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Impacts of ocean biogeochemistry
on atmospheric chemistry

Liselotte Tinel1,* , Jonathan Abbatt2,*, Eric Saltzman3,*, Anja Engel4,
Rafael Fernandez5, Qinyi Li6, Anoop S. Mahajan7, Melinda Nicewonger8,
Gordon Novak9,10, Alfonso Saiz-Lopez11, Stephanie Schneider2, and Shanshan Wang12

Ocean biogeochemistry involves the production and consumption of an array of organic compounds and
halogenated trace gases that influence the composition and reactivity of the atmosphere, air quality, and
the climate system. Some of these molecules affect tropospheric ozone and secondary aerosol formation
and impact the atmospheric oxidation capacity on both regional and global scales. Other emissions undergo
transport to the stratosphere, where they contribute to the halogen burden and influence ozone. The oceans
also comprise a major sink for highly soluble or reactive atmospheric gases. These issues are an active area
of research by the SOLAS (Surface Ocean Lower Atmosphere) community. This article provides a status
report on progress over the past decade, unresolved issues, and future research directions to understand
the influence of ocean biogeochemistry on gas-phase atmospheric chemistry. Common challenges across the
subject area involve establishing the role that biology plays in controlling the emissions of gases to the
atmosphere and the inclusion of such complex processes, for example involving the sea surface microlayer,
in large-scale global models.
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Introduction
Ocean biogeochemistry has long been recognized to
impact the composition of the atmosphere. These impacts
extend from influence on the abundance of both long-
and short-lived gases that drive the atmospheric oxidation
capacity to secondary aerosol abundance and composi-
tion. In turn, this can affect air quality and climate.

The focus of this perspective article is on 3 topics. Sec-
tion 1 addresses our evolving understanding of biogeo-
chemical controls on the chemistry of reactive halogen
gasses that impact tropospheric ozone and air quality. Sec-
tion 2 treats oceanic emissions, largely halogen-containing,
that make their way to the stratosphere and influence the

atmospheric chemistry there. The main processes concern-
ing halogens treated in this article are schematized in Fig-
ure 1. Section 3 examines the release of volatile organic
compounds (VOCs) to the troposphere, both via primary
emissions and via reactive processes that occur at the
ocean–atmosphere interface (see Figure 2). Each section
reviews new findings that have occurred in the past decade,
while also providing a perspective on atmospheric impacts
and need for future studies. Several of the trace gases dis-
cussed in this article strongly influence particulate atmo-
spheric chemistry, which is discussed in more detail by
Sellegri et al. (2023) and are particularly relevant for polar
regions, as discussed by Willis et al. (2023).
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1. Biogeochemical controls on the emission of
reactive halogen gases impacting tropospheric
ozone and air quality
1a. Tropospheric iodine

Perspective:
� Recent studies show that iodine plays a substantial

role in the depletion of tropospheric ozone, through
dry deposition and the initiation of catalytic cycles,
and can initiate particle formation.

� Iodine emitted from the oceans has largely increased
compared to preindustrial times, leading to a more
important role of iodine in tropospheric ozone
destruction.

� Oceanic emissions of iodine are not entirely understood
to date. In particular, emissions of one of the largest
predicted fluxes of iodine, hypoiodous acid (HOI),
remain elusive, mainly due to analytical limitations.

� The role of organics and particularly of the sea sur-
face microlayer (SML) on ozone deposition and its
reaction with iodide needs to be better understood
as a control on iodine emissions. Changing oceanic
temperatures and other conditions will affect these
emissions, an issue that has little been addressed.

� Further development of iodine cycling in oceanic
modeling and the coupling between ocean and
atmospheric models will improve the estimates of
atmospheric emissions in a changing earth system.

The influence of iodine in the marine troposphere has
attracted attention, following observations of inorganic
iodine species in the marine boundary layer that could
not solely be explained by organic iodine release from the
ocean (e.g., Jones et al., 2010; Mahajan et al., 2010). Since,
it was demonstrated that inorganic iodine is an important

Figure 1. Overview of the role of marine halogens released in the atmosphere.
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source of atmospheric iodine, estimated as high as 75% of
total atmospheric iodine (Prados-Roman et al., 2015b),
competitive or even higher than the release of marine
organic iodine compounds, which are mainly driven by
biological processes (Saiz-Lopez and Plane, 2004;
Carpenter et al., 2013; MacDonald et al., 2014). Other
sources of iodine in the troposphere are terrestrial emis-
sions of gaseous iodine from salt marches, rice fields, peat-
land, and forest systems, and combustion of fossil fuel and
biomass. Inorganic iodine is mainly emitted following the
reaction of iodide with ozone at the ocean surface (dry
deposition), leading to the release of HOI (approximately
70% of oceanic I emitted) and to a lesser extend molecular
iodine (I2) (Garland et al., 1980; Magi et al., 1997; Sherwen
et al., 2016). Ultimately, iodine is removed from the atmo-
sphere through deposition mainly as HOI, INO3, and aero-
sols, and mostly back to the ocean (Sherwen et al., 2016).

Iodide reacts very rapidly with ozone, much faster than
the equivalent reactions of Cl� and Br� (Harvey, 1956). The
fast reaction of iodide with ozone explains the major influ-
ence of iodide on the dry deposition of ozone over oceans,
despite its low concentration in seawater, and is currently
the only reaction for ozone removal through dry deposi-
tion in models (Hardacre et al., 2015; Luhar et al., 2018;
Pound et al., 2020). However, organic iodine, and in par-
ticular iodomethane (CH3I), remains an important source
for iodine above the marine boundary layer due to its
longer lifetime (Koenig et al., 2020). Emissions of iodocar-
bons have been compiled in emission inventories (Bell et
al., 2002; Ordóñez et al., 2012).

The renewed interest in iodide concentrations, which
are poorly documented, led to several parametrizations for
iodide concentrations in the sea surface waters. These
used either a reported relationship with a biogeochemical
parameter (e.g., chlorophyll [Oh et al., 2008] or nitrate
[Ganzeveld et al., 2009]), a limited range of observed
iodide concentrations (Coleman et al., 2010) or were
based on multivariate linear regression (Chance et al.,
2014) or Arrhenius behavior (MacDonald et al., 2014).
Since, a new effort to compile global iodide observations
was made, including digitized historical, unpublished, and
new data for critically under-sampled areas such as the
Indian and Southern Ocean (Chance et al., 2019). This
compilation showed that surface iodide concentrations
show a strong latitudinal trend, with maxima around the
tropics and span a range from less than 10 to over 2,000
nM, with a mean of 94.8 nM globally. A machine learning
algorithm was applied to this new, more complete data
compilation providing an improved global iodide clima-
tology (Sherwen et al., 2019).

Oceanic iodide is primarily produced in the mixed layer
by biological activity of microalgae and bacteria (Ducklow
et al., 2018; Hepach et al., 2019; Hughes et al., 2021) and
seems coupled to carbon uptake, although evidence is
rather limited (Hepach et al., 2019 and references therein).
A recent study has used a variable I:C ratio and primary
productivity climatology to model the oceanic iodine spe-
ciation, including iodide (Wadley et al., 2020). The com-
parison with hitherto described parametrizations for
iodide concentrations shows that the largest differences

Figure 2. The role of the surface microlayer (SML) and release of volatile organic compounds (VOCs) to the
atmosphere. Adapted with permission from Novak and Bertram (2020). Copyright 2020 American Chemical Society.
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with the oceanic model occur in zones where little to no
observations exist. This raises the question of whether all
processes involved in determining surface iodide have
been captured and underlines the need for more observa-
tions, in particular in the Arctic and coastal seas where the
biogeochemical cycling of iodide is understudied.

Recent atmospheric modeling studies have used differ-
ent parametrizations to predict iodine emissions and their
impact on the troposphere. A comprehensive iodine-
bromine gas-phase chemistry scheme was first incorpo-
rated into the global chemistry-climate model (Commu-
nity Atmospheric Model coupled with Chemistry), where
the oceanic source of iodine was estimated at 1.9 Tg(I)/
year (Ordóñez et al., 2012; Prados-Roman et al., 2015b). Of
this oceanic iodine source, abiotic iodine contributed
about 75% to iodine oxide (IO) concentrations. Halogen
chemistry, including iodine, was also added to the global
model Goddard Earth Observing System Chemistry (GEOS-
Chem). In a first study, a contribution of 3.83 Tg(I)/year
from oceanic sources was estimated using the Chance et
al. (2014) sea-surface iodide field (Sherwen et al., 2016),
whereas the oceanic iodine source was estimated at only
2.7 Tg(I)/year using the MacDonald et al. (2014) iodide
parametrization with the same model (Sherwen et al.,
2016). In a model study using the SOCOL-AERv2-I model
with the MacDonald et al. (2014) parametrization, the
total oceanic iodine source was estimated at 2.9 Tg(I)/year
(Karagodin-Doyennel et al., 2021). These differences in
total oceanic iodine flux can thus partially be explained
by the underestimation of sea surface iodide concentra-
tions compared to all available observations when using
the MacDonald et al. (2014) parametrization and an over-
estimation using the Chance et al. (2014) parametrization
(Chance et al., 2019; Sherwen et al., 2019). As demon-
strated for the Indian Ocean (Inamdar et al., 2020), a global
iodide climatology might be less applicable in under-
sampled regions, where regional parametrizations better
capture regional specificities of, for example, sea surface
temperature and salinity and seem more suitable if repre-
sentative regional data sets are available.

In order to estimate fluxes of inorganic iodine, most
models use the parametrization proposed by Carpenter et
al. (2013). The calculated fluxes and their kinetic models
are still subject to substantial uncertainties, not in the
least due to the lack of observation of certain key species,
such as HOI. Another source of uncertainty is the incom-
plete understanding of the influence of the organic com-
pounds on the reaction of iodide and ozone. Multiple
experimental studies show that organics have a suppres-
sive (e.g., Reeser and Donaldson, 2011), enhancing (e.g.,
Hayase et al., 2011), or no effect (e.g., MacDonald et al.,
2014) on I2 emissions from iodide solutions, implying that
the underlying mechanisms are not well understood. Two
recent studies concur on a strong suppression of the I2
flux over natural SML and natural organic material from
phytoplankton cultures (Schneider et al., 2020; Tinel et al.,
2020). Both conclude that the emission of volatile organic
iodine does not offer a satisfactory explanation for the
lower I2(g) observed in presence of organics. Other hypoth-
eses can explain the lower I2 emissions such as changes in

solubility of I2 in the organic-rich solution or the reactive
loss of HOI(aq) or I2(aq). Further, a suppressive effect of Cl

�

on I2(g) emissions was confirmed in both studies, although
the reason for this suppression was not univocally eluci-
dated. It seems clear that more investigation in these fun-
damental reactions is needed to fully understand the I2(g)
suppression in presence of chlorine. Schneider et al.
(2020) also confirmed the influence of pH on the I2 flux,
with lower pH leading to higher I2 fluxes. This can lead to
higher emissions from seaspray aerosols which have lower
pH than seawater (Rouvière et al., 2010; Angle et al.,
2021). Recently, a modeling study in the Indian Ocean
suggests that a significant reduction in the HOI/I2 flux
from the sea surface is needed to replicate the observed
gas-phased IO (Mahajan et al., 2021). Emissions, calculated
using the flux parameterization from Carpenter et al.
(2013) needed to be reduced by 40% to match the gas-
phase IO observations.

Changes in tropospheric ozone concentrations have
already affected the amount of iodine in the atmosphere,
as demonstrated using iodine deposition in historic ice
cores from Greenland (Cuevas et al., 2018) and the French
Alps (Legrand et al., 2018). Both studies, of which the
longest historic atmospheric iodine record is 260 years
(1750–2011) show a sharp 3-fold increase in atmospheric
iodine deposition since 1950. This increase coincides with
a marked increase in observed tropospheric ozone concen-
trations (þ30% since 1950), which led in turn to higher
inorganic iodine emissions (þ33%) (Cuevas et al., 2018).
Consequent catalytic destruction of ozone by atmospheric
iodine is estimated to have reduced tropospheric ozone
concentrations by 10% over the North Atlantic between
1950 and 2010 (Cuevas et al., 2018) and to significantly
affect the radiative ozone budget (Sherwen et al., 2017).
Enhanced sub-ice phytoplankton production, associated
with sea ice thinning, likely also played a role in the
increase in iodine concentrations found in the Greenland
ice-core. Isotope 127I concentrations in spruce tree rings
from the Tibetan plateau partially confirmed the trend in
iodine record observed in the Greenland ice core (R ¼
0.77, P < 0.01) (Zhao et al., 2019). A recent study in the
high Arctic has shown the ubiquitous presence of iodine
in the gas- and particle-phase, which was not observed
regularly in the past (Benavent et al., 2022). A negative
feedback loop between higher ozone concentrations,
higher oceanic iodine emissions, and more ozone destruc-
tion following the increase of reactive atmospheric iodine
was demonstrated by several studies (Prados-Roman et al.,
2005a; Sherwen et al., 2017; Sekiya et al., 2020). This
means that oceanic iodine emissions buffer the increase
in tropospheric ozone pollution and its associated radia-
tive forcing. Sherwen et al. (2017) model a reduction of
the global ozone burden from 416 Tg to 339 Tg due to the
feedback from halogens in present day. Iodine chemistry
accounts for approximately 57% of this ozone reduction.
Iodine also participates in particle formation, which would
have an additional indirect influence on the radiative bud-
get (Gómez Martı́n et al., 2020; Huang et al., 2022).
Coastal seawater tends to have higher iodide concentra-
tions, with a higher potential for feedback on ozone and
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coastal air quality. Prados-Roman et al., 2015a) modeled
that in regions of continental ozone-rich outflow, the
iodine-mediated ozone loss rate has increased by about
6 times (up to 2 nmol mol�1 d�1) compared to the global
average of 0.35 nmol mol�1 d�1, a trend that was con-
firmed in a study in coastal Los Angeles (Muñiz-
Unamunzaga et al., 2018). However, our understanding
of iodine cycling in complex coastal systems is limited,
notably the interplay of biological sources and inorganic
iodine, and warrants more research to predict the influ-
ence of iodine on future coastal air quality with certainty.

1b. Tropospheric bromine

Perspective:
� Reactive bromine-containing species affect tropo-

spheric chemistry through the budget of ozone, HOx,
and NOx perturbations; formation of secondary
organic aerosol (SOA); and the fate of pollutants such
as VOCs, sulphur, and mercury (Schmidt et al., 2016;
Chen et al., 2017; Abrahamsson et al., 2018; Peng et
al., 2021).

� Field measurements and modeling studies suggest
that reactive bromine arises mainly from the oxida-
tion and photolysis of organobromine molecules and
sea salt aerosol (SSA) debromination, however,
reported values varied in a large range with a degree
of uncertainties.

� The relative importance of anthropogenic sources is
still uncertain, due to lack of research on anthropo-
genic short-lived bromine substances, unrefined
anthropogenic emission inventories and uncertain-
ties in the knowledge of tropospheric bromine
chemistry.

� Further investigation in the sources and influences
of reactive bromine species in the troposphere
requires multiscale observations in time and space
for bromine species. Including bromine chemistry in
climate and chemistry models will improve our
understanding of the above atmospheric effects, and
associated impacts on the radiation budget.

The main sources of reactive bromine in the tropo-
sphere are oxidation and photolysis of organobromine
molecules (CHBr3, CH2Br2, CH3Br) and SSA debromination
(Schmidt et al., 2016; Wang et al., 2019b). Minor sources
of Bry are transport from the stratosphere where Bry ori-
ginates from photochemical decomposition of organobro-
mine molecules and halons (Wales et al., 2018). For the
sinks, Bry (¼ BrO þ Br þ Br2 þ HOBr þ BrCl þ HBr þ
BrNO3 þ BrNO2) is primarily removed from the tropo-
sphere via wet and dry deposition (Schmidt et al., 2016).
The biogeochemical cycle of bromine is dominated by
major sources to the atmosphere, such as sea spray, saline
lakes, volcanoes, and marshes, but also anthropogenic
sources, such as power plants, industrial processes, indus-
trial boilers, and residential burning (Li et al., 2021b; Peng
et al., 2021; Al-Adilah et al., 2022). However, observations
of bromine (especially short-lived) species in areas with
moderate or high anthropogenic emissions are scarce, so
that it is not easy to determine the corresponding

abundance and composition in anthropogenic emissions
(Hossaini et al., 2012; Lee et al., 2018). Inventories of
anthropogenic emissions from bromine sources and cal-
culation of emission factors are not sufficiently well
developed and refined (Li et al., 2021a). There are also
some uncertainties in the tropospheric bromine chemi-
cal mechanisms (especially in heterogeneous reactions)
(Simpson et al., 2015). Therefore, direct and multiscale
measurements for bromine species are required to vali-
date emission inventory and model simulation results.
The combination of simulation and observation experi-
ments is an effective tool for studying bromine
chemistry.

CH2Br2 and CHBr3, short-lived bromocarbons, are ubiq-
uitous in the oceans, where they are formed by macro- and
microalgae (Fiehn et al., 2017; Lim et al., 2018). Addition-
ally, together with other halocarbons, they are also pro-
duced through abiotic processes (Keppler et al., 2000). The
results from a global 3-dimensional ocean biogeochemis-
try model found high bromoform levels in the extratropics
(3–10 pmol L�1), a decrease toward the subtropics
(approximately 1 pmol L�1), and a peak at the equator
(approximately 2 pmol L�1) (Stemmler et al., 2015), con-
sistent with observations in the northwest Pacific.

The cycling of Bry occurs between BrOx radicals (BrOx ¼
Brþ BrO) and reservoirs (Zhu et al., 2018; Bougoudis et al.,
2020). Autocatalytic reactions of SSA are the most impor-
tant source of Br2 and BrCl. For instance, gaseous HOBr is
degassed from SSA and then reacts with Cl� and Br� to
converted BrCl and Br2, respectively (Hara et al., 2018). The
efficiency of the sea-salt recycling process, referred to as
sea-salt aerosol dehalogenation (Engel et al., 2019),
depends on the halogen enrichment within the aerosol
and the rate of gas-phase halogen reactive uptake. Sea-salt
recycling requires the initial presence of inorganic halogen
reservoirs (such as HBr, HOBr, BrNO2, BrNO3, and BrxOy) in
the gas-phase. These are usually formed by photochemical
decomposition of brominated and chlorinated very short-
lived halogenated substances (VSLS), although iodine can
also represent the initial step on the sea-salt dehalogena-
tion process (Fernandez et al., 2014). SSA-dehalogenation is
estimated to provide a bromine source of 1.4 to 3.5 Tg Br
yr�1 (Fernandez et al., 2014; Hossaini et al., 2016; Schmidt
et al., 2016; Chen et al., 2017). For bromine, this source was
estimated to be between 2 and 4 times larger than the
global tropospheric emissions from brominated VSLS (Yang
et al., 2005; Schmidt et al., 2016).

The effective washout of hydrophilic reservoir species
(eg., HBr, HOBr, BrNO2, BrNO3, BrCl) depends on the sol-
ubility of individual halogen species (Sander, 2015). Het-
erogeneous recycling or the presence of sulfate or nitrate
can reduce the washout efficiency, by transforming the
soluble reservoir species into more volatile and photola-
bile compounds. Inclusion of these recycling processes in
the upper troposphere is necessary to reconcile satellite
tropospheric columns with global modeling studies
(Parrella et al., 2012; Schmidt et al., 2016), as well as to
reproduce the inorganic bromine vertical profiles
throughout the tropical free and upper troposphere
(Fernandez et al., 2014).
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Reactive bromine containing species have significant
effects on atmospheric chemistry in the troposphere, the
most prominent being depletion of ozone and impacts on
OH/HO2 (Monks et al., 2015; Wang et al., 2015; Fernandez
et al., 2017; Wang et al., 2019b). Bromine chemistry is
widespread in the Antarctic and Arctic near-surface tropo-
sphere (Abrahamsson et al., 2018; Prados-Roman et al.,
2018; Wang et al., 2019b), tropical and subtropical free
troposphere (Wang et al., 2015), volcanic plumes (Gutmann
et al., 2018; Roberts et al., 2018), and above saline lakes (Liu
et al., 2018b; Mitroo et al., 2019). Direct atmospheric bro-
mine atom measurements have verified that ozone deple-
tion is linked to elevated bromine concentrations, caused
by photochemically driven release of molecular bromine
and nitrogen oxides from snow (Wang et al., 2019b).

Evidence from aircraft and satellite observations indi-
cates that the dominant mechanism for the Br-Cl-driven
tropospheric ozone decrease is oxidation of NOx by forma-
tion and hydrolysis of BrNO3 and ClNO3 (Schmidt et al.,
2016). Measurements in the Weddell Sea, Antarctica,
found 10 times more bromocarbons emitted to the atmo-
sphere than from Southern Ocean waters, and substantially
more than over summer sea ice (Abrahamsson et al., 2018).
The sea ice-emitted bromocarbons dispersing throughout
the troposphere can pose significant impacts on the global
tropospheric ozone budget. In addition to observations by
various means that can illustrate the effect of bromine
chemistry on ozone, model simulation results further illus-
trate this phenomenon. By conducting Community Multi-
scale Air Quality (CMAQ) modeling with and without
bromine and iodine chemistry for the Asia-Pacific region
indicated that the bromine- and iodine-mediated O3 loss
reaches a maximum of 15.9 ppbv (44.3%) over the ocean
and 13.4 ppbv (38.9%) over continental Asia (Huang et al.,
2021). Based on the simulations by the GEOS-Chem model,
Oman et al. (2016) suggested that bromine from VSLS is
responsible for the significantly later recovery of Antarctic
ozone. By implementing a bromine release mechanism
from sea-ice- and snow-covered land surfaces in the global
chemistry–climate model (ECHAM/MESSy Atmospheric
Chemistry), ozone depletion events are very well repro-
duced in the Arctic and in the Antarctic coastal regions
(Falk and Sinnhuber, 2018).

In addition to its effect on ozone, bromine chemistry
has significant effects on atmospheric oxidation and on
secondary aerosols. By utilizing the regional Weather
Research and Forecasting Chemistry coupled (WRF-Chem)
model involving oceanic halogen emissions, Li et al.
(2020) found halogens substantially enhance the total
atmospheric oxidation capacity in polluted areas of China,
typically 10% to 20% (up to 87% in winter) by signifi-
cantly increasing OH. Upon incorporation of updated hal-
ogen chemistry and anthropogenic chlorine and bromine
emissions in WRF-Chem, halogens enhance the loading of
fine aerosol in northern China (on average by 21%) and
especially its secondary aerosols (Li et al., 2021a). Besides,
including bromine and dimethyl sulfide (DMS) in the
CMAQ model, a 10% increase in SOA was found over the
urban area of Los Angeles, USA (Muñiz-Unamunzaga et al.,
2018).

1c. Tropospheric chlorine

Perspective:
� Chlorine, emitted by both anthropogenic and natu-

ral sources perturbs the composition and oxidation
capacity of the troposphere. With imbalanced
regional development, anthropogenic sources of
chlorine have been experiencing noticeable changes
in different areas according to bottom-up emission
inventories.

� The global integrated tropospheric chlorine burden
and its atmospheric impacts are expected to undergo
further changes throughout the century. Long-term
field measurements are needed to monitor such
variations.

� Multiscale modeling and laboratory experiments can
improve our understanding in the multiphase
mechanisms of reactive chlorine species, particularly
in the presence of anthropogenic pollutants.

Chlorine species are emitted through anthropogenic
activities (coal-, biomass-, and waste-burning), acid dis-
placement (e.g., HNO3), halogen-mediated heterogeneous
reactions on chloride-containing aerosols (e.g., sea-alt
aerosol), and ocean-surface biogenic activities. Chlorine-
containing species undergo photochemical reactions and
generate chlorine atoms (Cl). Cl oxidizes methane (CH4,
a significant greenhouse gas) and other VOCs, increasing
the level of tropospheric oxidants (OH and HO2) and air
pollutants (O3 and secondary aerosols) when nitrogen oxi-
des are present. In remote areas and the free troposphere,
ClOx (Cl þ ClO) is involved in self-reactions and reactions
with BrO and IO radicals leading to net loss of odd oxygen
(O3 and those species it recycles with, mainly O(1D), O(3P),
and NO2), hence decreasing tropospheric O3 and OH.

Studies of tropospheric chlorine species have increased
in recent years. An example is research on nitryl chloride
(ClNO2), which is a product of heterogeneous reaction
between chloride-containing aerosol and N2O5, involving
anthropogenic air pollutant NO2 and O3 (Finlayson-Pitts et
al., 1989). Following the first field detection of ClNO2

(Osthoff et al., 2008), novel measurement methods have
been used to detect ClNO2 and other relevant chlorine
species in various (coastal and inland) locations across the
Northern Hemisphere. For instance, ClNO2 has been
detected at levels ranging from a few pptv to thousands
of pptv on the west coast of North America (Mielke et al.,
2013), the south coast of China (Wang et al., 2016), the
United Kingdom (Bannan et al., 2017), the east coast of
North America (McDuffie et al., 2018), South Korea (Jeong
et al., 2019), Mediterranean Sea (Eger et al., 2019), and in
global remote region (Veres et al., 2020). Other chlorine-
containing reactive species have also been observed at
levels of a few pptv to hundreds of pptv, along the coasts
in North America (Cl2, BrCl) (Lee et al., 2018; Haskins et al.,
2019), Europe (ICl) (Tham et al., 2021), and China (Cl2,
BrCl) (Peng et al., 2022; Xia et al., 2022), South Africa (very
short-lived chlorine, VSL-Cl) (Kuyper et al., 2019; Say et al.,
2020), Australia (Advanced Global Atmospheric Gases
Experiment, AGAGE network; VSL-Cl) (Prinn et al., 2018),
and the global remote troposphere (VSL-Cl) (Apel et al.,
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2019). These observations reveal the widespread existence
but fluctuating levels of chlorine species along the coast
and in the remote oceanic regions, implying active inter-
action between the lower atmosphere and the surface
ocean with probably large perturbation by human activi-
ties. With the proposed global scale environmental policy
in regulating air pollutants and greenhouse gases, as well
as the ongoing rapid changes in global climate, the atmo-
spheric abundance of tropospheric chlorine, in connection
to climate, oceanic biogeochemistry and human activities,
is expected to undergo significant changes in the future.
Future long-term measurements are advised to monitor
such changes to further comprehend the changing role of
chlorine in the troposphere.

A few studies conducted laboratory experiments to
explore the controlling factors of the production and loss
of some key chlorine species. Ryder et al. (2015) quantified
the role of organic species in controlling the production of
ClNO2 at the air-sea interface. Peng et al. (2022) revealed
the critical impact of anthropogenic nitrate aerosol on the
activation of Cl2 from chloride-containing natural SSA
while Xia et al. (2022) suggested that the same process
could also activate Br2 from bromide-containing natural
SSA. The rates of reactive chlorine production and loss,
particularly those involving multiphase reactions with
complex aerosol compositions, remain understudied, and
future laboratory works are recommended to strengthen
our understanding on this aspect.

Studies of direct chlorine emissions have also contin-
ued. Hossaini et al. (2016) compiled a comprehensive list
of the lower-boundary conditions for key very short-lived
(VSL)-Cl species. Claxton et al. (2020) further developed an
emission inventory for 2 VSL-Cl (CH2Cl2 and C2Cl4), while
An et al. (2021) used atmospheric observations and
inferred a rapid increase in CH2Cl2 from China calling for
an update of sources. Other authors also showed the large
and possibly dominant source strength of chlorine from
acid displacement reactions, that is, formation of HCl via
reaction of HNO3 on SSA (Hossaini et al., 2016; Wang et
al., 2019d; Li et al., 2022). Regional and global emission
inventories of inorganic chlorine document significant
changes in anthropogenic emissions in recent years (e.g.,
Fu et al., 2018; Liu et al., 2018a; Zhang et al., 2022). These
inorganic chlorine emissions can influence the release of
reactive halogens from both pollutant aerosols and natu-
ral SSA. Modeling of chlorine species and their impacts
has traditionally been embedded in reactive halogen mod-
eling studies (Ordóñez et al., 2012; Sherwen et al., 2016).
Several authors simulated the abundance and potential
impacts of ClNO2 in the Northern Hemisphere, China, and
Europe (Sarwar et al., 2014; Li et al., 2016; Zhang et al.,
2017; Sommariva et al., 2018). Shipping emissions are also
simulated to influence the activation of chlorine from SSA
and affect lower tropospheric composition (Dai and Wang,
2021; Li et al., 2021b). Other authors adopted TOMCAT,
GEOS-Chem, and Community Earth System Models,
respectively, and quantified the impacts of tropospheric
chlorine on atmospheric composition (Hossaini et al.,
2016; Wang et al., 2019d; Li et al., 2022). Future modeling
studies incorporating the latest laboratory- and field-based

results are warranted to quantify the impacts of chlorine
species on tropospheric composition and chemistry.

2. Biogeochemical controls on the emission of
reactive gases impacting stratospheric ozone
2a. Very short-lived substances

Perspective:
� The atmospheric degradation of ocean-emitted VSLS

leads to ozone destruction both in the troposphere
and stratosphere.

� VSLS are mostly produced in the surface ocean by
biological and photochemical processes and emitted
via air/sea gas transfer.

� Quantifying the influence of VSLS on tropospheric
and lower stratospheric ozone requires knowledge of
their atmospheric transport and conversion into
reactive halogen species.

� Assessing future atmospheric impacts of oceanic
VSLS in a warmer world will require incorporating
their chemistry and biology into coupled chemistry-
climate models.

VSLS have tropospheric chemical lifetimes similar to
their transport times to the stratosphere (i.e., t < 0.5 years
[Engel et al., 2019]). VSLS can be injected into the strato-
sphere chemically unaltered (source gas injection, domi-
nated by organic halogens) or first processed in the
troposphere (product gas injection, dominated by inor-
ganic halogens) (Aschmann and Sinnhuber, 2013). As
a result, VSLS impacts depend on the spatial/temporal
variability in sources, atmospheric transport pathways,
and tropospheric chemical processing (Fernandez et al.,
2021).

VSLS represent more than 25% of the total strato-
spheric bromine loading, with bromoform (CHBr3) and
dibromomethane (CH3Br2) as the major species (Liang et
al., 2010; Engel et al., 2019). The largest air-sea fluxes of
brominated VSLS fluxes are observed in coastal and trop-
ical upwelling regions (e.g., Ziska et al., 2013), although
the contribution from open ocean regions has been sug-
gested to drive the observed variability in the free tropo-
sphere within deep convection regions such as the
Western Pacific (Butler et al., 2018). Aircraft CH2Br2 obser-
vations in the free and upper troposphere indicate a pro-
nounced seasonality which is not well captured by global
models, presumably due to erroneous seasonality of emis-
sions (Jesswein et al., 2022). Explicit treatment of oceanic
CHBr3 and CH2Br2 sources captures the expected bromine
source gas stratospheric injection, but underestimates tro-
pospheric and stratospheric impacts compared with a full
bromine chemical treatment (including sea-salt aerosol
dehalogenation and heterogeneous recycling on ice-
crystals (Section 1b) (Fernandez et al., 2021). Regional
enhancements of inorganic bromine injection occur in
regions such as the Western Pacific due to the coincidence
of rapid vertical uplift and significant sea-salt production
rate (Liang et al., 2014; Koenig et al., 2017).

Global emissions inventories have been developed to
assess VSLS impacts on stratospheric ozone depletion
using bottom-up or top-down approaches (Warwick et
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al., 2006; Liang et al., 2010; Ziska et al., 2013; Hossaini et
al., 2016). These involve satellite-derived ocean color or
parameterizations based on seawater halocarbon concen-
trations (Ordóñez et al., 2012; Lennartz et al., 2015).
Recent updates based on new observations show larger
emissions of CHBr3 in the Indian Ocean and reduced
global CH2Br2 emissions (Fiehn et al., 2018; Wang et al.,
2019c). There are minor but growing anthropogenic emis-
sions of CHBr3 from aquafarming and oxidative water
treatment (Quack and Wallace, 2003; Leedham et al.,
2013; Maas et al., 2021; Jia et al., 2022), although neither
oceanic nor terrestrial cultivation systems have been
shown likely to produce a significant contribution to
stratospheric bromine loading.

For chlorinated VSLS, anthropogenic sources are signif-
icantly larger than natural oceanic fluxes. Such sources are
rapidly increasing over east Asia (Hossaini et al., 2019),
with the largest contributions arising from China and
India (Fang et al., 2019; Say et al., 2019). Emissions of
CH2Cl2 have been reported from the tropical North Atla-
nic ocean (Kolusu et al., 2017). Global inversion estimates
suggest a net ocean source of 10%–20% of the total
CH2Cl2 sources, and a negligible (and often negative) oce-
anic source of C2Cl4. Slowing down of the rate of increase
of CH2Cl2 emissions from China has been observed after
2015 (An et al., 2021).

Oceanic VSLS emissions are the dominant contributor
to stratospheric iodine. Methyl iodide (CH3I) is the major
organic iodine-containing source contributing to strato-
spheric ozone depletion (Engel et al., 2019), although its
direct contribution is small because CH3I photodecom-
poses before reaching the tropical tropopause (Tegtmeier
et al., 2013; Saiz-Lopez et al., 2015). Inorganic iodine
derived from CH3I photodecomposition is estimated to
comprise 30%–40% of the inorganic iodine injected into
the stratosphere (Saiz-Lopez et al., 2015; Koenig et al.,
2020), which in turn can influence the size and depth of
the Antarctic ozone hole (Cuevas et al., 2022). The domi-
nant form of iodine reaching the stratosphere is particu-
late iodine condensed into aerosols, derived primarily
from sea surface emissions of HOI and I2 (see Section
1a). Although iodine levels are significantly smaller than
those for VSLS bromine and chlorine, the faster recycling
efficiency of iodine induces ozone depletion in the lower-
most stratosphere that is equivalent or larger than that
from natural VSLS bromine (Koenig et al., 2020).

Oceanic VSLS production and emissions are expected
to increase during the 21st century due to climate-driven
increasing sea surface temperature, wind-speeds, and net
primary production (Ziska et al., 2017; Iglesias-Suarez et
al., 2020; Keng et al., 2021). Future changes in iodine
stratospheric injection are expected to follow the pre-
dicted changes of the ozone-driven iodide oxidation pro-
cess described in Section 1a (Carpenter et al., 2013;
Prados-Roman et al., 2015a). Similarly, the complex pro-
cesses involved in heterogeneous processing of halogen
species during their transport from the marine boundary
layer to the free troposphere (see Sections 1b and 1c) will
depend on the future evolution of sea-salt production,
sulfate/nitrate aerosols, and tropospheric ice-crystals.

Given the large uncertainty in the physicochemical pro-
cesses controlling the heterogeneous recycling of halogen
reservoirs, the evaluation of the overall effect of heteroge-
neous chemistry on VSLS halogen input to the strato-
sphere is currently difficult to quantify.

2b. Methyl bromide

� Methyl bromide is a stratospheric ozone-depleting
substance with a complex global biogeochemical
cycle and an atmospheric lifetime of 0.8 years.

� Atmospheric methyl bromide levels have declined
over the past 2 decades, consistent with the phase-
out of industrial production under the Montreal Pro-
tocol. Models suggest that the oceans responded to
the reduction in atmospheric methyl bromide by
shifting from a net sink to a net source to the
atmosphere.

� The global budget of atmospheric methyl bromide is
not fully balanced. Better quantification of tropical
terrestrial biogenic sources is needed.

� Climate- and land-use-driven changes in emissions
from terrestrial and oceanic ecosystems will likely
dominate future variability in atmospheric methyl
bromide on decadal and longer time scales. Such
changes could potentially offset reductions due to
phase-out and are not accounted for in projections
of future stratospheric ozone. Continued atmo-
spheric monitoring and decadal ocean surveys of
methyl bromide saturation state are needed to quan-
tify such changes.

During the latter half of the 20th century, anthropo-
genic emissions of methyl bromide increased steadily,
eventually exceeding natural emissions. As a result, atmo-
spheric methyl bromide levels were elevated over prein-
dustrial levels by roughly a factor of 2 (Butler et al., 1999;
Saltzman et al., 2008). During the 1990s and early 2000s,
the oceans were found to be predominantly undersatu-
rated relative to the atmosphere, driving a large air/sea
flux of methyl bromide into the ocean (King et al., 2002).
This flux was estimated at about 56 Gg y�1 accounting for
nearly one-third of the total atmospheric losses.

Industrial production of methyl bromide was phased
out over several years starting in 1999 under the Copen-
hagen Amendments and subsequent Adjustments to the
Montreal Protocol. Phase-out resulted in a decline in
global industrial production from roughly 70 Gg y�1 to
10 Gg y�1 in 2018 (United Nations Environment Pro-
gramme [UNEP], 2019). The decline in production consti-
tutes a large-scale multidecadal “experiment” that can be
used to test our understanding of the global budget.
Atmospheric monitoring shows that atmospheric methyl
bromide declined from a 1995–2000 global mean of 9.4
± 0.2 ppt to 6.8 ± 0.1 ppt for 2015–2019 (Nicewonger et
al., 2022). Global models indicate that this decline is con-
sistent with national reporting for industrial production
(Yvon-Lewis et al., 2009; UNEP, 2015; UNEP, 2019; Saltz-
man et al., 2022). There has been a long-standing imbal-
ance in the global methyl bromide budget, with known
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sinks exceeding known sources by as much as 30%.
Recent inverse modeling suggests that an unknown trop-
ical source of roughly 15 Gg y�1 (likely terrestrial) is
required to balance the budget (Saltzman et al., 2022).

The decline in land-based emissions due to phase-out
has also induced a significant change in the saturation
state of the oceans. As noted earlier, the oceans were
significantly under-saturated at the peak of industrial pro-
duction. Subsequent ocean cruise surveys demonstrated
that by 2010, the oceans were in near equilibrium with
the atmosphere, a consequence of the declining atmo-
spheric methyl bromide levels (Hu et al., 2012). Recent
progress in understanding air/sea gas exchange has
improved estimation of air/sea flux from observations of
ocean surface saturation state (see also further discussion
on the air-sea interface exchanges elsewhere in this special
feature). Model hindcasts indicate that the oceanic methyl
bromide saturation state should have continued to change
over the past decade (Saltzman et al., 2022). The oceans
should now be 5%–10% supersaturated and account for
a net sea to air flux on the order of 5 Gg y�1 (or 6% of the
total emissions). No oceanic surveys have been conducted
over the past decade, so this finding is not validated (Saltz-
man et al., 2022). Conducting such a survey should be
considered a priority for future research.

Oceanic biological production is one of the major
uncertainties regarding the future trajectory of atmo-
spheric methyl bromide. While methyl bromide produc-
tion can be observed in microbial cultures, there is
currently no way to directly observe oceanic production
of methyl bromide at the scale needed for global models.
As an alternative approach, oceanic production has been
estimated by assuming steady state between production,
air/sea gas exchange and water column chemical/biolog-
ical loss. Using this approach, Hu et al. (2012) concluded
that oceanic production remained relatively constant from
the late 1990s to 2010s. This steady state approach is
useful for budgetary purposes but does not provide mech-
anistic insight into the microbial processes or environ-
mental factors controlling oceanic methyl bromide
production.

The phase-out of methyl bromide industrial production
has proven successful in reducing the atmospheric burden
and contribution of methyl bromide to stratospheric
ozone depletion. Global atmospheric methyl bromide
levels appear to be steady at present, and are projected
to comprise roughly 16% of the total equivalent effective
stratospheric chlorine in 2050 (Laube and Tegtmeier,
2022; Lickley et al., 2022). Atmospheric monitoring
provides evidence that agricultural utilization of methyl
bromide may exceed reported levels in some regions (Choi
et al., 2022). If such non-reported emissions are wide-
spread and can be identified, then the potential exists for
further reductions in the atmospheric burden of methyl
bromide. On the longer term, changes in climate, ocean
circulation, and ocean ecosystems introduce uncertainties
into the future trajectory of atmospheric methyl bromide
levels and their impact on stratospheric ozone. Future
research on methyl bromide should include monitoring
atmospheric levels on a global basis, conducting new

surveys of ocean surface saturation state, improving
knowledge about biological production/loss, and validat-
ing parameterizations for air/sea transfer of soluble gases
via direct flux measurements and laboratory studies.

2c. Methyl chloride

Perspective:
� Methyl chloride is a stratospheric ozone-depleting

substance with a complex global biogeochemical
cycle with the majority of emissions derived from
natural sources.

� Unlike methyl bromide, methyl chloride is not a con-
trolled substance under the Montreal Protocol. The
atmospheric abundance of methyl chloride exhibits
inter-annual variability, likely caused by fluctuations
in the balance of the natural sources and sinks, but
no obvious long-term trend is apparent.

� Future changes in atmospheric methyl chloride are
likely to be driven primarily by changes in climate
and terrestrial ecosystems. As with methyl bromide,
such variability is not accounted for in projections of
future stratospheric ozone. Continued monitoring of
atmospheric methyl chloride is needed in order to
detect such changes.

The global mean atmospheric abundance of methyl
chloride is around 550–560 ppt and the global atmo-
spheric lifetime is 0.9 years (Carpenter et al., 2014; Engel
et al., 2019). The major sources of methyl chloride to the
atmosphere are biomass burning, subtropical and tropical
plants, the ocean, salt marshes, and fungi. Coal combus-
tion is thought to be the only major anthropogenic
source, but this contribution has not been reevaluated
in over 2 decades (McCulloch et al., 1999). Previously
unreported industrial emissions from China suggest the
chemical industry may contribute more to atmospheric
methyl chloride than formerly thought (Li et al., 2017).
Several studies have proposed new sources of emissions
from various sources such as bread baking and various
coastal marshes but extrapolating the global impact of
these unique sources is challenging (Rhew et al., 2014;
Thornton et al., 2016). The major sinks of methyl chloride
are oxidation with the hydroxyl radical, photolysis in the
stratosphere, uptake by soils, and degradation in the
ocean. The global budget of methyl chloride is unbal-
anced, with estimated sources about 20% lower than the
estimated sinks.

Multidecadal measurements of atmospheric methyl
chloride now exist, and analysis of interannual variability
may lead to additional insight into the global budget. The
global budgets of methyl chloride and methyl bromide are
linked, with many common sources and sinks. For exam-
ple, interannual variability in biomass burning associated
with the El Niño Southern Oscillation has been shown to
strongly impact the atmospheric abundance of methyl
bromide and has likely also influenced methyl chloride
(Nicewonger et al., 2022). Future research should focus
on the sensitivity of the natural sources and sinks of
methyl chloride to changes in climate and on projecting
how climate change and human activities will alter the
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atmospheric abundance of this ozone depleting
substance.

3. Biogeochemical controls on emissions
of VOCs: New chemistry, biology, and the role
of sea SML
3a. Marine sources of VOCs

Perspectives:
� There remain considerable uncertainties in the

atmosphere-ocean fluxes of many oxygenated VOCs
and terpenoids, with impacts on the atmospheric
oxidizing capacity and the formation of SOA.

� New approaches including satellite observations and
inverse modeling, in-situ flux measurements via
online mass spectrometry, and connecting SOA pre-
cursors to aerosol particle volumes should be pur-
sued more extensively.

� Variable biology and the state of the SML likely drive
spatial and temporal variability of ocean–atmo-
sphere VOC fluxes.

To better understand the tropospheric oxidizing capac-
ity, recent attention has been on refining uncertain global
budgets. For example, there is a net oceanic source of
acetaldehyde to the atmosphere but fluxes range widely
between 3 and 57 Tg/year (Millet et al., 2010; Yang et al.,
2014a; Wang et al., 2019a). There is evidence for a missing
acetaldehyde source in the remote marine troposphere
(Wang et al., 2019a), so better establishing this budget is
important. The impacts of new measurements on the
marine oxidizing capacity are not clear (Novak and Ber-
tram, 2020). As well, there is no consensus for methanol
but recent estimates point to a net sink (Stavrakou et al.,
2011; Yang et al., 2014b), and measurements also imply
a sink for acetone, especially at high latitudes with a source
in equatorial regions (Yang et al., 2014a; Yang et al., 2014b;
Brewer et al., 2017). The ongoing uncertainties in oxygen-
ated VOC (OVOC) fluxes are due to variability in the
marine emissions, which can be strongly dependent on
location, biological activity, and time of day. Continuing
developments in inverse modeling techniques coupled to
more measurements, including from satellites (Stavrakou
et al., 2011; Franco et al., 2018; Franco et al., 2019), will
reduce these uncertainties.

Motivated by marine SOA formation, attention has
been on the biologically driven marine emissions of iso-
prene and monoterpenes (Yu and Li, 2021). Given their
low water solubility, the net flux of these compounds is to
the atmosphere but their short lifetimes make their atmo-
spheric measurements variable and localized to biologi-
cally productive regions. Despite having lower emission
rates than isoprene, monoterpenes have much higher SOA
yields than isoprene (Meskhidze et al., 2015). Nevertheless,
compared to terrestrial sources, marine sources of iso-
prene are generally small (Conte et al., 2020). There is
need for more studies of monoterpene oceanic and atmo-
spheric abundance, such as by Hackenberg et al. (2017)
who correlated oceanic concentrations to biological activ-
ity. The advent of online mass spectrometry systems now
permits ocean-based eddy covariance field studies (Kim et

al., 2017). As well, there is merit to revisiting the fluxes of
small alkanes and other small alkenes from the ocean
(Bonsang et al., 1988).

In addition to isoprene and monoterpenes, work in the
past decade has illustrated that glyoxal is another SOA
precursor with potential marine origins. Measurements
of this gas have been made both in and above the marine
boundary layer, showing wide variability in atmospheric
mixing ratios implying a source larger than from gas-
phase oxidation pathways alone (Sinreich et al., 2010;
Mahajan et al., 2014; Volkamer et al., 2015; Walker et
al., 2022). For this reason, it has been hypothesized that
glyoxal is an oxidation product from abiotic chemistry at
the interface of the ocean or marine aerosol (see Section
3c-ii).

An alternate approach to estimate VOC fluxes hinges
on aerosol size distribution field measurements. In the
Arctic, a chemical transport model was used to predict the
size of the SOAVOC precursor source required to reconcile
with particle size distribution measurements (Croft et al.,
2019). This research avenue will be useful when attempt-
ing to close the source budget of SOA VOC precursors.

Lastly, work on the marine source of atmospheric alkyl
nitrates has continued, with a focus on bacterial sources,
distributions, and aerosol nitrate impacts (Kim et al., 2015;
Zeng et al., 2018; Burger et al., 2022). The atmospheric
flux of these species is important as a photolytic source of
NOX; as well, these species may hydrolyze to form aerosol
nitrate (Rindelaub et al., 2015). In remote regions where
anthropogenic and terrestrial input may be low, the NOx

released can play a role in ozone formation (Neu et al.,
2008; Andersen et al., 2023). This NOx source may grow in
relative importance as we move away from combustion as
an energy source, with its associated NOx emissions.

3b. New insights in DMS oxidation

Perspective:
� The atmospheric fate of DMS impacts cloud forma-

tion and therefore earth’s radiative balance and
climate.

� Recently, an abundant, stable intermediate product
of DMS oxidation, identified as hydroperoxymethyl
thioformate (HPMTF, HOOCH2 SCHO), was discov-
ered. This discovery has revised our understanding
of the oxidative fate of DMS in the atmosphere, with
connections to clouds and climate.

The standard understanding was that DMS is oxidized
by radicals to form either sulfur dioxide (SO2) or methane
sulfonic acid (MSA, CH3SO3 H) as the primary stable pro-
ducts, with a minor pathway forming carbonyl sulfide
(OCS) (Barnes et al., 1994). The yield of SO2 from DMS
oxidation has varied widely between studies, indicative
of an incomplete understanding (Faloona, 2009).
Aqueous-phase reactions of DMS and its oxidation pro-
ducts are significant and can drive different yields of
SO2 and MSA compared to gas-phase chemistry alone
(Hoffmann et al., 2016). Recently, the discovery of HPMTF
has necessitated revisiting prior understanding of DMS
oxidation mechanisms and product yields.
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HPMTF is formed through a series of isomerization
reactions of CH3SCH2OO (methylthiomethylperoxy radi-
cal, MSP) which is the first major product of hydrogen
abstraction of DMS by OH. Previously, it was thought that
MSP goes on to react with NO, HO2, or RO2 radicals on
a trajectory toward SO2 production. Calculations by Wu et
al. (2015) showed that under the low NO, and RO2 condi-
tions typical of the marine atmosphere MSP can instead
undergo reactions to form HPMTF at a rate competitive
with bimolecular chemistry. This mechanism of HPMTF
formation was confirmed in a laboratory study as a stable
product of DMS þ OH reaction under low NO, HO2, and
RO2 conditions (Berndt et al., 2019). The first reported in
situ measurements of HPMTF were airborne observations
with near global coverage (Veres et al., 2020). It was
shown that HPMTF is a major reservoir of marine sulfur,
with over 30% of globally emitted DMS oxidized to
HPMTF.

The fate of HPMTF via reaction with OH or heteroge-
neous chemistry may yield novel products. Laboratory
studies have shown the OH lifetime of HPMTF is on the
order of 1 day and that the primary product is SO2 (Ye et
al., 2021; Jernigan et al., 2022a; Ye et al., 2022). However,
Jernigan et al. (2022b) also showed that there is a 13%
yield of OCS, representing the primary OCS production
route from DMS oxidation and requiring an important
revision to understanding secondary OCS production from
DMS (Barnes et al., 1994). Field observations have demon-
strated that HPMTF has important heterogeneous loss
terms, being depleted in clouds and exhibiting fast dry
deposition to the ocean (Veres et al., 2020; Vermeuel et
al., 2020). A laboratory study has also measured the het-
erogeneous uptake coefficient to aerosol (Jernigan et al.,
2022a). The importance of HPMTF uptake to cloud dro-
plets was confirmed by Novak et al. (2021) who used eddy
covariance flux measurements below a stratocumulus
cloud to quantify the flux into clouds. This prompt irre-
versible uptake to clouds is significant as it terminates gas-
phase oxidation toward SO2 and accelerates the formation
of sulfate. Global chemical transport modeling calculated
that 36% of DMS derived sulfur was lost to clouds as
HPMTF, reducing SO2 production from DMS and increas-
ing sulfate concentrations in the lower marine
atmosphere.

3c. Sea SML and the atmosphere

Perspective:

� Strongly impacted by biology, the properties of the
sea SML affect air/sea gas exchange and multiphase
chemistry, both of which control the emission of
volatile species.

� Many studies exploring the chemistry leading to the
formation of volatile species use proxies to represent
the SML and the underlying ocean water. Recent
studies have emphasized the importance of captur-
ing the full chemical complexity of the SML.

� A more detailed connection must be made between
the biological processes, the chemical composition

of the SML, and the chemistry that forms volatile
compounds.

3c-i. Formation, composition, and role of biology

of the SML

The SML is the uppermost layer of the ocean (Engel et al.,
2017). Due to its interfacial properties, the SML influences
the exchange of gases between the ocean and the atmo-
sphere but has also been proposed as a direct source of
VOCs (Liss and Duce, 1997; Mungall et al., 2017). In addi-
tion to photochemical and heterogeneous processes, var-
ious VOCs can be directly produced by marine, primarily
autotrophic plankton and subsequently taken up by het-
erotrophic organisms. Most research on biogenic VOC
cycling focused on DMS due to its role in cloud nucle-
ation. DMS is produced from dissolved dimethylsulfonio-
propionate (DMSP) through bacterial, mainly enzymatic,
conversion, or released directly from phytoplankton dur-
ing cell-lysis (Stefels, 2000; Yoch, 2002). In the SML, DMSP
and DMS are frequently enriched, especially so during
blooms dominated by phytoplankton producing DMSP
(Yang et al., 2001; Matrai et al., 2008; Yang et al., 2009;
Walker et al., 2016). Neuston also affects VOCs emission by
turn-over of organic compounds that abiotically release
VOCs (Kuzma et al., 1995; Nemecek-Marshall et al.,
1995; Moran and Zepp, 1997; Obernosterer et al., 1999;
Sinha et al., 2007). SML organic compounds include dis-
solved hydrocarbons, amino acids, and polysaccharides
(Barthelmeß and Engel, 2022; van Pinxteren et al.,
2022). High abundances of monocyclic aromatic hydro-
carbons and aliphatic VOCs have been associated with the
presence of polysaccharides (Astrahan et al., 2016). Recent
studies further indicate floating microplastic particles as
a source of VOCs (Royer et al., 2018; Lomonaco et al.,
2020). Low-density microplastics can accumulate in the
SML. Chemical, biological, and physical conditions, in par-
ticular increased exposure to ultraviolet radiation and oxy-
gen, promote the thermal and microbial decomposition of
plastic and contribute to VOC release (Wu et al., 2022). In
the air, atmospheric bacteria may continue utilizing and
oxidizing VOCs such as methane (Šantl-Temkiv et al.,
2022).

3c-ii. Oxidation and photochemistry of the SML

The production of VOCs can occur via heterogeneous ozo-
nolysis and photosensitized chemistry of the SML (Novak
and Bertram, 2020). Early photochemical studies observed
the production of small carbonyls from SML samples,
which corresponded to increasing chromophoric dissolved
organic matter (DOM) (Kieber et al., 1990). This suggested
that the VOC production mechanism occurs through indi-
rect photochemistry, by forming a reactive intermediate
such as an absorbing molecule in its triplet state, singlet
oxygen, or OH. Rossignol et al. (2016) found that photo-
sensitizers were not essential to instigate photochemistry
for nonanoic acid surfactants, because they absorb weakly
in the lower actinic region and can act as their own sen-
sitizer. It is unclear if this would occur in the real SML.
Stirchak et al. (2021) studied seawater and freshwater with
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nonanoic acid and photosensitizers and found differing
yields of VOCs, which suggests that the VOC formation
mechanisms may be different in these 2 conditions. True-
blood et al. (2019) used marine-derived DOM as a photo-
sensitizer to show it was less efficient than commercial
humic acid and 4-benzoylbenzoic acid. This result raises
questions about the validity of using terrestrial DOM (e.g.,
humic acid) and single component photosensitizers to
represent DOM. Brüggemann et al. (2017) studied the
VOCs produced from illuminated biofilms to show the
highest VOC yield corresponded to microbial decay, which
suggests that the biological processes that control DOM
composition are important for photosensitized VOC
production.

Heterogeneous ozonolysis is also a VOC source. Zhou et
al. (2014) showed that the ozonolysis of genuine SML
forms VOCs, suggesting that unsaturated fatty acids were
the primary reactants toward ozone. The few studies using
unsaturated fatty acid proxies found that film compres-
sion played a role in the yield, and potentially the kinetics,
by orienting the double bond toward the gaseous phase
(Wadia et al., 2000; Schneider et al., 2019). Since it is
unclear how this would translate to the real SML samples,
caution should be used in interpreting the yield of VOCs
from pure fatty acid SML proxies. Schneider et al. (2019)
used a fatty-acid rich diatom to show that the VOC yield
was sensitive to the growth cycle of phytoplankton, due to
the availability of reactive fatty acids. The highest yields
were observed after cell lysis, however they did not take
into account the bacterial processes which could deplete
the fatty acids. Most recently, riverine SML samples were
exposed to gaseous ozone to form volatile nitrogen-
containing compounds (Wang et al., 2022).

Compared to the lab, there are comparatively few field
measurements of VOCs with abiotic sources. In the Cana-
dian Arctic, OVOC abundance correlated with DOM-
enriched seawater, suggesting an abiotic source (Mungall
et al., 2017). Observations of glyoxal fluxes in the remote
marine environment have been associated with oxidation
of the SML (Coburn et al., 2014). Observations of glyoxal,
acetaldehyde and methylglyoxal have been linked to ozo-
nolysis or photochemistry in the SML (Zhu and Kieber,
2019). While it is shown that isoprene can be photochem-
ically generated, one field study indicated that the iso-
prene flux was biologically driven, since it did not
correlate with the radiation flux (Kim et al., 2017).

4. Conclusions and outlook
This paper has summarized recent advances in our under-
standing of the marine influence on atmospheric chemis-
try, highlighting the essential role that biology plays in
driving these ocean–atmosphere interactions. The impacts
on the atmosphere are widespread, from DMS leading to
climatically active cloud condensation nuclei, to inorganic
and organic halogen-containing species with direct
impacts on odd oxygen in both the troposphere and
stratosphere, to VOCs that affect the atmospheric oxida-
tion capacity and participate in the formation of SOA. The
field is highly vibrant, as illustrated by the new perspec-
tives presented above on how DMS is oxidized in the

atmosphere and the variety of mechanisms by which VOCs
can be released to the atmosphere.

Some of the topics described in the paper are tightly
connected. For example, the sea SML plays a strong role in
modulating VOC fluxes to the atmosphere, as described in
Section 3. However, the SML also impacts the chemical
interactions between ozone and seawater described in
Section 1, which ultimately lead to the formation of the
volatile inorganic iodine compounds I2 and HOI. Overall,
understanding the detailed SML chemistry at the molec-
ular level is essential for both VOC and inorganic halo-
gens. Similarly, there is uncertainty in the degree to which
organohalogens, described in both Sections 1 and 2, are
also affected by biology and perhaps SML processes. A
second theme running through the topic is the challenge
in incorporating many of the detailed processes control-
ling ocean–atmosphere fluxes within large-scale global
models. These processes may involve intricate multiphase
chemistry or biology, the details of which are still being
explored. At present, we rely on relatively crude parame-
terizations of these processes when making predictions of
large-scale atmospheric behavior.

New directions for study interface closely with poten-
tial societal implications. One example, briefly mentioned
above, is the role for microplastics as a source of contami-
nants such as VOCs.While many of these contaminants are
likely to remain in the ocean, the degree to which some
may be expelled to the atmosphere is largely unknown at
present. Another field rich for future studies is the impact
of ocean–atmosphere interactions in coastal regions.
While much of the discussion above has addressed pro-
cesses in relatively pristine conditions, the chemistry that
proceeds in polluted marine settings is worthy of future
studies given that a large fraction of the world’s popula-
tion lives close to an ocean. Interactions of interest include
reactions between nitrogen oxides, especially the nitrate
radical, with marine emissions, and coupled halogen-
organic chemistry that can occur when emissions of both
precursors are elevated and can lead to the formation of
organo-halogen species.

Acknowledgments
This review is a contribution to the international Surface
Ocean Lower Atmosphere Study (SOLAS), which the
authors gratefully acknowledge.

Funding
This publication resulted in part from support from the
U.S. National Science Foundation (Grant OCE-1840868) to
the Scientific Committee on Oceanic Research (SCOR).

Competing interests
The authors have no competing interests to declare.

Author contributions
All authors have made substantial, direct, and intellectual
contribution to the work, and approved it for publication.

Art. 11(1) page 12 of 26 Tinel et al: Impacts of ocean biogeochemistry on atmospheric chemistry
D

ow
nloaded from

 http://online.ucpress.edu/elem
enta/article-pdf/11/1/00032/788611/elem

enta.2023.00032.pdf by guest on 22 M
ay 2024



References
Abrahamsson, K, Granfors, A, Ahnoff, M, Cuevas, CA,

Saiz-Lopez, A. 2018. Organic bromine compounds
produced in sea ice in Antarctic winter. Nature Com-
munications 9(1): 5291. DOI: http://dx.doi.org/10.
1038/s41467-018-07062-8.

Al-Adilah, H, Feiters, MC, Carpenter, LJ, Kumari, P,
Carrano, CJ, Al-Bader, D, Küpper, FC. 2022. Halo-
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Pérez, M, Ochoa, H, Barlasina, ME, Carbajal, G,
Yela, M. 2018. Reactive bromine in the low tropo-
sphere of Antarctica: Estimations at two research
sites. Atmospheric Chemistry and Physics 18(12):
8549–8570. DOI: http://dx.doi.org/10.5194/acp-
18-8549-2018.

Prinn, RG,Weiss, RF, Arduini, J, Arnold, T, DeWitt, HL,
Fraser, PJ, Ganesan, AL, Gasore, J, Harth, CM,
Hermansen, O, Kim, J, Krummel, PB, Li, S, Loh,
ZM, Lunder, CR, Maione, M, Manning, AJ, Miller,
BR, Mitrevski, B, Mühle, J, Doherty, SO’, Park, S,
Reimann, S, Rigby, M, Saito, T, Salameh, PK,
Schmidt, R, Simmonds, PG, Steele, LP, Vollmer,
MK, Wang, RH, Yao, B, Yokouchi, Y, Young, D,
Zhou, L. 2018. History of chemically and radiatively
important atmospheric gases from the Advanced
Global Atmospheric Gases Experiment (AGAGE).
Earth System Science Data 10(2): 985–1018. DOI:
http://dx.doi.org/10.5194/essd-10-985-2018.

Quack, B, Wallace, DWR. 2003. Air-sea flux of bromo-
form: Controls, rates, and implications. Global

Biogeochemical Cycles 17(1). DOI: http://dx.doi.
org/10.1029/2002GB001890.

Reeser, DI, Donaldson, DJ. 2011. Influence of water sur-
face properties on the heterogeneous reaction
between O3(g) and I(aq)

�. Atmospheric Environment
45(34): 6116–6120. DOI: http://dx.doi.org/10.
1016/J.ATMOSENV.2011.08.042.

Rhew, RC, Whelan, ME, Min, D-H. 2014. Large methyl
halide emissions from south Texas salt marshes. Bio-
geosciences 11(22): 6427–6434. DOI: http://dx.doi.
org/10.5194/bg-11-6427-2014.

Rindelaub, JD, McAvey, KM, Shepson, PB. 2015. The
photochemical production of organic nitrates from
a-pinene and loss via acid-dependent particle phase
hydrolysis. Atmospheric Environment 100: 193–201.
DOI: http://dx.doi.org/10.1016/j.atmosenv.2014.11.
010.

Roberts, TJ,Vignelles, D, Liuzzo, M, Giudice, G, Aiuppa,
A, Coltelli, M, Salerno, G, Chartier, M, Couté, B,
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Ordóñez, C. 2016. Global impacts of tropospheric
halogens (Cl, Br, I) on oxidants and composition in
GEOS-Chem. Atmospheric Chemistry and Physics
16(18): 12239–12271. DOI: http://dx.doi.org/10.
5194/acp-16-12239-2016.

Simpson, WR, Brown, SS, Saiz-Lopez, A, Thornton, JA,
Glasow, Rv. 2015. Tropospheric halogen chemistry:
Sources, cycling, and impacts. Chemical Reviews
115(10): 4035–4062. DOI: http://dx.doi.org/10.
1021/cr5006638.

Sinha, V,Williams, J, Meyerhöfer, M, Riebesell, U, Pau-
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