)
Steps number are well fitted by a power function: a = 1.9 4, CI = (1.91, 1.98) , b = 1.20 , CI = (1.11, 1.28) ,
R − squared = 0.99 , d.f = 48 . Execution times and executed steps were computed for random transition
graphs, with 3 stimuli and between 5 and 3000 nodes, in logarithmic scale. Three graphs for each Nv value were
constructed.

Figure 8.   Robustness of network dynamics to initial activation state perturbations. (a–c) Number of iterations
elapsed until a node in Z is reached ( Tconv ) plotted as a function of the fraction of neurons with flipped output
at the initial activation state, for random graphs (a), 2D space encoding graphs (b), and discrete attractor graphs
(c). Networks were constructed using gFTP, adding neurons until the accelerated perceptron found a solution
( Nneu unrestricted), or by setting Nneu = 200 . For this network size the accelerated perceptron found solutions
without the need to add more neurons. Median ± [25th, 75th] percentiles are shown, computed on 40 networks
for each fflip value, Nneu condition and graph type.

11

Vol.:(0123456789)

Scientific Reports | (2024) 14:18860 | https://doi.org/10.1038/s41598-024-69747-z

www.nature.com/scientificreports/

Uncovering general dependencies between structure and function
We employed gFTP as a tool to study the multiple dependencies between neural dynamics and its underlying
connectivity. To that end we implemented a genetic algorithm (GA)31 to optimize several measures computed
on the transition graph and the synaptic weight matrix. We considered commonly employed graph theoreti-
cal measures to characterize the transition graph: the number of nodes Nv , the clustering coefficient (c), the
modularity (Q) and the mutual information between stimuli and their target nodes (I). For these measures, we
considered all arcs in the graph, regardless of their labels. To characterize recurrent synaptic weight matrix we
considered: the number of neurons in the network ( Nneu ), the reciprocity and absolute reciprocity (r, rabs ), which
measure the correlation between the two synaptic weights that connect each pair of neurons, and the standard
deviation of out-strength ( σout ), a generalization for weighted graphs of the variability in out-degree distribu-
tion (see “Measures computed over transition graphs and synaptic weight matrices” in the “Methods” section,
for the formal definitions).

We defined a population of transition graphs and a mutation function that introduced variability by permut-
ing two target nodes, or replacing one target node with another. We ran several experiments, which differed in
which measure was maximized, although all measures were computed. Then, we computed the Pearson cor-
relation coefficient (CC) between each pair of measures along the evolutionary process (e.g. Fig. 9a, b). In this
way we expected to uncover how constraining (maximizing) one feature, either related to network dynamics
or connectivity, impacts on the correlational structure of all other measures. On average, measures could be
grouped into two clusters, each defined by positive intra-cluster and negative inter-cluster CC (Fig. 9c): Cluster
1, composed of Nv , Nneu , I, and Q (modularity), and Cluster 2, composed of r, rabs , σout , and the c. The positive
CC between Nneu and Nv in Cluster 1 is expected, since more neurons are required to generate enough population
states. Also, the positive CC between Nv and I can be explained as an effect exerted by nodes added during graph
expansion: new nodes only encode one stimulus when they are first added to the graph, thus contributing to a
higher mutual information between node and stimulus. In Cluster 2, the positive CC between modularity and the
clustering coefficient was also expected. Modularity was the only measure that showed a tendency for positive CC
in most cases, even when the clustering coefficient showed negative CC. Reciprocity and absolute reciprocity were
positively correlated with modularity and clustering coefficient, revealing an interesting relationship between
a structural feature and a dynamical feature. Higher than chance reciprocity has been found experimentally32,
and it has been connected to optimal memory storage33 and stimuli sequence encoding18. Results in Fig. 9 sug-
gest that it may also subserve modular dynamics in general, which in turn can be related to specialization of
function. The correlations analysed so far are clearly distinguished in the mean correlation matrix. A similar
tendency can be recognized in the correlation matrix computed separately for each optimised measure, albeit
with some departures from the average. To assess the immediate impact that an optimised measure has upon the
others, we computed a correlation between two vectors of CCc: one vector collects the CCs between measure i
and measure j, when measure i was optimised; the other vector collects the CCs between measure i and measure
j, when measure j was optimised. These two vectors were positively correlated (Fig. 10a, b), meaning that there
is a tendency to find the same dependencies between measures regardless of which one was optimised. Even
so, the unexplained variance was considerable. All in all, this suggests that the correlational structure between
dynamical and structural measures has one component, which does not depend on the optimization process, and
another component, which may depend on which measure is optimised, and even the entire optimization history.

Assessing dependencies between dynamics, connectivity, and the algorithm instantiated by
the network
We sought to understand how two ways of solving the same task (two different algorithms) constrain the con-
nectivity and dynamics of the network that solves it. To that end, we considered a stimulus discrimination task
with two possible stimulus-response mapping, indicated by a context cue (Fig. 11a). The cue is presented first,
followed by the stimulus to discriminate. Once the stimulus is presented, the network has all the informa-
tion to execute the correct response, and therefore all information encoded in the neural population regarding
context and stimulus can be discarded. We call this case Algorithm 1 (A1, Fig. 11b). Nevertheless, context and
stimulus information could be retained, for purposes other than solving the task at hand, as has been observed
experimentally34. This is Algorithm 2 (A2, Fig. 11c). We constructed networks for each algorithm, and measured
the number of nodes in the consistent graph, mutual information between stimulus and node, the number of
neurons in the constructed network, and its reciprocity. We also assessed the impact of redundancy in network
states. Redundancy was accomplished by expanding the initial transition graph with new nodes that encoded
no more information than the original nodes (similar to expansion when constructing a consistent graph, see
“Methods”). Algorithms 1 and 2 could be sorted out based on these measures, despite the small differences
between their transition graphs (Fig. 11d–g). Higher redundancy led to higher Nv and I in the consistent graphs,
and higher number of neurons and lower reciprocity in the networks, for both algorithms. This is consistent with
results in Fig. 9. However, with matching redundancy levels, Algorithm 1 showed lower Nv than Algorithm 2, but
higher I, contrary to the positive correlation found in Fig. 9. Networks executing Algorithm 1 had fewer neurons
than networks executing Algorithm 2, and less reciprocity, which is also in opposition to the negative correlation
these two measures exhibited in Fig. 9. If these results generalise, they would suggest that lower I and higher
reciprocity are among the distinctive traits of networks that instantiate more complex algorithms. They would
also imply that the dynamics and connectivity measures here considered depart from the main dependencies
observed in Fig. 9 when specific transition graphs are analysed.

12

Vol:.(1234567890)

Scientific Reports | (2024) 14:18860 | https://doi.org/10.1038/s41598-024-69747-z

www.nature.com/scientificreports/

Figure 9.   Correlational structure of dynamics and connectivity features in optimised networks. (a) An example
of the evolutionary process. Synaptic weights reciprocity (r) and transition graph modularity (Q) are shown,
computed for the elite individual in each generation of a 50 generations evolutionary process. Modularity was
the fitness function in this case. Pearson correlation coefficient (CC) between both measures is shown, together
with its p-value. ((b)) Transition graph Gcons obtained with gFTP from the elite individual in the last generation
of the evolutionary process shown in (a). Nodes plotted with different shapes (circle, square, triangle) indicate
the three modules that maximized modularity. Q = 0.46 , r = 0.19 for this graph and its associated network,
respectively. (c) Correlation matrix between 8 measures that quantify distinct aspects of network dynamics and
connectivity, obtained from 20 independent repetitions of the evolutionary processes. Measures computed were:
neuron number ( Nneu ), node number ( Nv ), information between network state and stimulus (I), modularity
(Q) and clustering coefficient (c) of the transition graph, reciprocity (r), absolute reciprocity ( rabs ) and outward
strength variability ( σout ) of the synaptic weight matrix (see “Methods” for details on each measure). Measures
were always computed on the elite individual, obtaining one matrix for each repetition and for each fitness
function. Each panel shows the correlation matrix, averaged across repetitions, for the fitness function indicated
in the panel title. The matrix shown in the last panel is the average over all the other matrices. Colour bar in first
panel shows colour scale for all panels (pure red for CC = 1, and pure blue for CC = − 1).

13

Vol.:(0123456789)

Scientific Reports | (2024) 14:18860 | https://doi.org/10.1038/s41598-024-69747-z

www.nature.com/scientificreports/

Discussion
We have introduced gFTP, an algorithm that takes a target dynamics as input and returns the connectivity matrix
of a neural network that follows the specified dynamics. gFTP detects if the target dynamics, described in terms
of a transition graph, is not realisable by a neural network, in which case the transition graph is expanded until
a realisable transition graph is reached, one that encodes all the information conveyed in the original graph.
Realizability is attained by transforming a problem of linear constraints into a cycle detection problem, in which
the presence of a cycle indicates an inconsistency, and the absence of cycles means that a realisable graph has been
found. This allows us to find consistent transition graphs that are more compact (have fewer nodes) than previ-
ous methods in which the expanded graph had as many nodes as (stimulus, node) pairs in the original graph29.

Our approach departs from other model building approaches in several ways. In bottom up approaches, a
model is a specific formalization of a series of proposed mechanisms. Its dynamics is a complex emergent of
these mechanisms, and in most cases it cannot be specified in advance. Although it is possible, for some models,
to prove analytically some of their properties (like in35,36), this is mostly done at the cost of many simplifications.
Complex dynamics that can instantiate specific algorithms are difficult for analytic treatment. On the other hand,
normative approaches constrain dynamics to the subsets of dynamics that minimize the loss function, but neural
network models have enough degrees of freedom to find very disparate solutions. While a multiplicity of solu-
tions is appealing in itself, as a way of exploring novel dynamics, it also makes it problematic to go from specific
solutions to general conclusions regarding mechanisms. In this sense, our algorithm brings a new angle to the
way we build neural networks as models of brain function, by providing a high level of control over the network
dynamics. In turn, this higher control can be exploited in several ways:

1. We can, for instance, construct networks which exhibit dynamics that have been proposed theoretically, or
found experimentally, like the discrete attractor dynamics proposed to subserve working memory, or the toroid
dynamics proposed to subserve spatial coding. We can also construct networks whose dynamics instantiate
algorithms that have been proposed to subserve some aspect of cognition or behaviour. This aspect is particularly
specific to our approach, since normative methods are not well suited for specifying exactly how the network
solves a task. This makes gFTP particularly useful for studying the interdependencies between dynamics and
the algorithms it implements, the information encoded in the activation states, and the network connectivity.
We may define different algorithms that solve the same task and then compare the expanded graphs, or the
networks obtained, and draw conclusions about how the differences in the algorithms translate into differences
in dynamics or network connectivity. If it happens that gFTP finds a graph to be inconsistent, then it means that
the proposed dynamics cannot, as such, be realisable in a neural network. This fact is in itself useful, because we
can study which features of the dynamics are essential to a given algorithm, and what features are there because
of the constraints imposed by the fact that dynamics has to be carried out by the neuronal machinery.

2. For each transition graph that is inconsistent there are many different ways to expand it into a consistent
one. We can then run gFTP multiple times, sampling from the distribution of expanded graphs that come from
the same initial graph, and study how different the expanded graphs can be.

Figure 10.   Dependence of correlation structure on the optimised measure. (a) Matrix showing correlations
between measures along the evolutionary process. Row labels indicate the measure employed as fitness function,
and collect correlation coefficients (CC) between the optimised measure and the other measures. A symmetric
matrix would imply that correlations are completely independent of which measure of the correlated pair of
measures was the optimised one. (b) Entry (row, col) in matrix shown in (a), plotted in the x axis, against entry
(col, row) in the y axis. Spearman correlation ρ = 0.69 , p = 8.10−5 . A symmetric matrix in (a) would result in
points lying in a line of slope = 1.

14

Vol:.(1234567890)

Scientific Reports | (2024) 14:18860 | https://doi.org/10.1038/s41598-024-69747-z

www.nature.com/scientificreports/

3. Once we have a consistent graph, we can generate activation states in a way that they all share some target
activation statistics (e.g. a given mean population firing rate and pairwise correlation). Then, we can assess how
the dynamics/algorithms constrain those statistics.

4. For each dynamics and each set of activation states, we can generate samples of synaptic matrices that
instantiate the same dynamics with the same activation states, and assess how dynamics and firing statistics
impact on network connectivity.

In sum, gFTP provides a high level of control over key aspects of analysis, like network function, dynamics
and firing statistics, allowing to disentangle their interactions by carrying out controlled numerical experiments.
Comparisons between gFTP-generated models and neurophysiological data can be conducted at the level of firing

Figure 11.   Effect exerted by the instantiated algorithm on the network dynamics and connectivity. (a)
Context-dependent discrimination task. A trial starts with the presentation of a context cue, indicating the
correct stimulus-response mapping for the trial, followed by the stimulus to discriminate. The agent is expected
to execute the correct response after stimulus presentation. (b) Transition graph for Algorithm 1 (A1). Nodes
vR1 and vR2 encode the correct response, which depends on context and stimulus. Once the system is in one if
these states, it is impossible to recover the stimulus and context that led to the decision. (c) Transition graph
for Algorithm 2 (A2). Similar to A1, but it has nodes vc1s1 , vc1s2 , vc2s1 , vc2s2 , which simultaneously encode
stimulus and context, and therefore convey the necessary information to trigger the correct response ( R1 with
vc1s1 and vc2s2 , and R2 with vc1s2 and vc2s1 ). Self loops render states refractory to stimuli that are out of place,
like a context cue during stimulus presentation, or a second presentation of a stimulus when the stimulus was
already presented and encoded. (d–g) Quantification of differences in dynamics and connectivity features
between networks instantiating A1 or A2, with increasing levels of redundancy. Redundancy shown in the
x axis indicates how many times the number of nodes in graphs shown in (c, d) was multiplied by adding
redundant nodes. Measures were computed on the Gcons and synaptic weight matrices obtained through gFTP.
Median ± [25th, 75th] percentiles are shown, computed on 100 graphs and their respective weight matrices, per
redundancy level.

15

Vol.:(0123456789)

Scientific Reports | (2024) 14:18860 | https://doi.org/10.1038/s41598-024-69747-z

www.nature.com/scientificreports/

rate statistics, such as mean firing rates or pairwise correlations. Additionally, models and neural recordings
can be related at the level of the topological properties of their latent spaces, obtained through dimensionality
reduction techniques15. In contrast to system identification approaches, which emphasise quantitative fits to
neural data through statistical methods52, gFTP is best posited to study qualitative relationships between network
structure and function.

Our results with random graphs showed a time complexity well fitted by a power function of the number
of nodes, with exponent ~1.94, for the operations of consistency assessment and expansion. This probably
stems from the fact that the main subroutine for these operations is Depth First Search, which has linear time
complexity on the number of nodes and arcs (which becomes quadratic at most, in the number of nodes, in
the case of a fully connected graph). On the other hand, to construct Zt our current implementation explores
the tree of possible assignments for each neuron in each network state, accelerating the process by computing
deltas and filling assignments that are completely specified by the deltas and z values already defined. We also
used the heuristic of assigning z value first to nodes with higher degree in graph G, for these are expected to be
part of cycles with higher probability. This heuristic helped in reducing execution time during construction of
matrices Zt . Yet, the algorithm would benefit from other ways of assigning z values. Studying the structure of
graph D and cycle formation will certainly help. Also, optimization methods like genetic algorithms could be
good options to evaluate.

Once matrices Zt were constructed, we found matrices Wy , Wr by employing the accelerated perceptron algo-
rithm. We decided to add neurons to the network in multiples of the number of nodes in the transition graph. The
reason for this criterion is that, for matrices Wy , Wr to exist, matrix U must have the same linear combinations
that matrix C , and H(U) = Zt . Not all matrices Zs and Zt allow the existence of a matrix U that fulfils these two
conditions. Yet, the probability of finding one viable matrix U is expected to be higher if the number of linear
combinations in C is low. This can be achieved by adding neurons to the network, with random values of z, since
the probability of a linear combination between rows of Zs is expected to drop with the number of its columns.
Adding neurons in multiples is also convenient because the number of calls to the accelerated perceptron is

Table 1.   Symbols with descriptions.

Symbol Description

Nneu Number of neurons in the network

z Vector containing the outputs (activations) of each neuron

u Vector of preactivations such that H(u) = z

Wy
Matrix of synaptic weights between sensory inputs and neurons in the network. The ith row collects incoming weights from
sensory inputs to the ith. neuron

Wr
Matrix of synaptic weights between pairs of neurons in the network. The ith row collects incoming weights from all neurons to
the ith neuron

G Labeled multidigraph with one node per network state and one arc for each transition. Arcs are labeled by the stimulus that
triggers the transition

Nv Number of nodes in G

Ntran Number of transitions (arcs) in G

v A node in G

V The set of all nodes in G

fs The function that maps arcs in G to their source nodes

ft The function that maps arcs in G to their target nodes

lG The function that maps arcs in G to their labels

G Matrix representation of graph G, with one row for transition. Columns contain stimulus, source node, and target node

Y
Matrix of input vectors. The ith column collects the input vector y associated with the stimulus that triggers the ith transition in
G (the ith row in G)

Z The set of network activation states z . It maps to V in a one-to-one fashion

Zs
Matrix of activation states, when acting as sources in G. The ith column collects the activation states associated with the source
node of the ith transition/row in G

Zt
Matrix of activation states, when acting as targets in G. The ith column collects the activation states associated with the target
node of the ith transition/row in G

U Matrix of preactivations, such that H(U) = Zt

δi,j
Equal to Wy(ysi − ysj) . Its length is Nneu . It collects the difference between contributions of stimulus si and sj to preactivations
reached after any transition

D Labeled multidigraph. Its nodes are contained in V. Two nodes are connected if they are reached through stimuli si and sj from a
common source node in G. Arcs are labeled by δi,j

gs Function that maps arcs in D to their source nodes

gt Function that maps arcs in D to their target nodes

lD Function that maps arcs in D to their source labels

C The set of all labels/deltas in D

P A partition of C

Vtrav(Ci) A set that collects (source, target) node pairs of arcs in D, whos labels are in element Ci of partition P

16

Vol:.(1234567890)

Scientific Reports | (2024) 14:18860 | https://doi.org/10.1038/s41598-024-69747-z

www.nature.com/scientificreports/

reduced: too few neurons would certainly not lead to a solvable system, and the accelerated perceptron will have
to reach the maximum number of allowed iterations in order to stop and try with a higher number of neurons,
thus increasing execution time. In our experiments, a number of neurons approximately matching the number
of nodes was enough to define a solvable system of linear separation problems.

Networks composed of binary threshold units have a long history as models of brain function. Despite
their simplicity, they have been successfully employed to model relevant aspects of brain dynamics and
computation33,37–41,53. We think that there are still many yet-to-be-explained phenomena that can be studied
with these kind of networks. Most models cited above were the result of optimisation, or were constructed by
hand. We thus believe that the capabilities offered by gFTP, in terms of control of network dynamics and the
possibility of tinkering with the network state statistics, will open new opportunities for applying these simple
models to uncover properties of biological neural circuits, through the exploration of more complex networks,
built upon a richer set of hypothesis regarding the algorithms they instantiate. On the other hand, gFTP in its
current form is restricted to networks of binary neurons, because the way the algorithm constructs a realisable
transition graph has, so far, no obvious extrapolation to other neuron models. The feasibility of such extrapolation
is an interesting challenge for future work. Another limitation of our method is that, for constructing matrix Zt ,
we rely on a backtracking approach, which can be inefficient. Better methods could be developed in the future
for this task, as we have discussed above. Also, matrix Zt could be generated only to be close to consistent, and
W only leading to an approximation of Zt . In this case, the obtained network will not follow the target dynamics
exactly. However, it is expected that, with enough neurons and redundancy in Zt , the approximate network will
follow a dynamics that is close enough to the target. It could also be possible to use the network found with gFTP
as a good starting point for further optimization with another algorithm.

The gFTP algorithm is suitable for studying the interdependence between network parameters and its func-
tion, by generating a sample of networks that share a given target property. Recent works have addressed similar
goals. In Brennan et al.42 a method termed LOOPER was introduced, in which a Markov process is constructed
from recorded neural activity, such that the global dynamics respects convergences and divergences observed
in the data. The method relates to ours in that it allows to construct a model of an arbitrary dynamical system.
LOOPER has the advantage of finding a model directly from data, while the use of a binary neuron model in
gFTP makes it more difficult to translate recorded firing activity into a transition graph. However, and in contrast
to our method, LOOPER never constructs a proper neural network model, so there is no explicit way of linking
the low dimensional dynamics recovered in the model with any underlying network connectivity. On the other
hand, in the work of Brittner et al.43 and Gonçalvez et al.44 a deep neural network was employed to approximate
a probability density function over parameters of a target neural network, such that a target mean over an emer-
gent property is satisfied. Gonçalvez method has the added benefit of allowing non-differentiable models. The
computational cost of both methods is an issue, requiring several hours for networks of up to 1000 parameters.
Conversely, although gFTP generates one network at a time, each generation is fast, hence a big population of
networks can be gathered for subsequent analysis.

In conclusion, we have introduced a systematic way of constructing neural networks of binary neurons that
unfold a user-specified dynamics. Its efficiency and versatility make gFTP a powerful tool for exploring new
hypotheses regarding the connectivity and dynamics underlying brain function. We believe the gFTP algorithm
is going to be a valuable addition to the toolbox of the theorist.

Methods
Notation

Constructing matrices Z
s
 and Z

t
 with backtracking

To ensure that all nodes are differentiated, we define neurons so that their output is different for at least a pair
of nodes. Thus, we choose two nodes ( v1 and v2 ) that are going to be differentiated. First, the algorithm assigns
value 1 to node v1 and 0 to v2 . Next, values 1 or 0 are assigned to each one of the remaining nodes, one at a time,
following a list Lu of undefined nodes sorted in decreasing in-degree order. The first element in this list is set
as the active element, the one that is going to be defined. Any node that is set as active is registered in a list of
active elements La . Each new assignment may define a new delta, so delta consistency must by checked. If con-
sistency is sustained, new node assignments are made as necessary, according to the z and delta values defined
so far (propagation of values according to delta consistency). Then, consistency is checked again. If sustained,
the first non defined node in Lu is set as the active element. The process continues with the new active element
until all nodes have z value. If delta consistency is violated, another z value is tried for the active element (1 if
0 was already tried, 0 if 1 was already tried). If neither of the assignments was successful, the algorithm takes a
step back by searching for the last successfully assigned active element in La , making it active, and erasing from
the list all elements after it. All nodes that were defined after the active element are set as undefined. Assigned
values are removed from the list of viable values for that node, but all values are restored after a step back, for all
the following nodes in Lu , after the active one. If all z values were tried for the first node in Lu , without success,
then the algorithm stops with no z as output (there is no node left to step back), and hence the transition graph
is delta inconsistent. A graph that was previously expanded to obtain a consistent graph Gcons always leads to a
fully assigned z for any pair of differentiated nodes.

Once we get vector z , we add it as a row vector to Zt , and identify all nodes that were differentiated (which
can be more than just v1 and v2 ), removing them from the list of pairs of nodes to differentiate. If all pairs of
nodes were already differentiated, then each node has one vector zv that encodes that node. At this point we
can construct Zs . Matrices C = (Y;Zs) and Zt define Nneu linear separation problems (one for each neuron),

17

Vol.:(0123456789)

Scientific Reports | (2024) 14:18860 | https://doi.org/10.1038/s41598-024-69747-z

www.nature.com/scientificreports/

where the Ntran column vectors in C are the points to separate, and the Ntran ones and zeros of each row in Zt
are the classes. For each neuron we find its input weights by fitting a perceptron through the accelerated per-
ceptron learning algorithm (algorithm No. 2 in30). If after max_iter learning iteration one or more neurons are
encountered for which the separation problem cannot be perfectly solved, we assume that at least one linear
combination in Zs cannot be reproduced in U . In this case, new matrices Zs and Zt are generated and concatenated
to the previous ones, to increase the number of neurons and reduce the number of linear combinations in Zs .
This process is repeated until each neuron can be perfectly solved. It is known that the probability of finding a
linearly separable problem increases with the dimensionality of the input vector (the number of neurons in our
case) for a constant number of patterns to separate15,45. Moreover, the perceptron algorithm is guaranteed to
converge to a solution in a finite number of steps, provided such a solution exists46. Therefore, since gFTP adds
neurons but the number of transitions is constant, there will be a finite number of neurons for which all linear
separation problems can be solved.

In practice, we frequently observed cases where all pairs of nodes were differentiated but the accelerated per-
ceptron failed to find a solution, meaning that more neurons were required. Therefore, each round of Zs and Zt
matrices that are concatenated to the previous ones were constructed by adding neurons until all pairs of nodes
were differentiated and the total number of neurons surpassed the number of nodes in Gcons.

Transition graphs analysed
Random transition graphs: We set a number of nodes and stimuli. For each node, we defined its target nodes
reached through each stimulus. Nodes were numbered, and target nodes were taken at random, with replace-
ment, from the list of nodes that went from 2 nodes before the source node, to 2 nodes after the source node,
avoiding self-targeting. Therefore, transitions were at random, but constrained to a vicinity around the source.

2-dimensional continuous-like attractor: We defined a discrete 2-dimensional space, square in shape, of a
certain integer side length. There was one node for each discrete position in this space (i.e. 9 positions and nodes
for a 3 × 3 square arena). Parallel sides were glued together, forming a torus. We defined 5 stimuli, 4 for vertical
or horizontal displacements, and a 5th for stillness. Therefore, the transition graph instantiated a discretised
version of the dynamics of a continuous attractor model, thoroughly studied in the context of spatial coding16.

Discrete attractors: we defined a number of nodes, and a number of stimuli, which was the same as the num-
ber of discrete attractors (each stimulus had an associated attractor node, and that stimulus led to its associated
attractor). Then, we assigned to each node a random position in a 2-dimensional space, and defined a graph in
which each node was connected to its closest 6 nodes, measured in Euclidean distance between positions. Finally,
we found the shortest path from each node to each of the attractor nodes. We constructed graph G by making
each stimulus trigger a transition to the first node in the shortest path pointing to the attractor associated with
that stimulus. Since some nodes could end up being sources without being targets, for each one of these source-
less nodes we introduced one extra node, that went to the sourceless node through one stimulus, and to itself
through the remaining stimuli.

Context dependent discrimination: We considered a task in which the agent must choose one out of two
possible responses when presented with one out of two possible stimuli. There were two rules (or mappings)
by which stimulus and response might be matched: ( S1 , R1 ), ( S2 . R2 ), or ( S1 , R2 ) ( S2 , R1 ). In each trial the rule
is chosen at random, and indicated through a context cue ( C1 or C2 ), which is presented immediately before
the stimulus to discriminate. The response is observed after stimulus presentation. Trials are separated by an
inter-trial interval (ITI). We considered a recurrent neural network that receives the context cue and stimulus
as input. It also receives a specific input that represents the ITI, and puts the network into a basal state. The
context cue pushes the network to a context coding state ( vC1 and vC2 ). From this state, the network is sensitive
to the stimulus, which triggers a transition to the correct response coding state. We did not model a dedicated
network to execute the response, and instead we only cared that the correct response was decodable from the
population state. We considered two possible algorithms for this task. In Algorithm 1 stimuli trigger transitions
from vC to the population state that encodes the correct response. This state can be reached through stimulus S1
or S2 , depending on context, implying that states vR1 and vR2 do not encode context nor stimulus per se. There-
fore, the information regarding context and stimulus is lost when the response is executed. On the contrary, in
Algorithm 2, the population state that encodes the correct response is different depending on the context state
and the stimulus presented. This causes the states that encode the correct response to also encode the context
and the stimulus presented. All the information is preserved.

Empirical assessment of execution time complexity
We measured the wall-clock execution time by means of the tic toc MATLAB commands. Consistency times
were obtained by measuring execution times of the Make_Consistent function (first line in Algorithm 1 in Sup-
plementary Information). Construction times were obtained by measuring the execution times of lines 2–13 of
the same algorithm.

To measure the execution times shown in Fig. 6 we generated random graphs of 5–3000 nodes, making
exponentially increasing steps such that the node number increases linearly on a logarithmic scale. Next, we
measured the execution time of the Make_Consistent function.

To have an estimate of time complexity in terms of number of operations of the Make_Consistent function
(Algorithm 2 in Supplementary Information), we counted the total number of steps required for the function
to reach a consistent graph. We added one step to the step counter for each for loop and while loop executed by
our MATLAB implementation of the algorithm. This included all for loops in calls to Make_D, all cycles in DFS,
each time Make_Consistent reaches line 15, each time Find_Superposition (Algorithm 3) reaches lines 10 and
16, and each time Expand_Node (Algorithm 5) reaches lines 6 and 10.

18

Vol:.(1234567890)

Scientific Reports | (2024) 14:18860 | https://doi.org/10.1038/s41598-024-69747-z

www.nature.com/scientificreports/

Robustness assessment
We simulated the networks obtained through gFTP, taking a random z from Z as initial state, and perturbing it
by changing a fraction fflip of neuron activations, replacing zeros for ones and vice versa. We executed the net-
work during Niter = 103Nv iterations, with Nv being the number of nodes in Gcons . Then, we computed Tconv as
the number of iterations elapsed from the initial state until the first occurrence of a network activation that is a
member of Z. If no activation state was equal to any of the activation states in Z, the network was excluded from
the analysis of Tconv shown in Fig. 8, but counted as a non-convergent network for the number of convergent
networks reported in the “Results” section.

Optimisation with a genetic algorithm
We constructed a population of 30 individuals. Each individual is a transition graph G, possibly not realisable,
with Nv = 5 and number of stimuli Ns = 3 . For each G a graph Gcons is constructed with gFTP, together with
the synaptic weights of the network that instantiates Gcons . Next, the fitness of each individual is computed, by
applying the fitness function to the Gcons or synaptic weight matrix of that individual. The fitness function is
chosen from a set of measures, listed below. Then, individuals are selected with replacement with probability
proportional to their fitness. A mutation operator introduces variability to each selected individual by apply-
ing one of two equally likely modifications to G: permutation of the target node of two different transitions, or
replacement of the target node of a transition by another node. In the last case, only nodes that appear more than
once as targets are considered to be replaced, to avoid the disappearance of any node. Therefore, all graphs will
remain having Nv nodes throughout the evolutionary process. The new population is composed of the mutated
individuals, plus an unaltered copy of the best individual in the last generation (called the elite individual). We
were interested in finding how maximising a given feature of the transition graph or the synaptic weight matrix
affects other dynamical or connectivity features. To do this, we computed a series of measures on the elite, and
kept track of them along the evolutionary process. To obtain the data summarised in Fig. 9, we conducted the
evolutionary process 20 times, during 50 generations each, computed correlations between the tracked measures,
and averaged them over the 20 repetitions.

Measures computed over transition graphs and synaptic weight matrices
The measures analysed and selected as fitness functions were:

•	 Nv : the number of nodes in the consistent graph obtained through gFTP.
•	 Clustering coefficient (c): Defined as the average computed over all per-node clustering coefficients. The

clustering coefficient of a node is the number of triangles the node is part of, divided by the number of all
possible triangles there could be for that node47.

•	 Modularity (Q): the number of arcs within modules minus the expected number of arcs in a random graph
with matching degree distribution. We employed the Leicht and Newman algorithm48 to partition nodes into
modules that maximise Q.

•	 I: the average information encoded in a network state about the stimulus that leads to it. Formally, the average
normalized mutual information between a node taken as target and the stimuli that lead to it:

 with Ns the number of stimuli, Hmax = log2Ns , nsj ,v the number of arcs with label sj that target v, and nv the
total number of arcs that target v.

•	 Nneu : the number of neurons in the recurrent neural network.
•	 Reciprocity (r): The Spearman correlation coefficient computed between a vector collecting the weights from

neuron i to neuron j, and a vector collecting the matching weights from neuron j to neuron i.
•	 Absolute reciprocity ( rabs ): Reciprocity computed over the unsigned recurrent synaptic weights.
•	 Standard deviation of out-strength ( σout ): measures the variability on the outward synaptic weights. We

compute, for each node, the outward strength, defined as the mean over outward weights. Then, we computed
the standard deviation over the outward strengths of all nodes.

The clustering coefficient and modularity were computed with the Brain Connectivity Toolbox49. Graph measures
included all arcs in the graph, regardless of their labels.

Before computing any synaptic weight measure, we first divided the inward weight vector of each neuron
by its Euclidean norm. This transformation leaves the neuron input-output mapping intact, and reduces weight
variability accumulated during the accelerated perceptron learning process.

(12)I =
1

Nv

Nv
∑

i=1

1−
Hvi

Hmax

(13)Hv = −

Ns
∑

j=1

pv(j) log2(pv(j))

(14)pv(j) =
nsj ,v

nv

19

Vol.:(0123456789)

Scientific Reports | (2024) 14:18860 | https://doi.org/10.1038/s41598-024-69747-z

www.nature.com/scientificreports/

The minimum value for reciprocity and absolute reciprocity is − 1, hence we added + 1 to these measures
when used as fitness function.

Adding redundancy to G
Redundant codes are a hallmark property of robust systems, neural systems included50,51. We introduced redun-
dancy to a transition graph G by adding nodes that encode the same information as another preexisting node.
Two nodes encode the same information if they are reached by the same sequence of stimuli and nodes. To
accomplish this, we added new nodes, each one equivalent to a randomly chosen preexisting node, i.e. the new
node leads to the same target node, and through the same stimuli, as its equivalent node. We say that equivalent
nodes are members of the same equivalence set. Each node belongs to one equivalence set. There is one equiva-
lence set for each node in the original graph, and they are mutually disjoint. Each time a new node is added, its
target nodes are taken at random from a randomly chosen equivalence set. For results in Fig. 11 we added one
new node for each equivalence set, and repeated this process Nred times, with Nred being the redundancy level.

Data availability
The gFTP MATLAB implementation used to generate all data and figures is available on a public GitHub reposi-
tory: https://​github.​com/​cmini​nni/​gFTP.​git.

Received: 20 December 2023; Accepted: 8 August 2024

References
	 1.	 Prinz, A. A. et al. Alternative to hand-tuning conductance-based models: Construction and analysis of databases of model neurons.

J. Neurophysiol. 2003, 3998–4015 (2003).
	 2.	 Markram, H. et al. Reconstruction and simulation of neocortical microcircuitry. Cell 163, 456–492 (2015).
	 3.	 Richards, B. A. et al. A deep learning framework for neuroscience. Nat. Neurosci. 22, 1761–1770 (2019).
	 4.	 Yang, G. R., Joglekar, M. R., Song, H. F., Newsome, W. T. & Wang, X. J. Task representations in neural networks trained to perform

many cognitive tasks. Nat. Neurosci. 22, 297–306. https://​doi.​org/​10.​1038/​s41593-​018-​0310-2 (2019).
	 5.	 Dubreuil, A., Valente, A., Beiran, M., Mastrogiuseppe, F. & Ostojic, S. The role of population structure in computations through

neural dynamics. Nat. Neurosci. 25, 783–794 (2022).
	 6.	 Orhan, A. E. & Ma, W. J. A diverse range of factors affect the nature of neural representations underlying short-term memory. Nat.

Neurosci. 22, 275–283 (2019).
	 7.	 Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Context-dependent computation by recurrent dynamics in prefrontal

cortex. Nature 503, 78–84 (2013).
	 8.	 Carnevale, F. et al. Dynamic control of response criterion in premotor cortex during perceptual detection under temporal uncer-

tainty. Neuron 86, 1067–1077 (2015).
	 9.	 Vyas, S., Golub, M. D., Sussillo, D. & Shenoy, K. V. Computation through neural population dynamics. Annu. Rev. Neurosci. 43,

249–275 (2020).
	10.	 Whiteway, M. R. & Butts, D. A. The quest for interpretable models of neural population activity. Curr. Opin. Neurobiol. 58, 86–93.

https://​doi.​org/​10.​1016/j.​conb.​2019.​07.​004 (2019).
	11.	 Frank, J. A., Antonini, M. J. & Anikeeva, P. Next-generation interfaces for studying neural function. Nat. Biotechnol. 37, 1013–1023.

https://​doi.​org/​10.​1038/​s41587-​019-​0198-8 (2019).
	12.	 Prinz, A. A., Bucher, D. & Marder, E. Similar network activity from disparate circuit parameters. Nat. Neurosci. 7, 1345–1352

(2004).
	13.	 Inagaki, H. K., Fontolan, L., Romani, S. & Svoboda, K. Discrete attractor dynamics underlies persistent activity in the frontal cortex.

Nature 566, 212–217. https://​doi.​org/​10.​1038/​s41586-​019-​0919-7 (2019).
	14.	 Brunel, N., Sup, E. N. & Wang, X.-J. Effects of neuromodulation in a cortical network model of object working memory dominated

by recurrent inhibition. J. Comput. Neurosci. 11, 63–85 (2001).
	15.	 Gardner, R. J. et al. Toroidal topology of population activity in grid cells. Nature 602, 123–128 (2022).
	16.	 Burak, Y. & Fiete, I. R. Accurate path integration in continuous attractor network models of grid cells. PLoS Comput. Biol. 5,

e1000291 (2009).
	17.	 Brody, C. D., Romo, R. & Kepecs, A. Basic mechanisms for graded persistent activity: Discrete attractors, continuous attractors,

and dynamic representations. Curr. Opin. Neurobiol. 13, 204–211 (2003).
	18.	 Mininni, C. J. & Zanutto, B. S. Probing the structure—function relationship with neural networks constructed by solving a system

of linear equations. Sci. Rep. 11, 1–18. https://​doi.​org/​10.​1038/​s41598-​021-​82964-0 (2021).
	19.	 Amari, S.-I. Learning patterns and pattern sequences by self-organizing nets of threshold elements. IEEE Trans. Comput. 100,

1197–1206 (1972).
	20.	 Little, W. A. The existence of persistent states in the brain. Math. Biosci. 19, 101–120 (1974).
	21.	 McCulloch, W. S. & Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943).
	22.	 Minsky, M. L. Computation (Prentice-Hall Englewood Cliffs, 1967).
	23.	 Marzouk, R., de la Higuera, C. & Higuera, C. D. Distance and equivalence between finite state machines and recurrent neural

networks: Computational results. arXiv preprint (2020). arXiv:​2004.​00478​v1.
	24.	 Carrasco, R. C., Oncina, J. & Forcada, M. L. Efficient encodings of finite automata in discrete-time recurrent neural networks

(1967).
	25.	 Rabusseau, G., Li, T. & Precup, D. Connecting weighted automata and recurrent neural networks through spectral learning. In

The 22nd International Conference on Artificial Intelligence and Statistics, vol. 89 1630–1639 (PMLR, 2019).
	26.	 Frasconi, P., Gori, M. & Soda, G. Injecting nondeterministic finite state automata into recurrent neural networks. In Relatório

Tecnico. DSHIT15192, Dipartimento di Sistemi e Informatica, Firenze, Italy 1–40 (1992).
	27.	 Omlin, C. W. & Giles, C. L. E. E. Constructing deterministic finite-state automata in recurrent neural networks. J. ACM (JACM)

43, 937–972 (1996).
	28.	 Cotteret, M., Greatorex, H., Ziegler, M. & Chicca, E. Vector symbolic finite state machines in attractor neural networks. Neural

Comput. 36, 549–595 (2024) arXiv:​2212.​01196​v2.
	29.	 Alquezar, R. & Sanfeliu, A. An algebraic framework to represent finite state machines in single-layer recurrent neural networks.

Neural Comput. 7, 931–949 (1995).
	30.	 Wang, G., Hanashiro, R., Guha, E. & Abernethy, J. On accelerated perceptrons and beyond. arXiv preprintarXiv:​2210.​09371 (2022).
	31.	 Eiben, A. E. & Smith, J. E. Introduction to Evolutionary Computing 2nd edn. (Springer Publishing Company, Incorporated, 2015).

https://github.com/cmininni/gFTP.git
https://doi.org/10.1038/s41593-018-0310-2
https://doi.org/10.1016/j.conb.2019.07.004
https://doi.org/10.1038/s41587-019-0198-8
https://doi.org/10.1038/s41586-019-0919-7
https://doi.org/10.1038/s41598-021-82964-0
http://arxiv.org/abs/2004.00478v1
http://arxiv.org/abs/2212.01196v2
http://arxiv.org/abs/2210.09371

20

Vol:.(1234567890)

Scientific Reports | (2024) 14:18860 | https://doi.org/10.1038/s41598-024-69747-z

www.nature.com/scientificreports/

	32.	 Song, S., Sjöström, P. J., Reigl, M., Nelson, S. & Chklovskii, D. B. Highly nonrandom features of synaptic connectivity in local
cortical circuits. PLoS Biol. 3, e68. https://​doi.​org/​10.​1371/​journ​al.​pbio.​00300​68d (2005).

	33.	 Brunel, N. Is cortical connectivity optimized for storing information?. Nat. Neurosci. 19, 749–755 (2016).
	34.	 Hong, H., Yamins, D. L., Majaj, N. J. & Dicarlo, J. J. Explicit information for category-orthogonal object properties increases along

the ventral stream. Nat. Neurosci. 19, 613–622 (2016).
	35.	 Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. U.S.A.

79, 2554–2558 (1982).
	36.	 Sompolinsky, H., Crisanti, A. & Sommers, H. J. Chaos in random neural networks. Phys. Rev. Lett. 61, 259–262 (1988) arXiv:​1011.​

1669v3.
	37.	 Van Vreeswijk, C. & Sompolinsky, H. Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274,

1724–1726 (1996).
	38.	 Amari, S.-I. Homogeneous nets of neuron-like elements. Biol. Cybern. 17, 211–220 (1975).
	39.	 Alemi, A., Baldassi, C., Brunel, N. & Zecchina, R. A three-threshold learning rule approaches the maximal capacity of recurrent

neural networks. PLoS Comput. Biol. 11, 1–23. https://​doi.​org/​10.​1371/​journ​al.​pcbi.​10044​39 (2015) arXiv:​1508.​00429.
	40.	 Hartmann, C., Lazar, A., Nessler, B. & Triesch, J. Where’s the noise? Key features of spontaneous activity and neural variability

arise through learning in a deterministic network. PLoS Comput. Biol. 11, 1–35 (2015).
	41.	 Amari, S.-I. Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern. 27, 77–87 (1977).
	42.	 Brennan, C., Aggarwal, A., Pei, R., Sussillo, D. & Proekt, A. One dimensional approximations of neuronal dynamics reveal com-

putational strategy. PLoS Comput. Biol. 19, 856 (2023).
	43.	 Bittner, S. R. et al. Interrogating theoretical models of neural computation with emergent property inference. Elife 10, e56265

(2021).
	44.	 Gonçalves, P. J. et al. Training deep neural density estimators to identify mechanistic models of neural dynamics. Elife 9, e56261

(2020).
	45.	 Cover, T. M. Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE

Trans. Electron. Comput. 1965, 326–334 (1965).
	46.	 Hertz, J., Krogh, A., Palmer, R. G. & Horner, H. Introduction to the Theory of Neural Computation (Springer, 1991).
	47.	 Fagiolo, G. Clustering in complex directed networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 76, 1–8 (2007).
	48.	 Leicht, E. A. & Newman, M. E. Community structure in directed networks. Phys. Rev. Lett. 100, 1–5 (2008) arXiv:​0709.​4500.
	49.	 Rubinov, M. & Sporns, O. Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 52, 1059–1069.

https://​doi.​org/​10.​1016/j.​neuro​image.​2009.​10.​003 (2010).
	50.	 Li, N., Daie, K., Svoboda, K. & Druckmann, S. Robust neuronal dynamics in premotor cortex during motor planning. Nature 532,

459–464 (2016).
	51.	 Randles, M., Lamb, D., Odat, E. & Taleb-Bendiab, A. Distributed redundancy and robustness in complex systems. J. Comput. Syst.

Sci. 77, 293–304. https://​doi.​org/​10.​1016/j.​jcss.​2010.​01.​008 (2011).
	52.	 Ljung, J. Perspectives on system identification. Annu. Rev. Control. 34, 1–12 (2010).
	53.	 Curto, C., Geneson, J. & Morrison, K. Stable fixed points of combinatorial threshold-linear networks. Adv. Appl. Math. 154, 102652

(2024).

Acknowledgements
This research was supported by the Consejo Nacional de Investigaciones Científicas y Técnicas, Grant No.
11220200102316CO and Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la
Innovación, Grant No. PICT-2021-I-A- 00957.

Author contributions
C.J.M. conceived the project, developed and implemented the algorithms, and wrote the initial draft. C.J.M. and
B.S.Z. reviewed and edited the final manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​024-​69747-z.

Correspondence and requests for materials should be addressed to C.J.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and
indicate if changes were made. The images or other third party material in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy
of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

https://doi.org/10.1371/journal.pbio.0030068d
http://arxiv.org/abs/1011.1669v3
http://arxiv.org/abs/1011.1669v3
https://doi.org/10.1371/journal.pcbi.1004439
http://arxiv.org/abs/1508.00429
http://arxiv.org/abs/0709.4500
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1016/j.jcss.2010.01.008
https://doi.org/10.1038/s41598-024-69747-z
https://doi.org/10.1038/s41598-024-69747-z
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Constructing neural networks with pre-specified dynamics
	The generalised firing to parameter algorithm
	Network model and consistency conditions
	Detecting inconsistencies by searching for cycles in auxiliary graph D
	Detecting equivalent labels
	Construction of and
	Overview of the gFTP algorithm

	Results
	Algorithm performance
	Robustness of the expanded transition graph
	Uncovering general dependencies between structure and function
	Assessing dependencies between dynamics, connectivity, and the algorithm instantiated by the network

	Discussion
	Methods
	Notation
	Constructing matrices and with backtracking
	Transition graphs analysed
	Empirical assessment of execution time complexity
	Robustness assessment
	Optimisation with a genetic algorithm
	Measures computed over transition graphs and synaptic weight matrices
	Adding redundancy to G

	References
	Acknowledgements

