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ABSTRACT

By recourse to the concept of Statistical Complexity we study here the classical-quantum
transition in a special system that represents the matter-field interaction. Our work con-
siders two distinct disequilibrium forms based on Euclidean norm and Jensen-Shannon
divergence, on the one hand, and analyzes things, on the other one, by using two differ-
ent numerical approaches for probability distribution, namely, relative wavelet energy and
permutation patterns.

Keywords: Semiclassical theories, quantum chaos, statistical complexity.

PACS: 03.65.Sq (Semiclassical theories and applications), 05.45.Mt (Quantum chaos; semi-
classical methods) 05.45.Tp (Time series analysis)

1 Introduction

Since the introduction of the decoherence concept in the early 1980s, by, among others, Zeh,
Zurek, and Habib (Zeh, 1999; Zurek, 1981; Zurek, 2003; Zurek, Habib and Paz, 1993; Habib,
Shizume and Zurek, 1998), the emergence of the classical world from Quantum Mechanics has
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been a subject of much interest. Among the associated issues one can mention the emergence
of classical dynamics (specially classical chaos) in quantum systems through continuous mea-
surement, observed by Habib, Bhattacharya, Ghose, and Jacobs, among others (Ghose, Als-
ing, Deutsch, Bhattacharya, Habib and Jacobs, 2003; Ghose, Alsing, Deutsch, Bhattacharya
and Habib, 2004) and the “decoherent histories approach” by Gisin, Brun, Halliwell, and Per-
cival (Diósi, Gisin, Halliwell and Percival, 1995; Brun and Halliwell, 1996; Brun, 2000; Halliwell
and Yearsley, 2009). Additionally, authors like Everitt explore the quantum-classical crossover
in the behavior of a quantum field mode (Everitt, Munro and Spiller, 2009) and the chaotic-like
and non-chaotic-like behavior in nonlinear quantum systems (Everitt, 2007), topics of certain
interest. One should also consult papers by Ralph et al. (Clark, Diggins, Ralph, Everitt, Prance,
H., Whiteman, Widom and Srivastava, 1998), Greenbaum et al. (Greenbaum, Habib, Shizume
and Sundaram, 2005) and Lifshitz et al. (Katz, Retzker, Straub and Lifshitz, 2007).
It is clear that quite a bit of quantum insight is to be gained from semiclassical perspectives.
Several methodologies are available (WKB, Born-Oppenheimer approach, etc.). The model of
Refs. (Bonilla and Guinea, 1992; Cooper, Dawson, Habib and Ryne, 1998; Kowalski, Plastino
and Proto, 2002) considers two interacting systems: one of them classical, the other quantal.
This makes sense whenever the quantum effects of one of the two systems are negligible in
comparison to those of the other one. Examples can be readily found. We can just men-
tion Bloch equations (Bloch, 1946), two-level systems interacting with an electromagnetic field
within a cavity (Milonni, Shih and Ackerhalt, 1987; Meystre and Sargent III, 1991; Kociuba and
Heckenberg, 2002), collective nuclear motion (Ring and Schuck, 1980), etc.
Quantifiers based on information theory, like entropic forms and statistical complexities (see as
examples Refs. (Shannon, 1948; Shiner, Davison and Landsberg, 1999; López-Ruiz, Mancini
and Calbet, 1995; Lamberti, Martı́n, Plastino and Rosso, 2004)) have proved to be very useful
in the characterization of the dynamics associated to time series, in the wake of the pioneering
work of Kolmogorov and Sinai, who converted Shannon’s information theory into a powerful tool
for the study of dynamical systems (Kolmogorov, 1958; Sinai, 1959). In turn, information theory
measures and probability spaces Ω are inextricably linked quantifiers. In evaluating them, the
determination of the probability distribution P associated to the dynamical system or time series
under study is the basic ingredient. Many procedures have been proposed for the election of
P ∈ Ω. We can mention techniques based on symbolic dynamics (Mischaikow, Mrozek, Reiss
and Szymczak, 1999), Fourier analysis (Powell and Percival, 1979), and wavelet transform
(Rosso and Mairal, 2002) among others. The applicability of these approaches depends on
the data-characteristics, i.e., stationarity, length of the series, parameter-variations, levels of
noise-contamination, etc. The distinct treatments at hand “capture” the global aspects of the
dynamics, but they are not equivalent in their ability to discern physical details. However, one
should recognize that we are here referring to techniques defined in an ad-hoc fashion, not
derived directly from the dynamical properties of pertinent systems themselves.
López-Ruiz, Mancini and Calbet (LMC) (López-Ruiz et al., 1995), advanced a new statistical
complexity measure (SCM), based on the notion of “disequilibrium”, as a quantifier of the
degree of physical structure in a time series. Given a probability distribution associated with a
system’s state, the LMC measure is the product of a normalized entropy H times a distance
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to the uniform-equilibrium state Q. It vanishes both for a totally random process and for a
periodic one. Martı́n et al. (Martı́n, Plastino and Rosso, 2003) improved on this measure
by modifying the distance-component (in the concomitant probability space). In Ref. (Martı́n
et al., 2003), Q is built-up using Wootters’ statistical distance while H is a normalized Shannon-
entropy. The ensuing statistical complexity measure is neither an intensive nor an extensive
quantity, although it does yield an impressive quantity of useful results. A complexity measure
should be able to distinguish among different degrees of periodicity and it should vanish only
for periodicity unity. In order to attain such goals it would seem desirable to give this statistical
measure an intensive character. This was achieved in Ref. (Lamberti et al., 2004), obtaining
a SCM that is (i) able to grasp essential details of the dynamics, (ii) an intensive quantity, and
(iii) capable of discerning among different degrees of periodicity and chaos.
By using the LMC definition (López-Ruiz et al., 1995) and the SCM defined in Ref. (Lamberti
et al., 2004), we investigate here the classical limit of quantum mechanics (CLQM) of a semi-
classical model containing both classical and quantum degrees of freedom in Ref. (Kowalski
et al., 2002). In contrast to what was done in the above mentioned papers via a master equa-
tion for the density operator (Brun, 2000; Zurek et al., 1993; Habib et al., 1998), or by recourse
to equivalent stochastic equations for pertinent expectation values (Ghose et al., 2003; Ghose
et al., 2004), we consider a simplified scheme in which the interaction with the environment is
simulated by the classical variables.
In the next section we consider a semiclassical system that represents a matter-field interac-
tion. We analyze the corresponding dynamics and describe the quantum-classical transition
zones.
Section 3 is dedicated to the Statistical Complexity concept. The LMC and SCM definitions are
considered. Section 4 is devoted to discuss the results by considering two different approaches
for the probability distribution, namely, relative wavelet energy and permutation patterns. Fi-
nally, in Section 5 we draw conclusions.

2 The CLQM for a special semi-classical model

We deal with a special bipartite system that represents the zero-th mode contribution of a
strong external field to the production of charged meson pairs (Cooper et al., 1998; Kowalski
et al., 2002), whose Hamiltonian reads

Ĥ =
1

2

(
p̂2

mq
+

PA
2

mcl
+ mqω

2x̂2
)
, (2.1)

where i) x̂ and p̂ are quantum operators, ii) A and PA classical canonical conjugate variables
and iii) ω2 = ωq

2+e2A2 is an interaction term that introduces nonlinearity, ωq being a frequency.
The quantities mq and mcl are masses, corresponding to the quantum and classical systems,
respectively. As shown in Ref. (Kowalski, Martı́n, Nuñez, Plastino and Proto, 1998), in dealing
with Eq. (2.1) one faces an autonomous system of nonlinear coupled equations

d〈x̂2〉
dt = 〈L̂〉

mq
, d〈p̂2〉

dt = −mq ω
2〈L̂〉, d〈L̂〉

dt = 2
( 〈p̂2〉

mq
−mq ω

2〈x̂2〉
)

,
dA
dt = PA

mcl
, dPA

dt = −e2mq A〈x̂2〉,
(2.2)
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where L̂ = x̂p̂ + p̂x̂. The system of Eq. (2.2) follows immediately from Ehrenfest’s rela-
tions (Kowalski et al., 1998). To study the classical limit we also need to consider the classical
counterpart of the Hamiltonian given by Eq. (2.1)

H =
1

2

(
p2

mq
+

PA
2

mcl
+ mqω

2x2
)
, (2.3)

where all the variables are classical. Recourse to Hamilton’s equations allows one to find
the classical version of Eq. (2.2) (see Ref. (Kowalski et al., 1998) for further details). These
equations are identical in form to Eq. (2.2) after suitable replacement of quantum mean values
by classical variables, i.e., 〈x̂2〉 ⇒ x2, 〈p̂2〉 ⇒ p2 and 〈L̂〉 ⇒ L = 2xp. The classical limit is
obtained by letting the “relative energy”

Er =
E

I1/2ωq
→ ∞, (2.4)

(Er ≥ 1), where E is the total energy of the system and I is an invariant of the motion de-
scribed by the system of equations previously introduced (Eq. (2.2)), related to the Uncertainty
Principle

I = 〈x̂2〉〈p̂2〉 − 〈L̂〉2
4

≥ �
2

4
. (2.5)

A classical computation of I yields I = x2p2 −L2/4 ≡ 0. Thus, I vanishes when it is evaluated
using the classical variables A and PA, for all t, i.e. I(A,PA) = 0, a fact that exhibits the self-
consistency of our methodology. A measure of the degree of convergence between classical
and quantum results in the limit of Eq. (2.4) is given by the norm N of the vector Δu = u− ucl

(Kowalski et al., 1998)
NΔu = |u− ucl|, (2.6)

where the three components vector u = (〈x̂2〉, 〈p̂2〉, 〈L̂〉) is the “quantum” part of the solution of
the system defined by Eq. (2.2) and ucl = (x2, p2, L) its classical counterpart.
A detailed study of this model, was performed in Refs. (Kowalski et al., 1998; Kowalski et al.,
2002). The main results of these references, pertinent for our discussion, can be succinctly
detailed as follows: in plotting diverse dynamical quantities as a function of Er (as it grows
from unity to ∞), one finds an abrupt change in the system’s dynamics for a special value
of Er, to be denoted by Er

cl = 21.55264. From this value onwards, the pertinent dynamics
starts converging to the classical one. It is thus possible to assert that Er

cl provides us with an
indicator of the presence of a quantum-classical “border”. The zone

Er < Er
cl, (2.7)

corresponds to the semi-quantal regime investigated in Ref. (Kowalski et al., 2002). This
regime, in turn, is characterized by two different sub-zones (Kowalski et al., 2002). One of them
is an almost purely quantal one, in which the microscopic quantal oscillator is just slightly per-
turbed by the classical one, and the other section exhibits a transitional nature (semi-quantal).
The border between these two sub-zones can be well characterized by a relative energy value
Er

P = 3.3282. A significant feature of this point resides in the fact that, for Er ≥ Er
P , chaos is

always found. The relative number of chaotic orbits (with respect to the total number of orbits)
grows with Er and tends to unity for Er → ∞ (Kowalski et al., 2002).

International Journal of Applied Mathematics and Statistics

70



����� ����� ����� ����� �����
	��



	����

����

����

��



��

��
��
�
��
��

���
��
��

���� ���� ���� ���� ����
	���

	���

���

���

���

��

��
��
�
��
��

���
��
��

��� ��� ��� ��� ��

	��


	���

���

���

��


��

��
��
�
��
��

���
��
��

��� ��� ��� ��� ��

	��


	���

���

���

��


��

��
��
��
�

��
��
�

Figure 1: Poincaré surfaces of section: 〈L̂〉 vs. 〈x̂2〉, for E = 0.6, A(t = 0) = 0, mq = mcl =

ωq = e = 1. Er adopts the following values: a) 1, 0142 (“quantum-like” regime), b) 3, 5492

(semi-classical regime), c) 24, 2452 (convergence to the classical limit is noticeable), d) I = 0

(classical instance).

In Figs. 1 we plot Poincaré surfaces of section corresponding to 〈L̂〉 vs. 〈x̂2〉, for E = 0.6,
A(t = 0) = 0, mq = mcl = ωq = e = 1. In Fig 1.a (Er = 1, 0142) we can observe quasiperiodic
curves corresponding to the “quantum-like” regime. Fig. 1.b (Er = 3, 5492) corresponds to the
semi-classical regime in the transition zone. We can see chaotic areas and non chaotic areas
but with complex dynamics. Fig. 1.c (Er = 24, 2452) represents a case in the classical zone
where the convergence to the classical results (shown in Fig. 1.d) becomes noticeable. Figs.
1.c and 1.d show both a chaotic phase space unless isolated islands of stability.
Thus, as Er grows from Er = 1 (the “pure quantum instance”) to Er → ∞ (the classical situ-
ation), a significant series of morphology changes is detected, specially in the transition-zone
(Er

P ≤ Er ≤ Er
cl). The concomitant orbits exhibit features that are not easily describable in

terms of Eq. (2.6), which is a global measure of the degree of convergence in amplitude (of the
signal). What one needs instead is a statistical type of characterization, involving the notions of
entropy and statistical complexity (Kowalski, Martı́n, Plastino, Proto and Rosso, 2003; Kowal-
ski, Martı́n, Plastino and Rosso, 2005; Kowalski, Martı́n, Plastino and Rosso, 2007).
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3 Statistical complexity

The Statistical Complexity can be viewed as a functional C[P ] that characterizes the probability
distribution P associated to the time series generated by the dynamical system under study. It
quantifies not only randomness but also the presence of correlational structures (López-Ruiz
et al., 1995; Lamberti et al., 2004; Martı́n et al., 2003). This quantity introduced by López-Ruiz,
Mancini and Calbet is of the form (López-Ruiz et al., 1995)

CLMC [P ] = D[P ] ·H[P ] , (3.1)

where H is the normalized Shannon’s entropy and D[P ] is the so-called “disequilibrium” de-
fined as

D[P ] = D0

n∑
i=1

(
pi − 1

N

)2

, (3.2)

i.e. the quadratic distance of the probability distribution P ≡ {pi} to the equiprobability, i.e. to
the uniform distribution Pe ≡ {pi = 1/N}. D0 is a normalization constant such that 0 ≤ D ≤ 1,
given by

D0 = N/(N − 1) . (3.3)

In Ref. (Lamberti et al., 2004) an alternative definition of the LMC-ideas is implemented via a
quantifier

CJS [P ] = Q[P, Pe] ·HS [P ] , (3.4)

where, to the probability distribution P , we associate the normalized entropic measure HS [P ] =

S[P ]/Smax, with Smax = S[Pe] (0 ≤ HS ≤ 1). S stands for any entropic form. We take
here the disequilibrium Q to be defined in terms of the extensive Jensen divergence (Lamberti
et al., 2004) according to

Q ≡ QJ [P, Pe] = Q0{S[(P + Pe)/2]− S[P ]/2− S[Pe]/2}. (3.5)

with

Q0 = − 2

{(
N + 1

N

)
ln(N + 1)− 2 ln(2N) + lnN

}−1

, (3.6)

a normalization constant that makes 0 ≤ QJ ≤ 1.
This SCM-version is (i) able to grasp essential details of the dynamics, (ii) an intensive quantity,
and (iii) capable of discerning among different degrees of periodicity and chaos.
In the next Section we will show the results of applying both (3.1) and (3.4) to the quantum-
classical transition of Section 2, 1) by recourse to a wavelet analysis and 2) by employing
the Bandt and Pompe, permutational entropy approach (Bandt and Pompe, 2002; Bandt and
Shiha, 2007).

4 Results

In obtaining our numerical results we chose mq = mcl = ωq = e = 1 for the system’s param-
eters. For the initial conditions needed to tackle our system (Eq. (2.2)) we took E = 0.6, i.e.,
we fixed E and then varied I so as to obtain our different Er-values. We took 41 values of
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I. Additionally, we set 〈L〉(0) = L(0) = 0, A(0) = 0 (both in the quantum and the classical
instances). 〈x2〉(0) takes values in the interval x2(0) < 〈x2〉(0) ≤ 0.502, with x2(0) = 0.012.
A main task is that of ascertaining which is the probability distribution P to be employed in (3.1)
and (3.4). A possible option is that of performing a frequency-analysis or wave-decomposition.
Wavelet analysis (WA) is in general considered more convenient than recourse to a Fourier-
one, since the former provides adaptive time-frequency localization. Thus, WA is the better
approach of the two for describing non-periodic or non-quasiperiodic dynamics, which is our
case for almost all the Er−range (see Section 2), a situation that really makes Fourier a non
useful technique. A different option is that of symbolic coding, that will be discussed below. A
third possibility is a traditional histogram approach, but we do not consider it here. Exhaus-
tive comparison between the histogram’s approach and the Bandt and Pompe one has been
reported by Rosso et al. (Rosso, De Micco, Plastino and Larrondo, 2010).

4.1 Wavelet Analysis

Wavelet analysis (Mallat, 1999; Samar, Bopardikar, Rao and Swartz, 1999) is a method which
relies on the introduction of an appropriate basis and a characterization of the signal by the
amplitude-distribution in this basis. If the basis is required to be a proper orthogonal basis, any
arbitrary function can be uniquely decomposed and the decomposition can be inverted (Mallat,
1999; Samar et al., 1999). Wavelet analysis is a suitable tool for detecting and characterizing
specific phenomena in the time vs. frequency plane.
This method expresses our original time series in terms of a set Ψj,k(t) = 2j/2Ψ(2jt− k), with
j, k ∈ Z (the set of integers), of translations and scaling functions of a wavelet mother Ψ. In
the case that this family is an orthonormal basis for the space of finite-energy functions, the
concept of energy becomes linked with the usual notions derived from Fourier’s theory. In our
numerical analysis we use orthogonal cubic spline functions as the mother wavelet. Among
several alternatives the symmetric and orthogonal wavelet basis obtained from it has become
a recommendable tool for representing natural signals (Thevenaz, Blue and Unser, 2000).
The wavelet analysis is carried out over NJ , frequency resolution levels (denoted by index j,
Daubechies’ notation j = −NJ , · · · ,−1). The wavelet transform allows us a useful characteri-
zation of the signal (time series) by the amplitude distribution of the coefficients in the wavelet
basis (Mallat, 1999; Samar et al., 1999). The j-scale wavelet coefficients family set {Cj(k)}
could be interpreted as the local residual errors between successive signal approximations at
levels j and j + 1. It contains information on the signal S(t) corresponding to the frequencies
(2j − 1)ωs ≤ |ω| ≤ (2j)ωs, where ωs represent the sample frequency.
The energy associated with j-resolution wavelet level, is given by

εj =
∑
k

|Cj(k)|2 . (4.1)

Summing over all the available wavelet levels j we obtain the total energy

εtot =

−1∑
j=−NJ

εj . (4.2)
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Finally, we define the relative wavelet energy as

ρj = εj/εtot . (4.3)

The relative wavelet energy associated to the different frequency bands enables one to learn
about their relative degree of importance. This time-scale probability distribution of energy
across the frequency scales, P = {ρj}, constitutes a suitable tool for detecting and character-
izing specific phenomena in both time and frequency planes. Then, if one is in possession of
a probability distribution, the possibility of applying Information Theory allows us to evaluate
specific quantifiers like the Normalized Total Shannon Entropy and the Statistical Complexity
measures which could give additional information about the dynamical process under study.
The first task is to evaluate the wavelet energy probability distribution P = {ρi} to be employed
in (3.1) and (3.4). Our data points are the solutions of (2.2), from which we extract the values
of 〈x2〉 and the (classical) values of x2 at the time t (for a fixed Er) (We have also performed
these calculations extracting instead the quantities 〈p2〉 - p2 together with 〈L〉 - L, and obtained
thereby entirely similar results to those reported below). We will deal with 212 data-points,
for each orbit. We define eight (NJ = 8) resolution levels j = −1,−2, · · · ,−NJ for a multi-
resolution wavelet analysis.
We find, as first result, that both CLMC and CJS correctly distinguish the three well-known
physical zones or sections of our process, i.e., quantal, transitional, and classic, as delimited
by, respectively, Er

P and Er
cl. Notice please the abrupt change in the slope of the curve of

Figs. 2 taking place at Er
P , where a local minimum is detected for CLMC and CJS (Figs. 2).

The transition zone is clearly demarcated between that point and Er
cl. From there on CLMC

and CJS tend to their classical values at the same time that the quantum solutions of (2.2)
begin to converge towards the classical counterparts.
In the quantum-classic route, an important milestone is found at Er = EM

r . This point can be
detected, within the transition zone, at the value EM

r = 6, 8155, where an absolute maximum
can be appreciated (Figs. 2) for both CLMC and CJS .
There are however some transition-details that are not well represented by neither CLMC nor
CJS , that fail in trying to describe the quantal region. Here both the quantum zone and the
classical one should exhibit similar degrees of complexity, smaller than those for the transition
zone, as the pertinent dynamics are, respectively, quasiperiodic in the quantum instance (Fig.
1.a) and chaotic in the classic one (Fig. 1.c). In the phase space corresponding to the transition
zone coexist sectors of chaotic dynamics with others of more complex nature, neither chaotic
nor quasiperiodical (Fig. 1.b). In the classical zone CLMC and CJS are smaller than in the
transition zone, as one would expect. This is not always so in the quantum zone, that is, for all
Er. The CLMC description is better than the CJS one, as the latter diminishes for Er → 1, as it
should.
The quantal is the zone where one expects poor results from wavelet analysis, because there a
superposition of frequencies takes place. These difficulties will be overcome in the next Section
using the so-called Bandt and Pompe approach for evaluating the probability distribution P

associated to the time series under study, a symbolic technique.
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Figure 2: a) CLMC and b) CJS vs. Er. Both quantities evaluated by performing a wavelet-
band analysis. Three zones are to be differentiated, quantal, transition, and classical. They
are delimited by special Er values, namely, Er

P = 3.3282 and Er
cl = 21, 55264. Notice the

complexity maximum at the same Er value, EM
r � 6, 8155.

4.2 Bandt Pompe Approach

The symbolic methodology proposed by Bandt and Pompe (Bandt and Pompe, 2002) is based
on the details of the series time delay reconstruction procedure. Here, causal, dynamic infor-
mation should be expected to help getting better results. The essence of symbolic dynamics
is to associate a symbol sequence with each trajectory of a continuous or discrete dynamical
system, by means of a suitable partition of the state-space. The new symbolic series are ob-
tained by reordering the amplitude values of the original time series xi. Consider the sequence
of amplitude values associated to the time series xi with embedding dimension D > 1 and time
delay τ given by

xi �→
(
xi−(D−1)τ , xi−(D−2)τ , . . . , xi−τ , xi

)
. (4.4)

To each time i we are assigning a D-dimensional vector that results from the evaluation of
the time series at times i, i − τ, . . . , i − (D − 1)τ . Clearly, the greater the D value, the more
information about the past is incorporated into the ensuing vectors. By the ordinal pattern of
order D related to the time i we mean the permutation x̂i = (r0, r1, · · · , rD−1) of (0, 1, · · · , D−1)

defined by
xi−rD−1τ ≤ xi−rD−2τ ≤ · · · ≤ xi−r1τ ≤ xi−r0τ . (4.5)

In this way the vector defined by Eq. (4.4) is converted into a unique symbol x̂i. Further details
about the Bandt and Pompe method can be found in Ref. (Bandt and Shiha, 2007). For all the
D! possible permutations x̂i of order D, their associated relative frequencies can be naturally
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Figure 3: Statistical Complexities, a) CLMC and b) CJS vs. Er. We consider here the Symbolic
version. As in Fig. 2, we can observe the three zones of the process, quantal, transition, and
classical, delimited by Er

P = 3.3282 and Er
cl = 21, 55264, but only CJS attains a maximum in

the transition zone, now at EM
r = 8, 0904. The Jensen-Shannon Complexity CJS is smaller in

the quantal zone where the dynamics is quasiperiodic, and in the classical zone (where it is
chaotic), than in the transition zone of complex dynamics, as expected.

computed by

p(x̂i) =
�{i|1 + (D − 1)τ ≤ i ≤ N and i has ordinal pattern x̂i}

N − (D − 1)τ
, (4.6)

where � is the cardinality of the set—roughly speaking, the number of elements in it. Thus,
a permutation probability distribution Px = {p(x̂i), i = 1, . . . , D!} is obtained from the time
series xi. The probability distribution P is obtained once we fix the embedding dimension D

and the time delay τ . The former parameter plays an important role for the evaluation of the
appropriate probability distribution, since D determines the number of accessible states, D!,
and tells us about the necessary length N of the time series needed in order to work with
a reliable statistics. In particular, Bandt and Pompe (Bandt and Pompe, 2002) suggest for
practical purposes to work with 3 ≤ D ≤ 7.
Here the value D = 5 was selected. As we will deal with vectors with components of at least
N = 5000 data-points for each orbit, the condition N  D! is clearly satisfied. We take the
customary time delay τ = 1 (Bandt and Pompe, 2002). We find again, that both CLMC and
CJS distinguishes the three sections of our process, i.e., quantal, transitional, and classic. Also
for Er > Er

cl, CLMC and CJS tend to their classical values at the same time that the solutions
of Eq. (2.2) begin to converge towards the classical ones.
However, CLMC is no longer maximal within the transition zone and its performance becomes
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worse for the quantal one, where it attains maximal values (Fig. 3.a). Instead, CJS is maximal
where it should, i.e., within the transition zone. Moreover, CJS exhibits similar small values
in the quantum zone and in the classical one. More importantly, these values are clearly
smaller than those pertaining to the transition zone, overcoming thus the above mentioned
wavelet-associate anomaly (Fig. 3.b). Of course, the complexity cannot vanish neither in the
quantum zone, because we deal there with a frequency superposition (non-periodic dynamics),
nor in the classical one, due to the chaotic character of the associated motion (obviously,
chaotic and random are not equivalent concepts in this respect). The absolute maximum of
CJS is found within the transition region, at the value EM

r = 8, 0904 (Fig. 3.b), an Er−value
at which great alterations in the system’s dynamics ensue, indeed, in the solutions of (2.2)
(Kowalski et al., 2002). EM

r divides approximately into two sections the transitional region, one
in which the quantum-classical mixture characterizes a phase-space with more non-chaotic
than chaotic curves and other, in which this feature is reversed (Kowalski et al., 2002). We
thus find that the symbolic CJS− version optimizes the description of the quantum-classical
transition corresponding to the semiclassical model of Section 2.

5 Conclusions

In the present work we have studied the classical-quantal frontier problem by using two defini-
tions of the LMC notion of Statistical Complexity (López-Ruiz et al., 1995). We dealt with the
dynamics generated by a semi-classical Hamiltonian that represents the zero-th mode contri-
bution of a strong external field to the production of charged meson pairs (Cooper et al., 1998;
Kowalski et al., 2002).
Another central aspect is that of determining the correct probability distribution to be associated
to the pertinent time series, which was attempted via two quite different approaches, namely,
the analog wavelet analysis and the symbolic Bandt and Pompe approach.
We find, as first result, that by recourse to a wavelet analysis, both CLMC and CJS given by Eqs.
(3.1) and (3.4) correctly distinguish the three zones or sections of our process, i.e., quantal,
transitional, and classic, as delimited by, respectively, Er

P and Er
cl (Figs. 2). In both cases

the maximum maximorum lies within the transition zone. However, both representations fail to
adequately describe the quantal region, although the failure is less notorious in the CLMC−
instance (Fig. 2.a). These inadequacies are overcome only in the CJS case, by recourse
to the symbolic Bandt and Pompe approach. CJS correctly distinguishes and represents the
three zones of the quantum classical-transition (Fig. 3.b), characterized by a quasiperiodic
dynamics (quantal zone), a chaotic one (classical zone) and a transition region where one
detects coexistence of sectors of chaotic dynamics with others of a more complex nature,
neither chaotic nor quasiperiodical (Fig. 1.b). The Statistical Complexity maximum maximorum
lies at the transition zone, for EM

r = 8, 0904. This particular EM
r divides approximately into two

sections the transitional region, one in which the quantum-classical mixture characterizes a
phase-space with more non-chaotic than chaotic curves and other, in which this feature is
reversed (Kowalski et al., 2002).
Summing up, the symbolic CJS optimizes the phenomenal description of the physics governed
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by the Hamiltonian Eq. (2.1). The essential point is revealed here to be just how one ex-
tracts, from the pertinent time-series, the underlying probability distribution to be employed in
evaluating information-theoretic quantifiers.
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