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This work proposes a procedure for simultaneous parameters identifiability and estimation in metabolic networks in order to
overcome difficulties associatedwith lack of experimental data and large number of parameters, a common scenario in themodeling
of such systems. As case study, the complex real problem of parameters identifiability of the Escherichia coli K-12 W3110 dynamic
model was investigated, composed by 18 differential ordinary equations and 35 kinetic rates, containing 125 parameters. With the
procedure, model fit was improved for most of the measuredmetabolites, achieving 58 parameters estimated, including 5 unknown
initial conditions. The results indicate that simultaneous parameters identifiability and estimation approach in metabolic networks
is appealing, since model fit to the most of measured metabolites was possible even when important measures of intracellular
metabolites and good initial estimates of parameters are not available.

1. Introduction

The development of mathematical model for metabolic net-
works has been severely hampered by the lack of kinetic
information [1–4]. Usually, available experimental data are
obtained under different conditions using heterogeneous
techniques, whose choice must be done according to the
observation of a specific phenomenon of interest on the
pathways [2, 4–6]. In such systems, the type of experiment,
samplingmethod, and themathematical interpretation of the
data depend on the desired experimental information [5].
However, as pointed out by Costa et al. [4], kinetic infor-
mation presented in the literature about metabolic network
models is scarce and often confuse; thus, other strategies
are adopted in detriment to the dynamic simulation of such
systems.

Mathematically, metabolic networks are described by
complex dynamics models, whose structure is composed
by ordinary differential equations that represent mass bal-
ance of the substrate, biomass, products and intracellular
metabolites crucial on the pathways, and numerous reaction
rates regarding to the pathways. Such mathematical struc-
ture presents a large number of parameters, for which the
estimation procedure demands a considerable number of
experimental data. Since experimentally metabolic networks
are only partially observed, only a fraction of the intracellular
metabolites considered in the mathematical model can be
directly measured and thus initial conditions should also
be estimated. Unfortunately, in metabolic network systems,
lack of experimental data is almost unavoidable, which
compromises the reliability of reactions rates proposition and
makes the estimation of all parameters unfeasible.Thus, such
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problems often require the use of parameters identifiability
procedures.

Parameters identifiability procedures deal with ill-posed
parameters estimation problems, selecting a subset of param-
eters that can be estimated when the estimation of all param-
eters is not possible [7]. In most procedures, parameters
are ranked from most estimable to least estimable based on
the structure of the model, the experimental measurements
and their uncertainties, and the uncertainties of the initial
estimates [8].

Several studies reported in the literature addressing the
parameters identifiability in metabolic networks are exclu-
sively concentrated in the model structure, called structural
identifiability (e.g., Davidescu and Jørgensen [9]; Roper et al.
[10]; Nikerel et al. [11]), and do not take into account the
available experimental data. On other side, the practical
identifiability (e.g., Srinath and Gunawan [12]) investigates if
the available experimental data are appropriate and sufficient
for achieving a reliably estimation of the model parameters.

Although the structural identifiability is a necessary con-
dition, the practical identifiability must overcome additional
difficulties, including the selection of parameters with low
sensitivity on the model predictions and correlation among
parameters [13]. Unfortunately, such analyses in complex
models depend on the values of parameters [13], generally
unavailable [8].

Since sensitivity analysis is a key tool of identifiability
procedures, procedures that evaluate the identifiability only
based on initial parameters values can lead to a subset of
selected parameters whose estimation may lead to an ill-
posed problem [7]. A strategy to soften this problem is to
perform simultaneous parameters selection and estimation,
which ensures the estimation of the selected parameters (e.g.,
Secchi et al. [14], Wu et al. [15]; Wu et al. [16]; McLean et al.
[17]; Alberton et al. [18]).

Several procedures adopt as stop criterion the singularity
of FIM (Fisher Information Matrix) (e.g., Weijers and Van-
rolleghem [19]; Sandink et al. [20]; Li et al. [21]; Secchi et al.
[14]; Lund and Foss [22]; Thompson et al. [8]; Alberton
et al. [18]). The singularity of the FIM matrix, calculated
only with the selected parameters, indicates the point in
which estimation problem becomes ill-posed. When such
point is reached, the parameters selection is stopped and the
remaining parameters are admitted as nonidentifiable param-
eters. Particularly when identifiability performs simultaneous
parameters selection and estimation (e.g., Secchi et al. [14];
Wu et al. [15];Wu et al. [16]; McLean et al. [17]; Alberton et al.
[18]), it is not desirable to keep the remaining parameters
as nonidentifiable without evaluation of their estimation
potential, because the estimation problem is modified at each
selected parameter.

A great challenge to be overcame in identifiability proce-
dures, even those which include simultaneous estimation, is
that the nonselected parameters are evaluated based on their
initial estimates, which are probably inadequate. The litera-
ture addressesMonteCarlo techniques [23] and simultaneous
parameters reestimation for assuring well posed estimation
of the selected parameters (e.g., Secchi et al. [14], Wu et al.
[15]; Wu et al. [16]; McLean et al. [17]; Alberton et al. [18]).

As more proper, the evaluation of subsequent parameters
to be selected should be done based on the reestimated
selected parameters values [17, 18], reducing the dependence
on the initial parameters estimates. In an interesting work,
McLean et al. [17] developed an algorithm which allows
evaluating the identifiability of all parameters of the model;
such procedure reestimate selected parameters and use these
reestimated values in the selection of subsequent parameters
to be evaluated, with an intensive computational efforts. Also,
in the work of Alberton et al. [18], the reestimated values
are used in the selection of subsequent parameters to be
evaluated, but in such procedure the numerical efforts are
significantly reduced using a binary search based algorithm.

Another challenge is that, even when good initial esti-
mates of parameters values are available, in complex models
the verification for identifiability problems (e.g., nonsignif-
icant parameters or parameters correlation derived from
experimental design) is a conceptual and numerical arduous
task.

In such scenario, an important question to be answered
is how to reduce the dependence of identifiability procedure
with the initial estimates of parameters values and the
selection criteria adopted? In this context, this work presents
a numerical procedure for treating estimation problems
present in metabolic networks based on intensive parameters
evaluation that includes simultaneous parameters selection
and estimation. As the main characteristic, the numerical
procedure is able to investigate the identifiability of all param-
eters of the mathematical model, even in ill-posed estimation
problem. As in Alberton et al. [18], the numerical procedure
could be adapted to procedures proposed in literature for
ranking parameters according to their estimability (e.g.,
Weijers and Vanrolleghem [19]; Sandink et al. [20]; Brun
et al. [24]; Yao et al. [25]; Li et al. [21]; Secchi et al. [14]; Chu
and Hahn [23]; Sun and Hahn [26]; Lund and Foss [22]; Chu
et al. [27]). A complex dynamic model of the microorganism
Escherichia coli K-12 W3110 metabolic pathways [2] illus-
trates the performance of the proposed numerical procedure
in applications of interest. Such microorganisms are very
important in bioengineering and industrial microbiology,
being widely employed in processes of recombinant proteins
production.

2. Theoretical Backgrounds

A brief description of parameters estimation and identifiabil-
ity procedures is given below.

2.1. Parameters Estimation. Parameters estimation is achie-
ved by minimizing an objective function, which is a mea-
sure between the difference of the predicted model outputs
and experimental measurements. Parameters values can be
obtained according to maximum likelihood principle, as
extensively described in literature [28, 29]. Assuming that the
model is perfect, experiments are well done, experimental
errors follow normal distribution, and independent variables
are known with high accuracy, then the parameters can be
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estimated, according to the maximum likelihood principle,
by minimizing the following objective function [28, 29]:
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matrix, 𝑌
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the vector of model predicted values. Generally, only the
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to the difficulties to characterize experimental errors; thus,
the objective function becomes the weighted least square
function.

Once the parameters have been obtained, one can deter-
mine the uncertainties in the parameters and prediction.
Usually the parameters uncertainty is based on the param-
eters covariance matrix (𝑉Θ), which under some simplifying
assumptions contains geometrics characteristics of the confi-
dence region of the parameters.The terms along the diagonal
of the parameters covariance matrix represent the variability
of the parameters estimates, and off-diagonal terms indicate
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in which 𝜕𝑌/𝜕Θ represents the local sensitivity matrix 𝐵 [28,
29].

2.2. Parameters Identifiability. Estimation of all parameters
values may not be possible when unsatisfactory quantity
and/or quality of experimental data are available or when
bad model structure and/or inadequate design of experi-
ments were built, leading to nonsignificant or high-correlated
parameters with influence on model prediction.

A common approach to overcome this problem is the
use of parameters identifiability, also known as parameters
estimability [7, 8]. Based on structural model and avail-
able experimental data, parameters identifiability procedures
partition the original set of parameters into two subsets:
(i) the parameters that can be estimated, called identifiable
parameters, and (ii) the parameters that cannot be estimated,
called nonidentifiable parameters. In most procedures, the
identifiable parameters are ranked from most estimable to
least estimable and such parameters are estimated, while
the nonidentifiable parameters are kept at their initial esti-
mates. Thus, the comparison with the model fit before
and after applying the identifiability procedure is verified
by the improvement achieved with the selected parameters
reestimation.

A classical scheme employed by parameters identifiability
procedures is showed in Figure 1. Note that in the classical
scheme, the parameters estimation is carried out after the
procedure; thus the quality of the initial estimates of param-
eters values is fundamental for a suitable selection [18].

3. Numerical Procedure: Intensive
Parameters Evaluation

An important aspect of the classical identifiability procedures
is to keep the nonidentifiable parameters in their initial esti-
mates while the identifiable parameters are estimated. Since
estimation of all parameters is not possible, the estimation
of the most identifiable parameters can both regularize an
ill-posed estimation problem and simplify the associated
optimization problem [7]. Nonetheless, when parameters
selection in the classical procedure reached the stop criteria,
the remaining parameters are admitted as nonidentifiable.
However, it should be important to verify if the inclusion of
any other parameter is possible, in order to give the chance
of all parameters to be tested. It is especially important
because the parameters reestimation of the selected subset
may change all parameters values.Thus, changing parameters
values may allow the inclusion of other parameters, even
those that has already been tested, without success. Thus,
identifiability procedures with simultaneous parameters rees-
timation will require a high computational cost. For example,
in the procedure proposed by McLean et al. [17] [(𝑛𝑃(𝑛𝑃 +

1)/2) − 1] evaluations are necessary.
The proposed numerical procedure performs intensive

parameters evaluation regarding the identifiability and per-
forms the simultaneous estimation approach, based on the
one-by-one selection, as presented in Figure 2. The intensive
parameters evaluation presents the following basics steps:
(i) rank all parameters of the model, (ii) select the most
identifiable parameter, and (iii) reestimate the set of selected
parameters. If step (iii) is not successfully performed, an
additional step is introduced: (iv) remove the last evaluated
parameter and repeat steps (ii) and (iii) taking the next
most identifiable parameter, until step (iii) is successfully per-
formed; such evaluation is stopped only when all parameters
have been evaluated.

From of description in Figure 2, essentially three sets
are created: selected parameters Θ

(S), nonselected parame-
ters Θ

(NS), and evaluated parameters Θ
(E). Initially, all the

parameters are included in the set of nonselected parameters
Θ
(NS).Thus, this set of parameters is ranked according to their

apparent identifiability; in this paper, according to Yao et al.
[25], the apparent most estimable parameter is included in
the set of selected parameters and removed from the set of
nonselected parameters. A reestimation step for the selected
parameters is then performed. If the estimation is successfully
performed, then the nonselected parameters are ranked again
and the procedure is repeated. Otherwise, if the estimation
failed, or some numerical problem occurs, the last included
parameter must be removed from the set of selected param-
eters and transferred to the set of evaluated parameters Θ

(E).
The set of evaluated parameters Θ

(E) contains the parameters
that were not successfully performed in the set of selected
parameters.The procedure seeks to include the next apparent
most estimable parameter from Θ

(NS). If some parameter is
successfully included, then after the reestimation step, with
changed values of the selected parameters, the parameters
Θ
(E)may now become estimable; therefore, in case of succeed
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Experimental data Model

Parameters identifiability

Identifiable parameters Nonidentifiable parameters

Parameters estimation Kept at initial estimates

Initial estimates of the parameters values

Figure 1: Classical scheme of parameters identifiability procedures.
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and no numerical problems occurred)?
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2007; Sun and Hahn, 2006; Lund e Foss, 2008; Chu and Hahn, 2011) 
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Stop procedure. Identifiable parameters are the set of selected parameters
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Include all evaluated 
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Yes

No

parameters Θ(E) in the set of
nonselected Θ

(NS) parameters
and make the set Θ(E) as empty

Θ
(E) and Θ(NS) are empty?

Create a set of (i) selected parameters, initially empty (Θ(S)
= 𝜙); (ii) nonselected parameters,

initially containg all parameters (Θ(NS)
); and (iii) evaluated parameters, initially empty (Θ(E)

= 𝜙)

Calculate the rank order of nonselected parameters according to the chose criterion (Θ
(NS)

)

Include the most influential parameter in the set of selected parameters Θ(S)and remove it
from the set of nonselected parameters Θ(NS)

Remove the last included parameter from the set of selected parameters Θ(S) and include this
parameter in the set of evaluated parameters Θ(E)

Θ
(NS) is empty?

Figure 2: Numerical procedure proposed for parameter identifiability in metabolic networks.

reestimation, all parameters in the set Θ
(E) are transferred

to the set Θ
(NS) to be reevaluated in next iterations. The

procedure stops whenΘ
(NS) is empty; that is, there is nomore

parameter to be included in the set of selected parameters.
All the parameters have also been included in the set of Θ

(S)

or Θ
(E). Seeking to ensure evaluation of all parameters of the

model, the proposed procedure is based on the one-by-one
parameters selection that has a computational effort in the
worst case given as [𝑛𝑃(𝑛𝑃 + 1)/2].

The proposed numerical procedure for parameters iden-
tifiability is implemented in computational code Fortran
95. In this numerical procedure, two powerful packages of



BioMed Research International 5

Decreasing rank

No
Yes

Yes 

The question in each step is 

No

No

No

Yes 

Yes 

No

No Yes 

Yes No Yes 

No Yes 

No
Yes 

Selected parameters (the last included can be removed) 
Evaluated parameters (unsuccessfully included) 

𝜃1

𝜃1

𝜃2

𝜃2

𝜃3

𝜃1

𝜃1

𝜃1

𝜃1

𝜃1 𝜃1

𝜃1𝜃1

𝜃1

𝜃1

𝜃1

𝜃1

𝜃2

𝜃2

𝜃2

𝜃2

𝜃2 𝜃2

𝜃2𝜃2

𝜃2

𝜃2 𝜃2

𝜃2

𝜃3

𝜃3

𝜃1𝜃2 𝜃3

𝜃1𝜃2 𝜃3

𝜃3

𝜃3

𝜃3 𝜃3

𝜃1𝜃2𝜃3

𝜃3𝜃3

𝜃3

𝜃3

𝜃3

𝜃3

𝜃3

𝜙

· · ·
· · ·

FIM (Θ(S)
) is invertible and no numerical problems occurred?

nPSS = 1

nPSS = 1

nPSS = 1

nPSS = 2

nPSS = 2

nPSS = 2

nPSS = nP

nPSS = nP

nPSS = nP

Figure 3: Possibilities of numerical procedure for 3 parameters investigated; nP and nPSS represent, respectively, the number of parameters
and the number of succeeded selected parameters.

literature are employed:Dassl [30], used for solving algebraic-
differential equations, and Estima and Planeja [31], used for
estimate the parameters of the model; this last one adapted
by Alberton et al. [18] to deal complex models with scarce
experimental data.

In order to clarify the proposed procedure, Figure 3
illustrates a case with three parameters. The parameters are
ranked according to the adopted identifiability criteria (e.g.,
Weijers and Vanrolleghem [19]; Sandink et al. [20]; Brun et
al. [24]; Yao et al. [25]; Li et al. [21]; Secchi et al. [14]; Chu
and Hahn [23]; Sun and Hahn [26]; Lund and Foss [22];
Chu et al. [27]). According to the proposed procedure, the
first of the most relevant parameter of the rank is included
in the set of selected parameters, represented by the filled
squares in Figure 3.When adding such parameter to the set of
selected parameters two cases can arise: (i) the set of selected
parameters can be estimated, the selected parameter was
included with success; thus, the nonselected parameters are
reranked and the most relevant parameter of the rank should
be included in the set of selected parameters or (ii) the set of
selected parameters cannot be estimated simultaneously, the
last selected parameter is removed from the set of selected
parameters and added to the set of evaluated parameters,
represented by plaid squares in Figure 3; thus the next
parameter in the identifiability rank should be selected. Since
the total number of parameters is equal to 3, in the worst case
the number of required evaluations is 6.

Although the proposed procedure may still be affected by
the initial estimates, this dependency is strongly reduced due

to the steps of parameters reestimation [18, 23]. According to
Alberton et al. [18], a possible and natural alternative would
be the use of nondeterministic optimization methods before
or even during the identifiability procedures, such as Particle
Swarm Optimization (PSO) [32] or Genetic Algorithm (GA)
[33], to improve the initial parameters estimates. However,
the use of nondeterministic methods may not be advan-
tageous for complex metabolic network models, because
the range of parameters values must be carefully chosen,
otherwise, numerical problems associated with parameters
values very often do not allow the numerical simulation
of the model. Thus, for many random parameters values
generated by PSO or GA, parameters estimation could not
be successfully evaluated. For example, in this work, the PSO
as a previous step of parameters identifiability of the E. coli
K-12 W3110 metabolic network model was investigated, but
the numerical problems associatedwith themodel simulation
did not lead to any further significant improvement regarding
the initial estimates. Besides, such methods require too many
function evaluations of the metabolic network, since the
number of parameters to be estimated is high (131 parameters
in the case study).

The Yao et al. [25] methodology was adopted as criteria
for ranking the parameters according to their identifiability
potential; however, it is important to emphasize that other
ranking methodologies can be adopted. The Yao et al. [25]
identifiability is based on the sensitivity matrix 𝐵 and two
criteria for parameters selection: (i) parameters influence on
model prediction, length of sensitivity vector by Euclidian
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norm, and (ii) parameters correlations, linear dependence
among sensitivity vectors by Gram-Schmidt orthogonaliza-
tion method. Each column of matrix 𝐵 can be understood
as a sensitivity vector regarding each parameter. Generally,
normalized sensitivity matrix 𝐵

𝑁
as shown in (3) is employed

to avoid the influence of differentmagnitudes of variables and
parameters on the sensitivity analysis.

According to Yao et al. [25], the most identifiable param-
eter is the one with the highest Euclidian norm of the

sensitivity vector, that is, max
𝑗
‖𝑏
𝜃𝑗

‖. Thus, this procedure
proposes to include, in the set of selected parameters, one
parameter each time, according to the decreasing rank of the
sensitivity vectors norms. Moreover, since the vectors can
be linearly dependent, for every parameter included in the
set of selected parameters, an orthogonalization procedure
(Gram-Schmidt method) was performed over the matrix 𝐵,
in order to discount the influence of linear dependence with
the selected parameters
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As a previous analysis, the collinearity angle (∠)was eval-
uated among sensitivity vectors 𝑏

𝜃𝑖
and 𝑏
𝜃𝑗
, for all parameters

of the model, that is, (𝑏
𝜃𝑖
, 𝑏
𝜃𝑗

, 𝑖, 𝑗 = 1 ⋅ ⋅ ⋅ 𝑛𝑃), as presented in
the following equation [33]:
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) with ∠
𝑖,𝑗 ∈ [0, 𝜋] . (4)

As well-known from linear algebra, collinearity angles
values near 90∘ indicate linear independence between sen-
sitivity vectors while values near 0∘ or 180∘ indicate the
opposite. It is important to emphasize that ∠ is not a rigorous
analysis; correlation among parameters is only verified in
parameters pars. However, this analysis can be used in a
simple way to verify if correlation among pairs of parameters
is expected to occur.

4. Application: Metabolic Networks in
Large Scale Modeling

Metabolic networks models are employed for describing
enzymatic activity of microorganisms. In such processes,
series of sequential and parallel reactions take place, produc-
ingmetabolites. Palsson [3] and Steuer and Junker [1] present
detailed descriptions about the development of metabolic
networks models.

Despite the great variety of computational tools available
for assisting the development of such models, significant
challenges are encountered inmodeling living organisms and
their mechanisms [34]. The development of metabolic net-
worksmodels includes several steps whichmust interconnect

with each other, related to biological knowledge, experimen-
tal data acquirement, mathematical modeling, parameters
estimation, and model evaluation. A simplified scheme for
construction of metabolic networks models is presented in
Box 1.

Regarding step (1), Steuer and Junker [1] present several
databases that can be consulted for selecting all the reactions
that will be considered. Moreover, Copeland et al. [34]
present computational tools employed for this step.

In step (2), there are difficulties in collecting experimental
data from the literature. Besides, the experiments are time
and money consuming. In fact, in many metabolic reactions,
especially in the catabolic reactions and the reactions for
cells energy production, turnover rates are in the range
of 1.5–2.0 s−1. Such fast reactions make experiments with
manual operation unreliable to study the dynamics of intra-
cellular metabolite concentrations [5, 6]. This characteristic
of the microsystem seriously impairs the availability of
experimental data, since the choice of sampling times is
crucial to the quality of information that can be obtained
from experimental data.

In step (3), it is necessary to propose the set of possible
reactions that may occur. The application of Topological
Analysis (TA) and Flux Balance Analysis (FBA), together
with experimental data [35], will lead to a stoichiometric
matrix for the most relevant reactions that seems to occur.
Although computational tools are available for this step [34],
there are some arbitrary choices, which leads to a non-unique
results.

Regarding steps (4) and (5), it is important to emphasize
the possible use of databases, containing both models and
initial parameters values. Databases sources are presented by
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(1) Obtain all possible reactions
How? From database sources, a set of all possible reactions must be obtained.
Difficulties: Databases may not contain all the possible reactions involved. Biological knowledge is required.
(2) Collect experimental data
How? Experimental data can be obtained from the literature for similar systems or from laboratory experiments.
Difficulties:Hard to found literature data, or reported data very scarce. Laboratory experiments are
time and money consuming.
(3) Obtain the reactions that seems to occur
How? From experimental data, apply topological Analysis (TA) and Flux Balance Analysis (FBA), which demands
optimization but no parameters estimation.
Difficulties:The obtained results from the techniques TA and FBA above are not unique. Specific biological knowledge about
the system is required.
(4) Propose kinectic models
How? Typically, it is proposed expressions similar to Michaellis Menten kinetics or law of mass actions. Databases with typical
kinetic expressions can be useful.
Difficulties: Databases can not contain reactions involved. The modfications on Michalis Menten expressions can lead to
combinatorial explosion of possible models.
(5) Obtain initial parameters estimates
How? In the same databases from the previous step or from literature review for similar systems, an initial parameters
estimation can be obtained.
Difficulties:Here is one of the most difficult steps. In some cases, one can have no idea of possible parameters values.
(6) Employ parameters identification technique
Objective? Verify the most influence parameters.
Difficulties: Implement such methodologies. Also, different techniques can result in non unique results. Many can be very
influenced by the initial parameters estimation.
(7) Evaluate the results
If the results are satisfactory, then stop the procedure. Otherwise, perform Optimal Experimental Design.
Difficulties: It is very difficult to estabilish when is desirable to stop. Specially because the satisfactory parameters
uncerainties evaluation will demand an unfeasible number of experiments.
(8) Employ optimal experimental design
Objective? Obtain experimental regions for better parameters estimation or models discrimination. Return to Step (2).
Difficulties: Implement a methodology described in the literature.

Box 1: Sequence proposed for modeling metabolic systems, based on Wiechert and Graaf [35] and Steuer and Junker [1].

Steuer and Junker [1] and Copeland et al. [34]. Nevertheless,
such steps are themost difficult parts of the work, since, when
not found, initial estimates of parameters may become com-
pletely arbitrary. Gerdtzen et al. [36] address the complexity
at the pathway level and alert for the use of default models
for biochemical processes such as the Monod/Michaelis-
Menten rates with their generalization toward several sub-
strates, reversibility, and different mechanisms of inhibition.
Three major problems affect the parameters estimation of
metabolic networks: (i) when experimental data do not
present measures for all metabolites of interest, (ii) when
measurements of somemetabolites are not synchronizedwith
other metabolic measures over the sampling time, and (iii)
uncertain initial estimates of the parameters values; in many
cases, good initial estimates of parameters values (or even
possible ranges) are not known; thus, such values are usually
arbitrarily adopted [5].

Step (6) indicates the use of parameters identifiability
techniques. Since generally the experimental evidence is
insufficient, the estimation of all parameters seldom will be
possible [37]. Nevertheless, if parameters are set initially in
reasonable values, one can identify the most influent set
of parameters. It is important to emphasize that techniques

allowing parameters reestimation should be preferable, as
discussed in this work.

Steps (7) and (8) can be performed together. Since
estimation of all parameters will generally not be possible,
one interesting stop criterion is the experimental demand
for obtaining additional information. Using just simulated
results, one can verify if, for the optimal experimental design
conditions, the expected information to be obtained will jus-
tify performing additional experiments. If it seems reasonable
to perform more experiments, one should return to step (2),
performing experiments at the condition indicated by the
optimal experimental design techniques [38, 39].

From the uncertainties sources described above, discrep-
ancies are expected to occur between model predictions and
experimental results. Even so, the use of models can help
to choose experimental regions for performing experimental
tests where one can expect to achieve more information,
thus, saving experimental efforts which are time and money
consuming. As shown in this paper, it can be well performed
for large scale metabolic networks.

4.1. Case Study: Mathematical Model of Metabolic Net-
works in Large Scale—Escherichia coli K-12 W3110. Possibly,
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Escherichia coli is the most studied microorganism in the
literature. Even so, its metabolic networks are not com-
pletely observable. For different experimental conditions,
there are several infrequent or absent measures of intracel-
lular metabolites. Thus, some studies have focused on the
development of kinetic model for metabolic network for this
microorganism (e.g., Chassagnole et al. [2]; di Maggio et al.
[40]; Degenring [41]; Usuda et al. [42]).

Particularly, E. coliK-12W3110 to be wild type (wt) corre-
sponds to standard strain that can be genetically manipulated
allowing a large range of applications, such as: (i) phar-
maceutical, recombinants proteins, vaccines, and serums,
(ii) genetic medicine, (iii) environmental, biomarkers and
pollution-fighting, and (v) energetic, biodiesel, oils, and
others. E. coli is able to metabolize a large variety of compo-
nents (e.g., carbohydrates, proteins, amino acids, lipids, and
organics acids), produce catalase, and also utilize a variety
of sources (e.g., glucose, ammonia, and nitrogen). Besides,
E. coli grows in large concentrations allowing fermentative
processes of high yield [43].

Regarding parameters identifiability in E. coli, di Maggio
et al. [40] used global sensitivity analysis proposed by Sobol’
[44] to determine the most influential parameters on the
dynamics of the central carbonmetabolism of this bacterium,
based on the model proposed by Chassagnole et al. [2]. di
Maggio et al. [40] concluded that twelve kinetic parameters
were the most influential for the model predictions. These
parameters represent maximum reaction rates, inhibition,
and half-saturation constants. Their identification and later
estimation provide the starting points for the manipulation
of certain enzyme properties [40].

Large scale metabolic network of the glycolysis, the pent-
ose-phosphate-pathway, and the phosphotransferase system
of E. coli K-12 W3110 (Figure 4) [40] consists of a com-
plex mathematical structure with 18 dynamic mass balance
equations, (5) to (22) presented below, 7 additional algebraic
equations, (A.1) to (A.7), and 30 kinetic rate expressions,
(A.8) to (A.37) [2]. Some enzyme kinetics modifications were
introduced by di Maggio et al. [40] as the kinetic expression
for the activity of phosphofructokinase was taken from Ricci
[45] (see (A.12)) and the activity of glucose-6-phosphate
dehydrogenase was modeled by the expression proposed by
Ratushny et al. [46] (see (A.13)).

Mass Balances to the Substrate (See (5)) and Intracellular
Metabolites (See (6)–(22))

glucose: glc

𝑑𝐶
extracellular
glc

𝑑𝑡
= 𝐷 (𝐶

feed
glc − 𝐶

extracellular
glc ) + 𝑓pulse −

𝐶𝑥𝑟PTS
𝜌
𝑥

,

(5)

glucose-6-phosfato: g6p

𝑑𝐶g6p

𝑑𝑡
= 𝑟PTS − 𝑟PGI − 𝑟G6PDH − 𝑟PGM − 𝜇𝐶g6p, (6)

fructose-6-phosphate: f6p

𝑑𝐶f6p

𝑑𝑡
= 𝑟PGI − 𝑟PFK + 𝑟TKb + 𝑟TA − 2𝑟MurSynth − 𝜇𝐶f6p, (7)

fructose-1,6-biphosphate: fdp

𝑑𝐶fdp

𝑑𝑡
= 𝑟PKF − 𝑟ALDO − 𝜇𝐶fdp, (8)

glyceraldehyde-3-phosphate: gap

𝑑𝐶gap

𝑑𝑡
= 𝑟ALDO + 𝑟TIS − 𝑟GAPDH + 𝑟TKa

+ 𝑟TKb − 𝑟TA + 𝑟TrpSynth − 𝜇𝐶gap,

(9)

dihydroxyacetonephosphate: dhap

𝑑𝐶dhap

𝑑𝑡
= 𝑟ALDO − 𝑟TIS − 𝑟G3PDH − 𝜇𝐶dhap, (10)

1,3-diphosphoglycerate: pgp

𝑑𝐶pgp

𝑑𝑡
= 𝑟GAPDH − 𝑟PGK − 𝜇𝐶pgp, (11)

3-phosphoglycerate: 3pg

𝑑𝐶
3pg

𝑑𝑡
= 𝑟PGK − 𝑟PGGluMu − 𝑟SerSynth − 𝜇𝐶

3pg, (12)

2-phosphoglycerate: 2pg

𝑑𝐶2pg

𝑑𝑡
= 𝑟PGluMu − 𝑟ENO − 𝜇𝐶

2pg, (13)

phosphoenolpyruvate: pep

𝑑𝐶pep

𝑑𝑡
= 𝑟ENO − 𝑟PK − 𝑟PTS − 𝑟PEPCxylase

− 𝑟DAHPS − 𝑟Synth1 − 𝜇𝐶pep,

(14)

pyruvate: pyr

𝑑𝐶pyr

𝑑𝑡
= 𝑟PK + 𝑟PTS − 𝑟PDH − 𝑟Synth2

+ 𝑟MetSynth + 𝑟TrpSynth − 𝜇𝐶pyr,

(15)

6-phosphogluconate: 6pg

𝑑𝐶
6pg

𝑑𝑡
= 𝑟G6PDH − 𝑟PGDH − 𝜇𝐶6pg, (16)

ribulose-5-phosphate: ribu5p

𝑑𝐶ribu5p

𝑑𝑡
= 𝑟PGDH − 𝑟Ru5P − 𝑟R5PI − 𝜇𝐶ribu5p, (17)
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Figure 4: Escherichia coli central carbon metabolism [2].

xylulose-5-phosphate: xyl5p

𝑑𝐶xyl5p

𝑑𝑡
= 𝑟Ru5P − 𝑟TKa − 𝑟TKb − 𝜇𝐶xyl5p, (18)

sedoheptulose-7-phosphate: sed7p

𝑑𝐶sed7p

𝑑𝑡
= 𝑟TKa − 𝑟TA − 𝜇𝐶sed7p, (19)

ribose-5-phosphate: rib5p

𝑑𝐶rib5p

𝑑𝑡
= 𝑟R5PI − 𝑟TKa − 𝑟RPPK − 𝜇𝐶rib5p, (20)

erythrose-4-phosphate: e4p

𝑑𝐶e4p

𝑑𝑡
= 𝑟TA − 𝑟TKb − 𝑟DAHPS − 𝜇𝐶e4p, (21)

glucose-1-phosphate: g1p

𝑑𝐶glp

𝑑𝑡
= 𝑟PGM − 𝑟GIPAT − 𝜇𝐶glp. (22)

As usual, the values of initial estimates used here were
found in the literature [40]. Experimental data employed in
this work were obtained in Hoque et al. [43] throughout a
time horizon of 300 seconds. Temporal profiles for glucose
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Table 1: Parameters pars of the E. coli K-12 W3110 metabolic
networks with critical collinearity angles values.

Parameters par Collinearity angle (∘)
𝐾PTS,1 − 𝐾PTS,3 0.5
𝐾ALDO,eq − 𝑟

max
TIS 175.3

𝐾GAPDH,nad − 𝐾PGK,eq 176.5
𝐾GAPDH,eq − 𝐿PK 179.5
𝐾PK,amp − 𝑟

max
PGM 176.5

𝐾GIPAT,glp − 𝐾GIPAT,atp 179.3
𝐾PK,amp − 𝑟

max
Ser,Synth 2.5

𝐾PK,fdp − 𝐾Synth1,pep 0.0
𝑛DAHPS,pep − 𝐾ALDO,fdp 179.3
𝐾GAPDH,eq − 𝐾G6PDH,tgn 2.5
𝐿PK − 𝐾G6PDH,tgn 177.4
𝐾PGDH,atp − 𝐾G1PAT,g1p 2.4
𝐾PGDH,atp − 𝐾G1PAT,atp 1.6
𝐾PGDH,atp − 𝐾PGDH,nadp 177.5
𝐾TA,eq − 𝐾G1PAT,g1p 2.3
𝐾TA,eq − 𝐾G1PAT,atp 1.5
𝐾TA,eq − 𝐾PGDH,atp 0.7
𝑟
max
PTS − 𝐾G6PDH,dt 175.2

𝑟
max
PGDH − 𝐾GAPDH,nad 177.6

(glc), dihydroxyacetonephosphate (dhap), erythrose-4-phos-
phate (e4p), pyruvate (pyr), fructose-1,6-diphosphate (fdp),
ribose-5-phosphate (rib5p), ribulose-5-phosphate (ribu5p),
2-phosphoglycerate (2pg), phosphoenolpyruvate (pep), gly-
ceraldehyde-3-phosphate (gap), glucose-6-phosphate (g6p),
fructose-6-phosphate (f6p), and 6-phosphogluconate (6pg)
were used for parameters identifiability.

As a previous analysis, the collinearity angle among
sensitivity vectors for all parameters of the model were
calculated, and the frequency of each angle interval is shown
in Figure 5.The results indicate high frequency of parameters
pars linearly independents (collinearity angles values approx-
imately 90∘), in this way Table 1 presents few parameters pars
with critical collinearity angles values that do not expect to be
selected until a first successfully performed selection.

Fifty eight parameters have been identified, together with
five initial conditions of metabolites concentrations which
were not known from experimental data (pgp = 1.215 ×

10
−5, 3pg = 1.911, xyl5p = 1.564, sed7p = 4.085 × 10

−2,
and g1p = 6.500 × 10

−2). In metabolic networks, the initial
conditions of intracellular metabolites are very important. It
is not recommended to keep initial conditions of unknown
metabolites at zero, because numerical problems in model
integration can occur or predicted values can become
unreliable. In such situations, the initial concentrations of
unknown metabolites must be estimated together with the
parameters. In order to obtain a first initial estimates of non-
measured intracellular metabolites, the following procedures
were employed in this paper: (i) initially, keep the initial
concentrations of nonmeasured intracellular metabolites at
zero and simulate themodel until next integration point (first
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Figure 5: Collinearity angles among sensitivity vectors 𝑏
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and 𝑏
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for all parameters of the E. coli K-12 W3110 metabolic networks.

numerical integration step must be small), and (ii) take the
calculated values for the nonmeasured intracellular metabo-
lites concentrations as initial conditions; the information
obtained in (ii) is given as initial estimates of concentrations
of nonmeasured intracellularmetabolites in the identifiability
procedure.

Numerical results for the proposed procedure are pre-
sented in Figure 6 and Table 2, comparing the model sim-
ulation with initial parameters estimates from the literature
[40] and reestimated parameters according to the intensive
parameters evaluation.

Figure 6 demonstrates the improvement of the model
prediction by using the proposed procedure of parame-
ters identifiability. Unfortunately, model limitations and few
experimental data impose some insurmountable barriers
to identifiability procedures. Thus, some metabolites did
not change after applying the identifiability procedure. In
this way, the 10 metabolites profiles that were significantly
improved after the identifiability procedure are presented.
Since the model fits reasonably the experimental data, it can
be concluded that the parameters selection was performed
with relatively good success. A special attention should be
given to Figures 6(b), 6(d), and 6(f) for which the mathe-
matical model behavior using initial estimates of parameters
values is not able to follow the tendency of the experimental
data. For these cases, the initial estimates of parameters values
showed to be inadequate.

Table 2 presents the estimated parameters together with
the initial estimates and their normalized standard devia-
tions, calculated as the ratio between the standard devia-
tion of the parameter and its estimated value (𝜎𝜃/𝜃). As
important information of the identifiable parameters, the low
normalized relative deviations obtained after the numerical
procedure indicates a good quality of the estimated val-
ues. Analyzing the parameters estimated values, it is found
that initial estimates of the parameters were significantly
improved. It is important to emphasize that the estimates
of the selected parameters can be significantly influenced
by the initial estimates of the nonselected parameters. Thus,
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Table 2: Identifiable parameters of the E. coli K-12 W3110 metabolic networks obtained using the numerical procedure for intensive
parameters evaluation.

Parameter Initial estimate Estimated value Normalized standard deviation
𝐾PTS1 3082.300 3683.300 0.060
𝑟
max
PDH 4.010 0.529 0.015

𝑟
max
ALDO 30.423 1.593 0.081

𝑟
max
G6PDH 12.873 8.476 0.041

𝐾R,pep 750.000 0.541 0.051
𝑟
max
GAPDH 500.000 0.381 0.021

𝐾PEPCxylase,fdp 0.700 0.469 0.028
𝐾R5P,eq 1.400 0.647 0.064
𝑛PEPCxylase,fdp 4.000 8.795 0.041
𝑟
max
PK 0.567 0.140 0.069

𝑛PDH 1.000 7.237 0.028
𝐾PGI,f6p2 0.200 1.271 0.037
𝑘tgn 1.000 4.152 0.075
𝐾G3PDH,dhap 1.000 19.076 0.110
𝑟
max
TA 8.461 4.051 0.051

𝑘hdt 0.100 0.099 0.038
𝐾PGI,g6p 0.400 0.060 0.101
𝐾PGI,f6p 0.266 1.956 × 10

−4 0.115
𝐾TKA,eq 0.120 6.289 0.050
𝐾PGLUMU,2pg 0.369 1.105 0.039
𝐾R5PI,eq 4.000 4.182 0.052
𝑟
max
TKA 7.372 1.461 0.069

𝑟
max
RU5PI 5.182 0.100 0.054

𝑟
max
R5PI 3.733 1.366 0.019

𝑟
max
PFK 1.967 0.382 0.057

𝐾PGI,g6p2 0.200 0.272 0.193
𝐿PK 1.000 785.758 0.070
𝐾Synthesis1,pep 1.000 0.361 0.053
𝐾PEPCxylase,pep 4.070 5.731 0.038
𝑛DAHPS,e4p 2.600 3.501 0.022
𝑛DAHPS,pep 2.200 3.455 0.032
𝑒
 0.999 1.057 0.054

𝐾T,pep 0.750 0.630 0.122
𝐾GAPDH,nadh 1.090 4.752 0.027
𝐾PGK,3pg 0.473 2.326 0.077
𝑛PK 4.000 1.582 0.030
ℎhdt 4.000 0.584 0.136
𝐾TIS,gap 0.300 0.567 0.050
ℎtgn 2.000 9.169 0.057
𝑛G1PAT,fdp 2.000 5.993 0.084
𝐸 0.990 0.114 0.078
𝐾TA,eq 1.050 2.583 0.054
𝐾PGLUMU,3pg 0.200 0.084 0.035
𝜃 1.000 1.506 0.065
𝐾T,adp 1.300 1.145 0.123
𝐾TIS,dhap 2.800 7.830 0.057
𝑟
max
PTS 82107.310 1.876 0.070

𝐾PGLUMU,eq 0.187 0.626 0.066
𝑛PTS,g6p 4.000 0.443 0.037
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Table 2: Continued.

Parameter Initial estimate Estimated value Normalized standard deviation
𝐾PTS,g6p 0.393 0.366 0.080
𝐾PKA,adp 0.260 0.208 0.063
𝐾PKA,adp 0.400 0.455 0.056
𝐾GAPDH,nad 0.252 0.093 0.070
𝐾ALDO,gap2 1.200 0.240 0.125
𝐾PK,atp 22.500 1.483 0.062
𝐾PGDH,6pg 5.449 3.597 0.051
𝑟
max
PGLUMU 96.972 0.749 0.063

𝑟
max
PGDH 5.221 0.597 0.036

more adequate parameters values can be obtained when a
large experimental dataset is available, allowing estimating
all parameters of the mathematical model. Using the pro-
posed numerical procedure, the objective function was also
improved in two orders of magnitude relative to the initial
estimates. The results are also dependent on the assumed
behavior of experimental uncertainties. It is usual to assume
the standard deviation of the dependent variable (𝜎

𝑦𝑖
) to be

proportional to its value (𝑦
𝑖
) in the form

𝜎
𝑦𝑖

= 𝑎 ⋅ 𝑦
𝑖
+ 𝑏, (23)

where 𝑎 and 𝑏 are generally arbitrarily chosen. For example,
for 𝑎 = 1 × 10

−1 and 𝑏 = 1 × 10
−5, the initial value of the

objective function was 1.56 × 10
4 and reduced to 3.06 × 10

3

after reestimation. For 𝑎 = 1 × 10
−2 and 𝑏 = 1 × 10

−6, the
initial value of the objective function was 3.89 × 10

7 and
reduced to 3.06 × 10

5 after parameters reestimation. The
set of selected parameters was not the same in both cases;
nevertheless, the prediction was similar. The dependence
of parameters estimation performance on the assumed
experimental uncertainties is expected even for well posed
problems. It is important information, but generally it is
neglected and arbitrarily chosen due to the difficulties
involved in characterizing the experimental errors.

Even with so much uncertainties, associated to exper-
imental data, modeling development and some unknown
initial conditions, it has been shown that it is possible
to fit and/or improve model predictions with parameters
identifiability procedures. The model can now be used for
predicting the experimental behavior of the system. Besides
its uncertainties, it can help to give us an idea about
what we should expect in experimental regions, delimiting
experimental design for further investigations, among other
purposes. Naturally, for more accurate results, some predic-
tions should be confirmed by additional experiments in the
experimental regions of greater interest.

Comparing the performance of the proposed numerical
procedure with similar procedure but stopping the selec-
tion when the last selected parameter was not successfully
included, only 63 parameters have been selected, and the
objective function was around 5 times greater compared with
the results obtained with the algorithm presented in Figure 2.
It emphasizes the necessity to investigate all parameters in

order to improve final results and not to stop the procedure
when the first parameter have failed to be included.

In the procedure proposed in previous work [18], subsets
of parameters were included at once, and if the estimation
of such subset was possible, this subset could not leave
the set of selected parameters. Thus, if a set of parameters
has been successfully estimated, the orthogonalization step
(for discount parameters influence one each other) was
not performed between such parameters. In the procedure
presented in this work, one parameter is selected each time,
and orthogonalization step between the selected parameters
and yet unselected parameters is performedmuchmore times
than in previous work [18]. Although not assured by the
model nonlinearities, one can expect that the present proce-
dure should lead to better results, despite being more time
consuming, since it performs a more thorough investigation
regarding the parameters correlation. In fact, the objective
function obtained in this work divided by the objective
function of previous work [18] was 0.15, indicating a good
improvement in prediction performance.

It is important to emphasize that, for this application,
the improvement in the prediction quality was observed with
estimation of only half of the model parameters, being the
numerical procedure performed using unknown values for
some initial conditions of the dependent variables. Thus, in
similar scenarios, a great merit of the parameters identifiabil-
ity procedure is to select only the most influential parameters
on the mathematical model that can be estimated with the
available experimental data.

5. Conclusion

In this work, a large scale ill-posed problem of param-
eters estimation in metabolic networks was investigated,
where experimental data are scarce and concentrations of
intracellular metabolites are not completely known. A pro-
posed procedure of intensive parameters evaluation that
presents simultaneous parameters selection and estimation
was successfully applied to solve this problem. Compared
in pairs, few parameters seem to be correlated, as revealed
by collinearity angles. From the initial scenario, containing
131 parameters and 5 unknown initial conditions of intracel-
lular metabolites concentrations, the procedure was able to
identify 58 parameters, together with the 5 initial conditions
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Figure 6: Experimental and predictedmetabolites concentrations as function of the time: (I) experimental value, (--) predicted value using
initial estimates, and (-e-) predicted value after parameter identifiability using model of E. coli K-12 W3110 metabolic networks.



14 BioMed Research International

Table 3: Kinetics parameters.

Enzyme Parameter Description

Phosphotransferase system: PTS

𝐾PTS1 M–M half-saturation constant (mM)
𝐾PTS2 Constant (mM)
𝐾PTS3 Constant
𝐾PTS,g6p Inhibition constant (mM)
𝑛PTS,g6p Constant
𝑟
max
PTS Maximum reaction rate (mM s−1)

Phosphoglucoisomerase: PGI

𝐾PGI,g6p M–M half-saturation constant (mM)
𝐾PGI,f6p Inhibition constant (mM)
𝐾PGI,eq Equilibrium constant
𝐾PGI,g6p,6pg,inh Inhibition constant (mM)
𝐾PGI,f6p,6pg,inh Inhibition constant (mM)
𝑟
max
PGI Maximum reaction rate (mM s−1)

Phosphofructokinase: PFK

𝐾PFK,f6p,s M–M half-saturation constant (mM)
𝐾PFK,atp,s M–M half-saturation constant (mM)
𝐾PFK,adp,a Activation constant (mM)
𝐾PFK,adp,b Activation constant (mM)
𝐾PFK,adp,c Activation constant (mM)
𝐾PFK,amp,a Activation constant (mM)
𝐾PFK,amp,b Activation constant (mM)
𝐾PFK,pep Inhibition constant (mM)
𝐿PFK Allosteric constant
𝑛PFK Number of binding sites
𝑟
max
PFK Maximum reaction rate (mM s−1)

Aldolase: ALDO

𝐾ALDO,fdp M–M half-saturation constant (mM)
𝐾ALDO,dhap M–M half-saturation constant (mM)
𝐾ALDO,gap M–M half-saturation constant (mM)
𝐾ALDO,gap,inh Inhibition constant (mM)
𝑉ALDO,blf Back-forward reaction rate relation
𝐾ALDO,eq Equilibrium constant (mM)
𝑟
max
ALDO Maximum reaction rate (mM s−1)

Triosephosphate isomerase: TIS

𝐾TIS,dhap M–M half-saturation constant (mM)
𝐾TIS,gap M–M half-saturation constant (mM)
𝐾TIS,eq Equilibrium constant
𝑟
max
TIS Maximum reaction rate (mM s−1)

Glyceraldehyde-3-phosphate
dehydrogenase: GAPDH

𝐾GAPDH,gap M–M half-saturation constant (mM)
𝐾GAPDH,pgp Inhibition constant (mM)
𝐾GAPDH,nad M–M half-saturation constant (mM)
𝐾GAPDH,nadh Inhibition constant (mM)
𝐾GAPDH,eq Equilibrium constant
𝑟
max
GAPDH Maximum reaction rate (mM s−1)

Phosphoglycerate kinase: PGK

𝐾PGK,pgp M–M half-saturation constant (mM)
𝐾PGK,3pg Inhibition constant (mM)
𝐾PGK,adp M–M half-saturation constant (mM)
𝐾PGK,atp Inhibition constant (mM)
𝐾PGK,eq Equilibrium constant
𝑟
max
PGK Maximum reaction rate (mM s−1)
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Table 3: Continued.

Enzyme Parameter Description

Phosphoglycerate mutase: PGluMu

𝐾PGluMu,3pg M–M half-saturation constant (mM)
𝐾PGluMu,2pg Inhibition constant (mM)
𝐾PGluMu,eq Equilibrium constant
𝑟
max
PGluMu Maximum reaction rate (mM s−1)

Enolase: ENO

𝐾ENO,2pg M–M half-saturation constant (mM)
𝐾ENO,pep Inhibition constant (mM)
𝐾ENO,eq Equilibrium constant
𝑟
max
ENO Maximum reaction rate (mM s−1)

Pyruvate kinase: PK

𝐾PK,pep M–M half-saturation constant (mM)
𝐾PK,adp M–M half-saturation constant (mM)
𝐾PK,atp Inhibition constant (mM)
𝐾PK,fdp Activation constant (mM)
𝐾PK,amp Activation constant (mM)
𝐿PK Allosteric constant
𝑛PK Number of binding sites
𝑟
max
PK Maximum reaction rate (mM s−1)

Pyruvate dehydrogenase: PDH
𝐾PDH,pyr M–M half-saturation constant (mM)
𝑛PDH Number of binding sites
𝑟
max
PDH Maximum reaction rate (mM s−1)

Phoenolpyruvate carboxylase: PEPCxylase

𝐾PEPCxylase,pep M–M half-saturation constant (Mm)
𝐾PEPCxylase,fdp Activation constant (mM)
𝑛PEPCxylase,fdp Number of binding sites
𝑟
max
PEPCxylase Maximum reaction rate (mM s−1)

Phosphoglucomutase: PGM

𝐾PGM,g6p M–M half-saturation constant (mM)
𝐾PGM,g1p Inhibition constant (mM)
𝐾PGM,eq Equilibrium constant
𝑟
max
PGM Maximum reaction rate (mM s−1)

Glucose-1-phosphate
adenyltransferase: G1PAT

𝐾G1PAT,g1p M–M half-saturation constant (mM)
𝐾G1PAT,atp M–M half-saturation constant (mM)
𝐾G1PAT,fdp Activation constant (mM)
𝑛G1PAT,fdp Number of binding sites
𝑟
max
G1PAT Maximum reaction rate (mM s−1)

Ribose phosphate
pyrophosphokinase: RPPK

𝐾RPPK,rib5p M–M half-saturation constant (mM)
𝑟
max
RPPK Maximum reaction rate (mM s−1)

Glycerol-3-phosphate
dehydrogenase: G3PDH

𝐾G3PDH,dhap M–M half-saturation constant (mM)
𝑟
max
G3PDH Maximum reaction rate (mM s−1)

Serine synthesis: SerSynth 𝐾SerSynth,3pg M–M half-saturation constant (mM)
𝑟
max
SerSynth Maximum reaction rate (mM s−1)

DAHP synthase: DAHPS

𝐾DAHPS,e4p M–M half-saturation constant (mM)
𝐾DAHPS,pep M–M half-saturation constant (mM)
𝑛DAHPS,e4p Number of binding sites
𝑛DAHPS,pep Number of binding sites
𝑟
max
DAHPS Maximum reaction rate (mM s−1)

Glucose-6-phosphate
dehydrogenase: G6PDH

𝐾G6PDH,g6p M–M half-saturation constant (mM)
𝐾G6PDH,nadp M–M half-saturation constant (mM)
𝐾G6PDH,nadph,nadph,inh Inhibition constant (mM)
𝐾G6PDH,nadph,g6ph,inh Inhibition constant (mM)
𝑟
max
G6PDH Maximum reaction rate (mM s−1)
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Table 3: Continued.

Enzyme Parameter Description

6-Phosphogluconate
dehydrogenase: PGDH

𝐾PGDH,6pg M–M half-saturation constant (mM)
𝐾PGDH,nadp M–M half-saturation constant (mM)
𝐾PGDH,nadph,inh Inhibition constant (mM)
𝐾PGDH,atp,inh Inhibition constant (mM)
𝑟
max
PGDH Maximum reaction rate (mM s−1)

Ribulose phosphate epimerase: RU5P 𝐾RU5P,EQ Equilibrium constant (mM)
𝑟
max
RU5PI Maximum reaction rate (mM s−1)

Ribose phosphate isomerase: R5PI 𝐾R5PI,eq Equilibrium constant (mM)
𝑟
max
R5PI Maximum reaction rate (mM s−1)

Transketolase a: TKa 𝐾TKa,eq Equilibrium constant (mM)
𝑟
max
TKa Maximum reaction rate (mM s−1)

Transketolase b: TKb 𝐾TKb,eq Equilibrium constant (mM)
𝑟
max
TKb Maximum reaction rate (mM s−1)

Transaldolase: TA 𝐾TA,eq Equilibrium constant (mM)
𝑟
max
TA Maximum reaction rate (mM s−1)

Synthesis 1: Synth1 𝐾Synth1,pep M–M half-saturation constant (mM)
𝑟
max
Synth1 Maximum reaction rate (mM s−1)

Synthesis 2: Synth2 𝐾Synth2,pyr M–M half-saturation constant (mM)
𝑟
max
Synth2 Maximum reaction rate (mM s−1)

Mureine synthesis: MurSynth 𝑟
max
MurSynth Maximum reaction rate (mM s−1)

Tryptophan synthesis: TrpSynth 𝑟
max
TrpSynth Maximum reaction rate (mM s−1)

Methionine synthesis: MetSynth 𝑟
max
MetSynth Maximum reaction rate (mM s−1)

of intracellularmetabolites concentrations.The simultaneous
reestimation step reduced the dependence on the initial
parameters estimates, allowing a good fit of the model. The
robustness of the applied procedure is certainly an appealing
feature for metabolic networks problems.

Appendix

Time Correlations for Cometabolites Concentrations [2]

Adenosintriphosphate: atp

𝐶atp = 4.27 − 4.163
𝑡

0.657 + 1.43𝑡 + 0.364𝑡2
, (A.1)

adenosindiphosphate: adp

𝐶adp = 0.582 + 1.73 (2.731
−0.15𝑡

) (0.12𝑡 + 0.000214𝑡
3
) ,

(A.2)

adenosin monophosphate: amp

𝐶amp = 0.123 + 7.25
𝑡

7.25 + 1.47𝑡 + 0.17𝑡2

+ 1.073
𝑡

1.29 + 8.05𝑡
,

(A.3)

diphosphopyridine nucleotide phosphate, reduced:
nadph

𝐶nadph = 0.062 + 0.332 (2.718
−0.46𝑡

)

× (0.0166𝑡
1.58

+ 0.000166𝑡
4.73

+ 1.16 × 10
−10

𝑡
7.89

+ 1.36 × 10
−13

𝑡
11

+ 1.23 × 10
−16

𝑡
14.2

) ,

(A.4)

diphosphopyridine nucleotide, reduced: nadp

𝐶nadp = 0.159 + 0.00554
𝑡

2.8 + 0.271𝑡 + 0.01𝑡2

+ 0.182
𝑡

4.81 + 0.526𝑡
,

(A.5)

diphosphopyridine nucleotide, reduced: nadh

𝐶nadh = 0.0934 + 0.0011 (2.371
−0.123𝑡

) (0.844𝑡 + 0.104𝑡
3
) ,

(A.6)

diphosphopyridine nucleotide, oxized: nad

𝐶nad = 1.314 + 1.314 (2.73
(−0.0435𝑡−0.342)

)

−

(𝑡 + 7.871) (2.73
(−0.0218𝑡−0.171)

)

8.481 + 𝑡
.

(A.7)
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Kinetics Rates for Enzymes [2, 40]. Consider

𝑟PTS = 𝑟
max
PTS 𝐶

extracelular
glc

𝐶pep

𝐶pyr

× ((𝐾PTS1 + 𝐾PTS2
𝐶pep

𝐶pyr

+ 𝐾PTS,3𝐶
extracelular
glc + 𝐶

extracelular
glc

𝐶pep

𝐶pyr
)

× (1 +

𝐶
𝑛PTS,g6p
g6p

𝐾PTS,g6p
))

−1

,

(A.8)

𝑟PGI = 𝑟
max
PGI (𝐶g6p −

𝐶f6p

𝐾PGI,eq
)

× (𝐾PGI,g6p (1+
𝐶f6p

𝐾PGI,f6p (1+ (𝐶
6pg/𝐾PGI,f6p,6pginh))

+
𝐶6𝑝𝑔

𝐾PGI,g6p,6pginh
) + 𝐶g6p)

−1

,

(A.9)

𝑟PFK

= 𝑟
max
PFK

[
[
[
[
[

[

𝑒𝐶f6p

𝐾Rf6p
(1 +

𝑒𝐶f6p

𝐾Rf6p
)

𝑛PFK−1

(1 +
𝐶adp

𝐾Radp
)

𝑛PFK

+ 𝐿0 [

(1+ (𝐶pep/𝐾Tpep)) (1+ (𝐶adp/𝐾Tadp))

(1+ (𝐶pep/𝐾Rpep)) (1+ (𝐶adp/𝐾Radp))
]

𝑛PFK

× 𝜃𝑐𝑒


𝐶f6p

𝐾Rf6p
(1 + 𝑐𝑒


𝐶f6p

𝐾Rf6p
)

𝑛PFK−1 ]]
]
]
]

]

× ( (1 +
𝑒𝐶f6p

𝐾Rf6p
)

𝑛PFK

(1 +
𝐶adp

𝐾Radp
)

𝑛PFK

+ 𝐿
0
[

(1 + (𝐶pep/𝐾Tpep)) (1 + (𝐶adp/𝐾Tadp))

(1 + (𝐶pep/𝐾Rpep)) (1 + (𝐶adp/𝐾Radp))
]

𝑛PFK

× (1 + 𝑐𝑒


𝐶f6p

𝐾Rf6p
)

𝐶pep/𝐾Tpep

)

−1

,

(A.10)

𝑟ALDO = 𝑟
max
ALDO (𝐶fdp −

𝐶gap𝐶dhap

𝐾ALDO,eq
)

× (𝐾ALDO,fdp + 𝐶fdp +
𝐾ALDO,gap𝐶dhap

𝐾ALDO,eq𝑉ALDO,blf

+
𝐾ALDO,dhap𝐶gap

𝐾ALDO,eq𝑉ALDO,blf
+

𝐶fdp𝐶gap

𝐾ALDO,gap,inh

+
𝐶dhap𝐶gap

𝐾ALDO,eq𝑉ALDO,blf
)

−1

,

(A.11)

𝑟TIS = 𝑟
max
TIS (𝐶dhap −

𝐶gap

𝐾TIS,eq
)

× (𝐾TIS,dhap (1 +
𝐶gap

𝐾TIS,gap
) + 𝐶dhap)

−1

,

(A.12)

𝑟GAPDH

= 𝑟
max
GAPDH (𝐶gap𝐶nad −

𝐶pgp𝐶nadh

𝐾GAPDH,eq
)

× ((𝐾GAPDH,gap (1 +
𝐶pgp

𝐾GAPDH,pgp
) + 𝐶gap)

× (𝐾GAPDH,nad (1 +
𝐶nadh

𝐾GAPDH,nadh
)

+ 𝐶nad))

−1

,

(A.13)

𝑟PGK = 𝑟
max
PGK (𝐶adp𝐶pgp −

𝐶atp𝐶3pg

𝐾PGK,eq
)

× ((𝐾PGK,adp (1 +
𝐶atp

𝐾PGK,atp
) + 𝐶adp)

× (𝐾PGK,pgp (1 +
𝐶
3pg

𝐾PGK,3pg
) + 𝐶pgp))

−1

,

(A.14)

𝑟PGluMu = 𝑟
max
PGluMu (𝐶3pg −

𝐶
2pg

𝐾PGluMu,eq
)

× (𝐾PGluMu,3pg (1 +
𝐶
2pg

𝐾PGluMu,2pg
) + 𝐶

3pg)

−1

,

(A.15)

𝑟ENO = 𝑟
max
ENO (𝐶2pg −

𝐶pep

𝐾ENO,eq
)

× (𝐾ENO,2pg (1 +
𝐶pep

𝐾ENO,pep
) + 𝐶

2pg)

−1

,

(A.16)
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𝑟PK

= 𝑟
max
PK 𝐶pep𝐶adp (

𝐶pep

𝐾PK,pep
+ 1)

(𝑛PK−1)

× (𝐾PK,pep

× (𝐿PK (1 +
𝐶atp

𝐾PK,atp

× (
𝐶fdp

𝐾PK,fdp
+

𝐶amp

𝐾PK,amp
+ 1)

−1

)

𝑛PK

+ (
𝐶pep

𝐾PK,pep
+ 1)

𝑛PK

)

× (𝐶adp + 𝐾PK,adp) )

−1

,

(A.17)

𝑟PDH =

𝑟
max
PDH𝐶
𝑛PDH
pyr

𝐾PDH,pyr + 𝐶
𝑛PDH
pyr

, (A.18)

𝑟G6PDH

= 𝑟
max
GPDH𝐶g6p

× ((𝐾G6PDH,g6p (1 + 𝑘tgn

𝐶
ℎtg
nadp

𝑘
ℎtg
tg + 𝐶

ℎtg
nadp

) + 𝐶g6p)

× (1 +
𝐶nadph

𝐾G6PDH,nadphinh
+

𝐶nadh
𝐾G6PDH,nadhinh

)

× ((
𝐶nadp

𝐾G6PDH,nadp
)

1+𝑘dtn(𝐶
ℎdt
nadh/(𝑘

ℎdt
dt +𝐶

ℎdt
nadh))

× ((1 + (
𝐶nadp

𝐾G6PDH,nadp
)

1+𝑘dtn(𝐶
ℎdt
nadh/(𝑘

ℎdt
dt +𝐶

ℎdt
nadh))

+ (
𝐶nadph

𝐾G6PDH,nadphinh2
)

ℎnadph

)

× (1 + (
𝐶nadh

𝐾G6PDH,nadh
)

ℎnadh

))

−1

))

−1

,

(A.19)

𝑟PGDH

= 𝑟
max
PGDH𝐶

6pg𝐶nadp

× ((𝐶
6pg + 𝐾PGDH,6pg)

× (𝐶nadp + 𝐾PGDH,nadp

× (1 +
𝐶nadph

𝐾PGDH,nadph,inh
)

× (1 +
𝐶atp

𝐾PGDH,atp,inh
)))

−1

,

(A.20)

𝑟R5PI = 𝑟
max
R5PI (𝐶ribu5p −

𝐶rib5p

𝐾R5PI,eq
) , (A.21)

𝑟RU5P = 𝑟
max
RU5P (𝐶ribu5p −

𝐶xyl5p

𝐾RU5P,eq
) , (A.22)

𝑟TKa = 𝑟
max
TKa (𝐶rib5p𝐶xyl5p −

𝐶sed7p𝐶gap

𝐾TKa,eq
) , (A.23)

𝑟TKb = 𝑟
max
TKb (𝐶xyl5p𝐶e4p −

𝐶f6p𝐶gap

𝐾TKb,eq
) , (A.24)

𝑟TA = 𝑟
max
TA (𝐶gap𝐶sed7p −

𝐶e4p𝐶f6p

𝐾TA,eq
) , (A.25)

𝑟PEPCxylase

=

𝑟
max
PEPCxylase𝐶pep (1 + (𝐶fdp/𝐾PEPCxylase,fdp)

𝑛PEPCxylase,fdp
)

𝐾PEPCxylase,pep + 𝐶pep
,

(A.26)

𝑟Synth1 =

𝑟
max
Synth1𝐶pep

𝐾Synth1,pep + 𝐶pep
, (A.27)

𝑟Synth2 =

𝑟
max
Synth2𝐶pyr

𝐾Synth2,pyr + 𝐶pyr
, (A.28)

𝑟SerSynth =

𝑟
max
SerSynth𝐶3pg

𝐾SerSynth,3pg + 𝐶
3pg

, (A.29)

𝑟RPPK =
𝑟
max
RPPK𝐶rib5p

𝐾RPPK,rib5p + 𝐶rib5p
, (A.30)

𝑟G3PDH =
𝑟
max
G3PDH𝐶dhap

𝐾G3PDH,dhap + 𝐶dhap
, (A.31)

𝑟DAHPS

=

𝑟
max
DAHPS𝐶

𝑛DAHPS,e4p
e4p 𝐶

𝑛DAHPS,pep
pep

(𝐾DAHPS,e4p + 𝐶
𝑛DAHPS,e4p
e4p ) (𝐾DAHPS,pep + 𝐶

𝑛DAHPS,pep
pep )

,

(A.32)
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𝑟PGM =

𝑟
max
PGM (𝐶g6p − (𝐶g1p/𝐾PGM,eq))

𝐾PGM,g6p (1 + (𝐶g1p/𝐾PGM,g1p)) + 𝐶g6p
, (A.33)

𝑟G1PAT =

𝑟
max
G1PAT𝐶g1p𝐶atp (1 + (𝐶fdp/𝐾G1PAT,fdp)

𝑛G1PAT,fdp
)

(𝐾G1PAT,g1p + 𝐶g1p) (𝐾G1PAT,atp + 𝐶atp)
,

(A.34)

𝑟MurSynth = 𝑟
max
MurSynth, (A.35)

𝑟TrpSynth = 𝑟
max
TrpSynth, (A.36)

𝑟MetSynth = 𝑟
max
MetSynth, (A.37)

Kinetics Parameters. See Table 3.

Nomenclature

𝜇: Specific growth rate or intracellular
dilution rate

𝐷: Dilution rate.

Metabolite

Glc: Glucose
g6p: Glucose-6-phosphate
f6p: Fructose-6-phosphate
Fdp: Fructose-1,6-biphosphate
Gap: Glyceraldehyde-3-phosphate
Dhap: Dihydroxyacetonephosphate
Pgp: 1,3-Diphosphoglycerate
3pg: 3-Phosphoglicerate
2pg: 2-Phosphoglicerate
Pep: Phosphoenolpyruvate
pyr: Pyruvate
6pg: 6-Phosphogluconate
ribu5p: Ribulose-5-phosphate
xyl5p: Xylulose-5-phosphate
sed7p: Sedoheptulose-7-phosphate
xyl5p: Xylulose-5-phosphate
sed7p: Sedoheptulose-7-phosphate
rib5p: Ribose-5-phosphate
e4p: Erythrose-4-phosphate
Glp: Glucose-1-phosphate.

Cometabolite

Atp: Adenosintriphosphate
Adp: Adenosindiphosphate
Nad: Diphosphopyridindinucleotide, oxized
Nadh: Diphosphopyridindinucleotide, reduced
Nadp: Diphosphopyridindinucleotide-phosphate,

oxized
Nadph: Diphosphopyridindinucleotide-phosphate,

reduced
Amp: Adenosinmonophosphate.

Enzyme

ALDO: Aldolase
DAHPS: DAHPS synthase
ENO: Enolase
G1PAT: Glucose-1-phosphate adenyltransferase
G3PDH: Glycerol-3-phosphate dehydrogenase
G6PDH: Glucose-6-phosphate dehydrogenase
GAPDH: Glyceraldehyde 3-phosphate dehydrogenase
MetSynth: Methionine synthesis
MurSynth: Mureine synthesis
PDH: Pyruvate dehydrogenase
PEPCxylase: PEP carboxylase
PFK: Phosphofructokinase
PGDH: 6-Phosphogluconate dehydrogenase
PGI: Phosphoglucoisomerase
PGK: Phosphoglycerate kinase
PGM: Phosphoglucomutase
PGluMu: Phosphoglycerate mutase
PK: Pyruvate kinase
PTS: Phosphotransferase system
R5PI: Ribose phosphate isomerase
RPPK: Ribose phosphate pyrophosphokinase
RU5P: Ribulose phosphate epimerase
SerSynth: Serine synthesis
Synth1: Synthesis 1
Synth2: Synthesis 2
TA: Transaldolase
TIS: Triosephosphate isomerase
TKa: Transketolase a
TKb: Transketolase b
TrpSynth: Tryptophan synthesis.
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