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A B S T R A C T

Sweet oranges have long been an integral part of global health and culinary practices, offering a wealth of 
nutrients and bioactive compounds. Ensuring the authenticity of these citrus fruits is essential for maintaining 
consumer confidence, promoting transparency in sourcing, and protecting producers’ reputations in the 
marketplace. In this study, we explored the feasibility of using multi-element profiling combined with pattern 
recognition algorithms to trace the origin of sweet orange samples. To achieve this, we employed an optimized 
microwave plasma atomic emission spectroscopy (MP-AES) method to analyze the elemental composition (Al, 
Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Sr, and Zn) of 183 orange samples from four production 
regions in northeastern Argentina. Support vector machine (SVM), random forest (RF), and gradient boosting 
tree (GBT) models were then built using the collected data to identify elemental tracer’s indicative of origin. 
Based on a comprehensive evaluation of overall accuracy, receiver operating characteristic (ROC) curves, and 
area under the curve (AUC), the GBT model demonstrated the best classification performance, achieving a 96.5 
% correct prediction rate on test samples, as confirmed by the ROC curve (AUC = 0.973). Consequently, this 
approach provides compelling evidence for the potential utility of MP-AES combined with supervised modeling 
to determine the geographic origin of sweet oranges produced in Argentina, thereby contributing to consumer 
protection against fraud.

1. Introduction

Citrus fruits have been integral to human history, significantly 
impacting both traditional and modern medicine in efforts to enhance 
health. Their broad utility ranges from fresh consumption to a variety of 
products like juices, desserts, and processed goods, thereby enriching 
global culinary and nutritional practices while supporting the economic 
well-being of the regions where they are cultivated [1]. Among the citrus 
genus, the sweet orange (Citrus sinensis L.) is particularly notable, 
enjoying immense popularity due to its broad consumer appeal. 
Renowned for its high nutraceutical value, the sweet orange is a rich 
source of essential nutrients and bioactive compounds, including dietary 
fibers, vitamins, minerals, sugars, organic acids, and antioxidants like 
polyphenols, flavonoids, and carotenoids [2]. In addition, organoleptic 

properties like aroma, flavor, texture, appearance, along with color and 
seed presence are key quality attributes influencing in the commercial 
viability of sweet oranges [3].

The increasing significance of citrus authentication research reflects 
the essential need to maintain crop integrity and bolster consumer 
confidence in farm-grown foods [4]. As advancements in this field 
progress, the focus has broadened to encompass crucial aspects such as 
determining geographical origin, evaluating cultivation practices, and 
ensuring compliance with specific standards or certifications [5]. This 
progress has greatly improved the ability to promote transparency 
within the supply chain, fostering greater accountability and ethical 
sourcing practices. With consumers placing a higher value on agricul-
tural products with verified origins, accurate labeling not only boosts 
market credibility but also supports premium pricing [6,7]. While both 
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producers and consumers may face financial losses owing to fraud, 
counterfeiting, and mislabeling, effectively verifying the authenticity of 
critics like sweet oranges helps producers mitigate these risks and pro-
tect their brand reputation, thereby upholding high standards of quality.

The chemical composition and biological characteristics of citrus 
fruits, such as sweet oranges, are shaped by a variety of factors including 
soil properties, agricultural practices, environmental conditions, 
geographic location, and genetic differences among cultivars [8]. 
Analyzing how these factors interact is essential for determining the 
authenticity of sweet oranges from different regions, posing a significant 
analytical challenge. Researchers have applied a broad spectrum of 
analytical techniques to assess orange quality. These include evaluations 
of phytochemical and nutritional properties [9], aroma profiles [10], 
polyphenol content [11], genetic diversity [12,13], morphological fea-
tures [14], conventional physicochemical parameters, flavonoids, and 
volatile compounds [15,16]. Furthermore, advanced methods such as 
multi-elemental isotopic analysis [17], trace element analysis [18–23], 
and rare earth element profiling [24] have been employed to provide a 
thorough understanding of these fruits.

By evaluating the authenticity of oranges, experts have explored 
various analytical techniques to address this challenge. Notable ap-
proaches include high-resolution nuclear magnetic resonance (NMR) for 
identifying saccharides, amino acids, organic acids, alcohols, ketones, 
and flavanones [25], as well as inductively coupled plasma mass spec-
trometry (ICP-MS) for analyzing multi-elemental isotope ratios [26]. 
Additionally, Centonze et al. [27] have explored patterns of volatile 
compounds using an MS-based electronic noise to discriminate the 
geographical origin of these fruits. Although these techniques provide 
valuable insights, they often require specialized equipment, involve 
time-consuming and costly analyses, demand labor-intensive sample 
preparation, and can generate toxic waste. Furthermore, these methods 
may face limitations in sensitivity and selectivity, potentially leading to 
false positives or misinterpretation of results. As a result, while these 
approaches are informative, their drawbacks highlight the need for 
developing complementary methods that allow achieving a more 
comprehensive analysis of orange authenticity.

Microwave Plasma Atomic Emission Spectroscopy (MP-AES) offers 
several advantages for determining the geographical origin of sweet 
orange fruits through elemental composition analysis. It is both envi-
ronmentally friendly and cost-effective, as it eliminates the need for 
hazardous or expensive gases to create plasma discharge [28]. MP-AES 
is also simpler to operate and maintain compared to other atomic 
emission techniques [29]. It produces a stable and efficient plasma at 
low temperatures and atmospheric pressure using microwave energy, 
offering a wide dynamic range that allows the detection of both trace 
and major elements in a single analysis with minimal sample prepara-
tion. This approach ensures high sensitivity, precision, and reproduc-
ibility, making MP-AES an excellent choice for comprehensive and 
reliable elemental profiling of sweet oranges.

The present research focused on determining the mineral composi-
tion (Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, Pb, Sr, and Zn) 
of sweet oranges using MP-AES for designating the geographical origin 
of the samples. To achieve this, principal component analysis, support 
vector machine (SVM), random forest (RF), and gradient boosting tree 
(GBT) models were constructed based on the obtained data aiming to 
pinpoint elemental markers indicative of geographical provenance. This 
research makes a significant contribution to the field of citrus authen-
tication by introducing and validating an MP-AES-based method for 
identifying elemental tracers associated with the geographical origin of 
oranges. It also enhances the reliability of citrus fruit authentication by 
demonstrating MP-AES’s potential for assessing their quality and certi-
fication. This advancement is crucial for verifying the authenticity of 
farm products, ensuring compliance with labeling standards, and pro-
tecting both consumers and producers from fraud and misrepresenta-
tion. Consequently, the study not only supports the development of 
more robust food authentication protocols but also contributes to the 

broader goal of maintaining transparency and trust in the global food 
supply chain.

2. Materials and methods

2.1. Sweet orange samples

In this study, a total of 183 fully ripened sweet orange fruits (Citrus 
sinensis) grown in Argentina were analyzed using MP-AES. These fruits 
were sourced from agricultural cooperatives and producers between 
June and November 2021/2022. A minimum of six fruits were randomly 
collected from each tree, with at least three trees sampled per orchard. 
The sampling included two botanical varieties of significant commercial 
importance in the region: Valencia Late (n = 93) and Salustiana (n =
90). The samples were collected from four production regions, namely 
Bella Vista (BVS), Monte Caseros (MCS), Misiones (MNS), and Entre Ríos 
(ERE), spanning 16 different locations across three northeastern prov-
inces of Argentina. These production areas were selected for sampling 
because the three northeastern provinces of Argentina, namely Entre 
Ríos, Corrientes, and Misiones, are among the most important citrus- 
producing regions in the country. Along with the northwestern region 
(Tucumán, Salta, and Jujuy), this area is particularly renowned for its 
production of sweet oranges [30,31].

2.2. Chemicals

Ultrapure deionized water (with a resistivity of 18.2 MΩ cm at 25 ◦C) 
utilized for the preparation of both working and standard solutions was 
procured through a Milli-Q Plus water purification system (Millipore, 
Bedford, MA, USA). Analytical grade HNO3 65 % (w/w) and H2O2 30 % 
(w/w) reagents were sourced from Sigma (St. Louis, MO, USA). Cali-
bration standard solutions were prepared by aqueous dilution with 10 % 
HNO3, using a TraceCERT® CRM multi-element standard solution pur-
chased from Merck (Darmstadt, Germany). Argon gas (99.998 % purity) 
was provided by Praxair (Córdoba, Argentina), and yttrium internal 
standard was acquired from Sigma-Aldrich (St. Louis, MO, USA). To 
ensure the purity of our experiments, all glassware and plastic bottles 
were thoroughly cleansed using a 10 % (m/v) HNO3 solution. Prior to 
usage, these vessels underwent multiple rinses with ultrapure water.

2.3. Apparatus

A Taurus Citrix electric juicer (Taurus Group, Lleida, Spain) was 
utilized to extract fresh juices from sweet oranges. The extracted fruit 
juices were dried using a Chamber Freeze Dryer (Lab1st, USA). Sample 
acid digestion was carried out using an Ethos One microwave oven 
(Milestone Laboratory Systems, Italy) equipped with a high-pressure 
rotor.

An Agilent 4210 microwave plasma atomic emission spectrometer 
(MP-AES, Agilent Technologies, Japan) was used for the quantification 
of four macro elements (Na, K, Ca, Mg) and thirteen microelements (Al, 
Ba, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sr, and Zn) in the digested 
samples. The sample introduction system consisted of solvent-resistant 
tubing, a double-pass cyclonic chamber, and an inert flow-blurring 
nebulizer (OneNeb). Aiming to provide high-purity nitrogen gas for 
measurements, a Genius SQ 24 nitrogen gas generator (Peak Scientific 
Instruments Ltd., Scotland, UK) was coupled to the MP-AES spectrom-
eter, producing nitrogen gas from ambient air.

To validate the multi-elemental data obtained through the MP-AES 
method, we utilized an Agilent 7700 Series inductively coupled 
plasma mass spectrometer (Agilent Technologies, USA), as our reference 
technique. This ICP-MS system was equipped with a radiofrequency 
solid-state generator operating at 1500 W and 27.12 MHz. The setup 
incorporated a MicroMist™ nebulizer, a cooled double-pass quartz spray 
chamber, and a Fassel-type ICP torch comprising a three-cylinder as-
sembly with a 2.5 mm injector diameter. Operational parameters were 
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configured according to specifications outlined by Turra et al. [18]. 
These included a plasma gas flow rate of 15 L min− 1, collision and re-
action gas flow rate for helium (99.999 % purity) at 4 mL min− 1, an 
argon (99.999 % purity) carrier gas flow rate of 0.8 L min− 1, a sample 
lifting rate of 0.3 r s− 1 and an atomization chamber temperature of 2 ◦C. 
Yttrium served as an internal standard, manually introduced into all 
solutions until reaching a concentration of 10 μg L− 1. To maintain 
optimal performance, we conducted daily optimization of instrumental 
parameters using the tuning solution during sample aspiration.

2.4. Sample preparation

Fresh sweet orange juices were initially extracted using an electric 
juicer, followed by homogenization and freeze-drying. The resulting 
samples were then digested using a microwave oven decomposition 
system, following the procedure outlined by Donato et al. [32] with 
certain modifications. Specifically, 100–250 mg of the obtained extract 
was weighed and transferred into Teflon vessels along with 5 mL of 
HNO3 (65 %, w/v) and 2 mL of H2O2 (30 %, w/v). Digestion occurred at 
a constant power of 1000 W at the temperature of 160 ◦C, with a 15-min 
ramp, maintaining for an additional 40 min. Subsequently, the clear 
solutions obtained were left to cool at room temperature before being 
quantitatively transferred into 25 mL volumetric flasks and diluted with 
ultrapure deionized water.

2.5. MP-AES measurements

The concentrations of 17 elements in digested sweet orange juices 
were quantified by MP-AES. The instrument’s operating parameters 
were set according to the manufacturer’s recommendations, including 
2450 MHz microwave frequency, 1 kW magnetron power, and 20 L 
min− 1 plasma gas (nitrogen) flow rate. The nebulizer pressure ranged 
from 140 to 240 kPa, with an 8-sec sample uptake duration, a 15-sec 
stabilizing time, a 30-sec rinsing time, and a 5-sec reading time. 
Instrumental parameters were optimized daily during the aspiration of 
the tuning solution. For the determination of individual elements, spe-
cific spectral lines were selected, including 396.152 for Al, 455.403 for 
Ba, 393.366 for Ca, 228.802 for Cd, 340.512 for Co, 425.433 for Cr, 
324.754 for Cu, 371.993 for Fe, 766.491 for K, 383.829 for Mg, 403.076 
for Mn, 379.825 for Mo, 588.995 for Na, 352.454 for Ni, 405.781 for Pb, 
407.771 for Sr, and 213.857 for Zn. These emission lines were chosen 
based on their optimal signal-to-noise ratio and minimal spectral in-
terferences. To ensure the sample introduction system cleanliness, a 
blank solution (ultrapure water) was analyzed after every ten samples, 
along with a multi-element standard solution containing Al, Ba, Cd, Co, 
Cu, Mn, Mo, Ni, Sr, and Zn at 20 μg L− 1, Ca, Fe, and Na at 50 μg L− 1, and 
Mg and K at 150 μg L− 1. Background corrections were automatically 
performed for each element using Agilent MP Expert software (Agilent 
Technologies, Santa Clara, CA, USA).

2.6. Statistic analytics and classification modeling

To streamline statistical processing and pattern recognition analysis, 
the multi-elemental data obtained by MP-AES was structured into a 
rectangular matrix. The matrix rows represented the 183 orange fruit 
samples, each labeled according to its origin designation, and the col-
umns correspond to the concentrations of the elements quantified in the 
samples.

Firstly, the dataset underwent preprocessing involving autoscaling 
and mean centering procedures. This allowed normalizing the data and 
lessen disparities in concentration scales. Subsequently, we applied the 
nonparametric version of the ANOVA test, known as the Kruskal-Wall-
is’s test, to identify potential discriminant variables based on statistical 
differences among sample origins. As a complementary tool, principal 
component analysis (PCA) was conducted to investigate the inherent 
distribution of samples within a reduced dimensional space and identify 

clustering trends among sample classes [33].
Lastly, three machine learning algorithms, namely random forest 

(RF), support vector machine (SVM), and gradient boosting tree (GBT), 
were employed to develop classification models of sweet orange juices. 
Support Vector Machine (SVM) is a prominent machine learning tech-
nique typically used for binary classification. Its primary objective is to 
identify the optimal hyperplane in a multi-dimensional space that sep-
arates different classes of objects or samples by employing maximization 
techniques. SVM theoretically simplifies the complexities associated 
with high-dimensional spaces and addresses classification challenges 
through internal processing functions known as kernel functions. It also 
facilitates the construction of multi-class classifiers by combining mul-
tiple binary classifiers. In this work, SVM was implemented using two 
distinct kernels to explore different outcomes: a linear kernel (SVM-1) 
and a radial basis function kernel (SVM-2). Additionally, two ensemble 
methods were employed: gradient boosting trees (GBT) and random 
forests (RF). Although both methods excel in solving complex classifi-
cation issues, they differ in their training processes and how they 
aggregate individual tree outputs, resulting in models with unique 
characteristics. GBT builds trees sequentially, with each new tree cor-
recting errors made by the previously trained trees. In contrast, RF trains 
each tree independently, using a random sample of the data. This 
randomness aids in creating a more robust model compared to a single 
decision tree, reducing the likelihood of overfitting [34].

To build the classifiers, the entire dataset was partitioned into 
training and testing subsets using the Kennard-Stone algorithm. The 
training set was used to optimize the hyperparameters of each model, 
while the testing set was employed to evaluate the final model’s per-
formance and generalization capabilities. Hyperparameter optimization 
was performed using a 10-fold cross-validation method, in which the 
dataset was divided into ten groups, with nine groups used for model 
training and one for testing.

The metrics used to evaluate classification performance included 
global accuracy, precision, recall, and F1 score. Accuracy measures the 
proportion of correct predictions to the total number of cases examined. 
Precision assesses the accuracy of positive predictions, representing the 
ratio of true positive predictions to the sum of true positive and false 
positive predictions. Conversely, recall measures the model’s ability to 
identify all positive instances, calculated as the ratio of true positive 
predictions to the sum of true positive and false negative predictions. 
The F1 score, serving as a balance between precision and recall, is the 
harmonic mean of the two metrics. It offers a comprehensive evaluation 
of the model’s performance, particularly valuable when handling 
imbalanced datasets due to its consideration of both false positives and 
false negatives [35]. Furthermore, the Receiver Operating Characteristic 
(ROC) curve and the corresponding Area Under the Curve (AUC) were 
also computed. The ROC curve visually illustrates the classifiers’ per-
formance in distinguishing between classes considering various 
threshold settings. It aids in comparing different models and selecting 
the optimal threshold for a specific application. AUC is a single metric 
quantifying the model’s ability to discriminate between the positive and 
negative classes, regardless of the chosen threshold. Ranging from 0.0 to 
1.0, an AUC of 0.5 indicates performance equivalent to random chance, 
an AUC >0.5 suggests some degree of discrimination ability, with higher 
values indicating better performance, and an AUC of 1 signifies perfect 
discrimination, achieving a perfect balance between sensitivity (true 
positive rate) and specificity (true negative rate) [36].

Data analysis was conducted using Orange Data Mining Library in 
Python and R-software version 4.4.0 with the Caret package.

3. Results and discussion

3.1. Analytical parameters and validation

The MP-AES method for analyzing sweet orange juice samples was 
developed and validated considering various analytical performance 
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parameters. Table 1 presents the main figures of merit obtained for the 
proposed method. Linearity and sensitivity were determined from the 
calibration curves. The determination coefficients (R2) of the analytical 
curves were greater than 0.9980, which indicated good linearity for all 
elements across their respective concentration ranges covered in the 
calibration.

The calculation of limits of detection (LOD) and limits of quantifi-
cation (LOQ) was based on the criteria outlined by AOAC [37]. The 
proposed methodology yielded LOD values between 0.07 and 3.71 μg 
g− 1 and LOQ values ranging from 0.21 to 11.1 μg g− 1. Measurement 
variability was expressed as the relative standard deviation (% RSD). 
Intra-day RSD (%) values ranged from 0.6 to 3.6 %, with Cu exhibiting 
the best precision. The average recoveries fell within the range of 
87.2–100.2 %, indicating no matrix effects post-sample micro-
wave-assisted acid digestion. These results meet the acceptance criteria 
established for intermediate precision (≤15 % RSD) and recovery 
(80–110 %) as per AOAC regulations [37].

To assess the accuracy of data acquired by MP-AES as a practical 
method for mineral determination in sweet orange juices, we fortified 10 
randomly selected samples with known concentrations of various ele-
ments. The spiking levels were set at 5 μg g− 1 for Ba, Co, Cr, Cu, Fe, Mn, 
Mo, Ni, Sr, and Zn; 25 μg g− 1 for Al, Ca, and Na; and 250 μg g− 1 for K and 
Mg. These fortified samples were then analyzed using the ICP-MS 
technique, as described by Turra et al. [18], which served as the refer-
ence method. We then compared the results obtained from both methods 
using a Student’s t-test at a 95 % confidence level. The calculated 
t-values, ranging from 0.314 to 2.578, were all below the critical value 
(t = 2.776; p = 0.05), indicating no significant differences between the 
MP-AES and ICP-MS data.

In this study, we compared the data obtained by MP-AES with those 
obtained by ICP-MS to evaluate their respective strengths in determining 
the elemental profiling. While ICP-MS is widely recognized for its 
exceptional sensitivity and ability to detect a broader range of elements 
at trace levels, MP-AES technique offers several advantages, including 
cost-effectiveness, ease of use, and sufficient accuracy for the specific 
needs of our study. Our findings suggest that MP-AES is an effective and 
viable alternative to ICP-MS technique for designating the geographic 
origin of sweet orange fruits, making it a practical option for routine 
applications in the field of food authentication.

3.2. Content and variability of elements in sweet orange juices

The concentrations of seventeen elements determined in sweet or-
ange juices are shown in Table 2. Our findings revealed that over 95 % of 
the fruit samples contained three elements, i.e., Cd, Ni, and Pb, below 
the method detection limits, hence excluding them from further 

investigation in this study.
Among the quantified elements, the average concentrations followed 

the order: K > Mg > Ca > Al > Na > Cu > Ba > Sr > Zn > Fe > Mn > Mo 
> Co > Cr. Potassium (K) exhibited the highest average concentrations 
in the sweet orange fruit samples, ranging from 0.89 mg g to 1 in the 
MNS region to 1.72 mg g− 1 in the ERE region. Potassium (K) is essential 
for citrus plants, serving various functions such as neutralizing organic 
acids, influencing enzymatic reactions, and facilitating the synthesis of 
proteins, sugars, and starch. It also contributes to fruit formation by 
enhancing size, color, and flavor. Notably, potassium (K) levels reported 
in commercial orange juice (ranging from 1.44 to 13.57 mg g− 1) were 
higher than those observed in this study [17]. The second most abundant 
element in the samples was magnesium (Mg), with a range of 132 μg g− 1 

in MCS to 164 μg g− 1 in MNS. This element plays a crucial role as an 
activator of various enzymes in citrus plants and is involved in processes 
such as photosynthesis, carbohydrate metabolism, and nucleic acid 
synthesis [38]. The observed Mg levels exceeded those previously re-
ported in orange juice from Brazil, which ranged from 46.2 to 100.3 μg 
g− 1 [20].

In the different regions studied, aluminum (Al) and calcium (Ca) 
content ranked third and fourth, respectively, following potassium (K) 
and magnesium (Mg), except in the MCS region. The highest levels of 
these elements were detected in the MNS region, measuring 74.8 μg g− 1 

for Al and 18.7 μg g− 1 for Ca. The latter is a vital mineral for citrus plants 
that plays a structural role in membrane systems, being also essential for 
cell division and chromosome stability occurring in the cell wall [39]. 
The aluminum (Al) levels in orange juice analyzed in our study were 
consistent with those reported in orange juice from Brazil [18]. How-
ever, calcium (Ca) concentrations were lower compared to another 
study conducted in Brazil [20].

The overall average values of Ba, Cu, Mn, Sr, Na, and Zn ranged from 
1 to 10 μg g− 1. Samples from the MNS region exhibited the highest levels 
of Ba and Na, while those from the ERE region showed the highest Mn 
contents. Conversely, samples from the MCS region displayed elevated 
mean values of Cu, Sr, and Zn. In particular, manganese (Mn) is essential 
for nitrogen metabolism and respiration in citrus plants [40]. Cristea 
et al. [17] reported that the concentrations of Mn, Cu, Zn, and Sr 
determined in commercial orange juice agreed with our results, except 
for Na levels, which were lower in our study.

Among the trace elements, Co, Cr, Fe, and Mo were detected in 
concentrations below 1 μg g− 1. Despite their low abundance, these el-
ements play significant roles in various physiological processes of citrus 

Table 1 
Figures of merit, precisions, and recoveries obtained for the MP-AES method.

Element R2 LOD (μg g− 1) LOQ (μg g− 1) RSD (%) Recovery (%)

Al 0.9989 0.92 2.70 0.8 88.1
Ba 0.9991 1.15 3.32 3.6 87.2
Ca 0.9988 2.03 6.14 2.2 93.5
Cd 0.9998 0.07 0.21 1.3 97.0
Co 0.9998 0.09 0.27 0.6 92.6
Cr 0.9980 0.08 0.24 1.0 94.5
Cu 0.9999 0.14 0.42 0.6 100.2
Fe 0.9988 0.28 0.84 2.0 98.0
K 0.9998 2.80 8.42 0.9 94.5
Mg 0.9997 3.71 11.1 1.8 86.8
Mn 0.9998 0.07 0.21 0.6 98.7
Mo 0.9996 0.07 0.21 3.1 92.3
Na 0.9986 2.54 7.54 0.7 91.5
Ni 0.9999 0.12 0.36 0.8 97.4
Pb 0.9996 0.13 0.38 2.9 87.9
Sr 0.9998 0.10 0.30 1.2 96.1
Zn 0.9996 0.12 0.36 1.7 97.8

Table 2 
Concentrations of elements (average ± standard deviation) quantified in sweet 
orange juice samples.

Element Sampling sweet oranges fruits (μg g− 1)

BVS (n = 44) ERE (n = 66) MCS (n = 49) MNS (n = 24)

Al 5.2 ± 1.1 12.8 ± 11.7 14.8 ± 8.6 74.8 ± 4.2
Ba 3.3 ± 0.5 3.8 ± 0.90 8.3 ± 0.9 9.2 ± 0.6
Ca 22.9 ± 8.3 25.0 ± 3.2 12.5 ± 10.7 18.7 ± 3.6
Cda < LOD < LOD < LOD < LOD
Co 0.5 ± 0.6 0.3 ± 0.5 0.2 ± 0.2 0.7 ± 0.5
Cr 0.2 ± 0.1 0.3 ± 0.08 1.1 ± 0.6 0.2 ± 0.4
Cu 2.8 ± 0.5 9.5 ± 0.3 10.0 ± 5.5 1.8 ± 0.3
Fe 0.6 ± 0.3 0.8 ± 0.2 0.7 ± 0.2 0.9 ± 0.4
Kb 1.1 ± 0.5 1.7 ± 0.6 1.1 ± 0.5 0.9 ± 0.3
Mg 138.2 ± 45.4 130.1 ± 25.2 112.0 ± 65.2 146.4 ± 52.0
Mn 0.5 ± 0.2 3.4 ± 0.1 0.9 ± 0.3 0.6 ± 0.5
Mo 0.7 ± 0.5 0.9 ± 0.4 0.7 ± 0.6 0.9 ± 0.2
Na 6.5 ± 1.2 3.1 ± 2.4 2.8 ± 1.5 8.3 ± 1.3
Nia < LOD < LOD < LOD < LOD
Pba < LOD < LOD < LOD < LOD
Sr 2.3 ± 0.4 2.5 ± 0.8 3.1 ± 0.3 2.8 ± 0.1
Zn 1.2 ± 0.5 1.5 ± 0.7 2.2 ± 0.6 1.8 ± 0.8

a Concentration values under limit of detection (<LOD).
b Concentration values (mg g− 1) refer to dry sample.
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plants. For instance, iron (Fe) is involved in photosynthetic enzyme 
systems and catalyzes chlorophyll production [41]. In our study, Fe 
levels were lower than those reported by Cristea et al. [17] for com-
mercial orange juice, whereas Co levels were higher, underscoring the 
intricate balance of these elements within the fruit.

3.3. Exploratory elemental composition analysis

The Kruskal-Wallis’s test identified significant differences in six el-
ements, namely Al, Ba, Fe, K, Mg, and Mn, across the four regions (p <
0.05). Consequently, PCA was conducted to discern similarities and 
disparities among the multi-elemental profiles of the examined sweet 
orange samples (Fig. 1). This statistical tool is adept at exploring data by 
unveiling the latent structure of high-dimensional datasets without prior 
information. The cumulative variance contribution of the first five 
principal components (PCs) reached 95.0 %. Notably, PC1 (39.8 %) was 
primarily influenced by the concentrations of Al, Ba, Ca, Mg, and Cu, 
while PC2 (20.2 %) was predominantly driven by the levels of Fe, Sr, Cr, 
Mn, and K. Fig. 1 depicts the biplot generated by PC1 vs. PC2, wherein 
orange samples from distinct geographical origins tended to cluster, 
facilitating the identification of four distinct sample groups. The clusters 
associated with MCS, ERE, and BVS samples exhibited greater overlap 
compared to those from MNS samples along PC1. Particularly, the MNS 
samples displayed relatively higher concentrations of Al, Ba, and Mg, 
along with lower levels of Cu. This characteristic low Cu content was 
notably observed in the MCS samples. In addition, the MCS and ERE 
samples showed considerable overlap, with slight separation along PC2, 
characterized by differences in Fe, Sr, Mn, and K contents. These results 
indicate a relationship between specific elements and the samples’ 
geographical origin.

3.4. Origin discrimination of sweet orange fruits

Data-driven machine learning involves identifying patterns within 
observed data samples and leveraging these patterns to forecast future 
data or infer unobservable data. It is a fundamental approach in modern 
artificial intelligence, finding widespread applications across various 

burgeoning fields, particularly in food authenticity testing [42,43].
To determine the geographical origin of the sweet orange fruits 

studied, three machine learning algorithms (SVM, GBT, and RF) were 
employed to construct four classification models for performance com-
parison. The classifiers were trained, validated, and evaluated using a 
training set (70 %) and a test set (30 %). During model training, an 
exhaustive grid search method was applied to identify the optimal 
combination of hyperparameters. This process involved iterative 10-fold 
cross-validation, with the best hyperparameters selected based on the 
training set results. The test set was then used to evaluate the perfor-
mance of the proposed models [44].

Table 3 presents the classification results of the proposed models. All 
models achieved prediction rates above 95 % on the training sets. 
However, to accurately compare the classifiers, it is crucial to evaluate 
their performance on the test data (unseen data). The overall accuracies 
obtained were as follows: 93.3 % for SVM-1, 91.0 % for SVM-2, 92.3 % 
for RF, and 96.5 % for GBT. Therefore, the GBT model demonstrated the 
best performance, achieving a perfect accuracy rate on the training 
samples. Additionally, this model yielded the highest values for other 
classification metrics, including precision (0.949), recall (0.949), and 
F1-score (0.952).

To further assess the discrimination performance of the GBT and RF 
models for each geographical origin, ROC curves were depicted in Fig. 2
and AUC values were computed. The AUC is a key single-value metric 
used to compare the overall performance of different classifiers through 
ROC curve analysis [45]. The results indicated that the ensemble 

Fig. 1. Biplot of scores and loadings of the elemental predictors onto the PC1-PC2 plane build from the sweet orange samples. (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of this article.)

Table 3 
Performance of the supervised learning models in discriminating sweet orange 
samples from different geographical origin.

Models Training set Testing set

Accuracy Accuracy Precision Recall F1-score AUC

SVM-1 0.962 0.933 0.883 0.880 0.880 0.701
SVM-2 0.956 0.910 0.880 0.880 0.880 0.811
RF 1.000 0.923 0.915 0.915 0.915 0.947
GBT 1.000 0.965 0.949 0.949 0.952 0.973
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methods achieved higher AUC values than those obtained by the SVM 
models with different kernels. Furthermore, Fig. 2 shows that the GBT 
model demonstrates better sensitivity and specificity, particularly in the 
samples from MCS (Fig. 2-c).

Finally, the previous results indicate that the performance of the two 
proposed ensemble methods is significantly superior to that of the SVM 
models in designating the geographic origin of sweet orange fruits. 
Notably, the GBT model showed exceptional performance in some re-
gions, demonstrating high robustness in distinguishing among sample 
sets with high similarities, which makes discrimination challenging. 
However, it is important to acknowledge that ensemble methods also 
have limitations, such as longer training times and a potential tendency 
toward overfitting and instability. These concerns have been thoroughly 
addressed through the cross-validation studies presented in this work, 
reinforcing the validity of our findings.

4. Conclusions

Elemental profiling measured by MP-AES was employed to designate 
the geographical origin of sweet orange fruits produced in Argentina. 

PCA-based exploratory data analysis revealed patterns reflecting 
geographical similarities among the samples. Subsequently, SVM, RF, 
and GBT models were constructed, using the region of origin as a clas-
sification factor, to identify elemental tracer’s indicative of provenance. 
In testing samples, the GBT model achieved a success rate of 96.5 %, 
outperforming SVM-1 at 93.3 % and RF at 92.3 %. Moreover, the GBT 
model demonstrated the highest reliability in distinguishing sweet or-
anges, as confirmed by ROC curve analysis. These findings underscore 
the potential of the MP-AES technique for verifying the origin of orange 
samples through elemental profile modeling. The proposed approach 
significantly enhances food authentication efforts and contributes to 
protecting consumers against mislabeling and fraud in the supply chain. 
Future research in this area could explore factors such as seasonality, 
climate, pollution, contact materials, and varying stages of fruit matu-
ration for linking elemental content more accurately to geographic 
origin. Additionally, ensuring an adequate sample size and random 
sampling is essential to fully understand the insights obtained.

Fig. 2. ROC curves of the ensemble models for classification of sweet oranges based on geographical origin: BVS (a), ERE (b), MCS (c), and (d) MNS. Green line 
(GBT), Orange line (RF). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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