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1.  INTRODUCTION 

The biodiversity and functioning of many ecosys-
tems are often under the control of foundation spe-
cies, i.e. a species or group of functionally similar taxa 
that dominates an assemblage numerically and in 
overall size, and controls community diversity pri-

marily via non-trophic interactions (e.g. trees in for-
ests, seagrass in seagrass meadows, hermatypic corals 
in coral reefs; Ellison 2019, see also Dayton 1971). 
Anthropogenic disturbances to foundation species 
(e.g. exploitation, physical disruption, climate-
 re lated impacts) are major sources of biodiversity loss 
and ecosystem degradation under current global 
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change (Ellison et al. 2005, Alongi 2008, Waycott et 
al. 2009, Smale et al. 2022, Wernberg et al. 2024), and 
the recovery of foundation species from such disturb-
ances can be slow or even impossible (e.g. O’Brien & 
Scheibling 2018, Viehman et al. 2018, Hall et al. 2021). 
Foundation species recovery depends on the ecologi-
cal interactions that take place during the secondary 
succession process – i.e. the sequential replacement 
of species following a disturbance (Prach & Walker 
2011). These interactions can be trophic (e.g. grazing, 
predation) or structure-mediated (i.e. physical eco-
system engineering: sensu Jones et al. 1994) and can 
range from inhibitory effects that slow down or pre-
vent foundation species recovery, to facilitative 
effects that enhance their establishment and recovery 
rates (e.g. Lubchenco 1983, Bertness 1991, Davidson 
1993). 

The deliberate or accidental introduction of non-
native species can lead to novel ecological interac-
tions during secondary succession processes, and 
concomitantly affect foundation species recovery 
rates (e.g. Bando 2006, Biswas et al. 2012). Many non-
native species are, indeed, aggressive colonizers of 
disturbed areas, whose interactions with native spe-
cies and the physical environment alter successional 
trajectories and typically slow down or even stall the 
successional process (see Meiners & Pickett 2011). 
For example, shade-tolerant invasive shrubs coloniz-
ing disturbed forests inhibit tree regeneration by har-
boring high densities of seed predators and by 
resource (primarily light) competition (Gorchov & 
Trisel 2003, Meiners 2007). Moreover, densely grow-
ing, invasive floating macrophytes in disturbed man-
grove forests block the transport of floating mangrove 
propagules from channels to forest interiors, thus 
reducing forest regeneration rates (Biswas et al. 
2012). On the other hand, examples of invasive spe-
cies that accelerate secondary succession processes 
mediating the recovery of foundation species are rare 
at best, even when non-native species are well known 
to facilitate native ones (see Crooks 2002, Rodriguez 
2006 for reviews). 

Several mussel species are well known foundation 
species in the intertidal zone of temperate rocky 
shores across 5 continents (Suchanek 1985, Gutiérrez 
et al. 2003, 2022). The dense beds they form pro -
vide attachment surfaces, sediments, and protected 
interstitial spaces to a variety of other organisms 
(Gutiérrez et al. 2003, 2011), thereby supporting rich 
species assemblages (including many species that 
would not otherwise occur in the rocky intertidal 
zone; see Suchanek 1985, Tokeshi & Romero 1995, 
Borthagaray & Carranza 2007, Bagur et al. 2016). 

However, intertidal mussel beds are affected by 
 various forms of anthropogenic disturbance, includ-
ing harvesting, trampling, and anthropogenically 
en hanced increases in the frequency and intensity of 
storms and extreme temperature events (both heat 
waves and cold spells) (e.g. Tsuchiya 1983, Donker 
et al. 2015, Micheli et al. 2016, Mendez et al. 2018, 
Cameron & Scrosati 2023). These disturbances re -
duce mussel cover to varying degrees, sometimes 
leading to local mussel disappearance (e.g. Tsuchiya 
1983, Cameron & Scrosati 2023). Yet, even when 
 disturbance-induced mortality is patchy and rem-
nants of the mussel bed persist, recolonization of the 
exposed rock surfaces is usually quite slow (e.g. 5 yr; 
see Micheli et al. 2016). Mussel recolonization rates 
can, however, be enhanced if exposed rock surfaces 
are previously colonized by other sessile organisms 
such as barnacles, which increase surface rugosity, 
thus providing potentially suitable microhabitats 
for mussel recruitment, attachment, and survival 
(Menge 1976, Lively & Raimondi 1987, Petraitis 
1990, Hunt & Scheibling 1996). 

The mussel Brachidontes rodriguezii is a founda-
tion species that characterizes rocky shores on the 
northern Argentinean coast (37° to 41° S; Arribas et 
al. 2013, Trovant et al. 2013). This relatively small 
mytilid (up to 55 mm length, most individuals 
<30 mm length) forms dense and primarily single-
layered beds (up to 2000 ind. dm–2; Penchaszadeh 
et al. 2007, Arribas et al. 2015, Gutiérrez et al. 2015) 
that support rich species assemblages (including 
many species that would not otherwise occur in the 
rocky intertidal zone; Penchaszadeh et al. 2007, 
Arribas et al. 2013, Gutiérrez et al. 2019, Soria et al. 
2022). Whilst these beds can cover up to 90% of the 
rocky substrate in the mid-intertidal zone, they are 
commonly interspersed by a larger proportional 
cover of gaps (see Soria et al. 2022). These gaps 
portray different stages of the secondary succession 
process and typically form after patchy mussel dis-
lodgment due to strong wave action as well as 
patchy mortality and concomitant dislodgment due 
to extreme temperatures and desiccation at low 
tide (Gutiérrez et al. 2015, 2023). 

Non-native acorn barnacles Balanus glandula are 
important early colonists of gaps, together with the 
native pulmonate limpets Siphonaria lessonii and 
crustose algae (Soria et al. 2022, 2023). These bar-
nacles, which are native to the west coast of North 
America, were first detected in Argentina in the 
1970s (port of Mar del Plata: 38° 01’ S, 57° 31’ W; 
Bastida et al. 1980), and are now widespread all 
across the Argentinian coastline (36° to 54° S; 
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Schwindt 2007), including the northern rocky inter-
tidal shores dominated by B. rodriguezii (37° to 
41° S; see previous paragraph). Considering (1) the 
ability of these barnacles to colonize the relatively 
flat rock surfaces that become exposed after the 
formation of gaps in mussel beds (Vallarino & Elías 
1997, Soria et al. 2023), (2) the lack of native bar-
nacle species (or other species that contribute to 
surface rugosity in a similar fashion) in these mus-
sel-dominated shores (Penchaszadeh et al. 2007), 
and (3) the known role of surface roughness ele-
ments — and barnacles in particular — in facilitating 
mussel colonization (e.g. Dayton 1971, Petraitis 
1990, Köhler et al. 1999, Erlandsson & McQuaid 
2004, Menge et al. 2011), here we predicted that 
non-native B. glandula facilitates gap recolonization 
by B. rodriguezii and that this novel interaction 
accelerates the recovery of mussel coverage. 
Additionally, as B. glandula is known to positively 
affect densities of the pulmonate limpet S. lessonii 
(Hesketh & Harley 2023), and these limpets are 
early gap colonists and dominant grazers in our 
study system (indeed, they are the only grazing 
gastropod species in these shores; Penchaszadeh et 
al. 2007, Soria et al. 2022, 2023), we predicted that 
non-native barnacles affect overall successional tra-
jectories in gaps by exacerbating the grazing 
impacts of limpets. 

In this study, we investigated the effect of the non-
native barnacle B. glandula on the recovery of mussel 
cover and secondary succession trajectories in 
experimentally disturbed plots where barnacles were 
allowed and not allowed to recruit. Specifically, we 
examined the effects of barnacles on the proportional 
recovery of mussels (i.e. relative to the pre-experi-
mental 100% cover status) and the identity and abun-
dance of benthic taxa over the succession process 
during 542 d. 

2.  MATERIALS AND METHODS 

2.1.  Study site 

This study was conducted at Playa Grande 
(38° 01’ 31.1” S, 57° 31’ 45.6” W), an intertidal rocky 
shore in Mar del Plata, Buenos Aires province, Argen-
tina. This site is about 1 km distant from the port of 
Mar del Plata (the site where Balanus glandula was 
first detected in Argentina; Bastida et al. 1980). Playa 
Grande is characterized by hard, orthoquartzite plat-
forms, which form relatively continuous horizontal 
surfaces (Gutiérrez et al. 2018). The shore at this site 

faces southeast, which is the direction of the strongest 
swells (Fiore et al. 2009), and can be classified as 
‘exposed’ according to the MarLin wave exposure 
categories (i.e. an open coast facing away from pre-
vailing winds but with a long fetch, and where strong 
winds are frequent; see https://www.marlin.ac.uk/
glossarydefinition/waveexposure). Tides along this 
area are semidiurnal and microtidal (0.83 m mean 
amplitude; Servicio de Hidrografía Naval, www.hidro.
gov.ar). 

2.2.  Field experiment 

A succession experiment was conducted from 
October 2015 to May 2017 (Table S1 in the Supple-
ment at www.int-res.com/articles/suppl/m732p073_
supp.pdf). Twelve 25 × 25 cm square plots spaced at 
least 3 m apart were randomly demarcated on hori-
zontal surfaces in the mid-intertidal zone of a ~40 m 
long platform, and the mussel layer in these plots was 
removed with the aid of a putty knife to simulate the 
gaps formed due to natural dis turbances (typically 
ranging between 4 and 3500 cm2, most of them 
<1500 cm2; Soria et al. 2022). Mussels were deliber-
ately removed in Oc tober, as we have previously 
observed barnacle recruitment in spring at this site 
(see also Vallarino & Elías 1997). Barnacles recruited 
in all of these plots after 28 d (i.e. 11 November 2015; 
mean = 96 ind. dm–2, SD = 37; see also Fig. S1). In 6 of 
these experimental plots, all B. glandula recruits were 
removed with the aid of a putty knife leaving no bar-
nacle residues adhered to the rock, and these plots 
were kept barnacle-free throughout the experiment 
(Fig. S1, hereafter ‘No barnacles’ treatment). In the 
other 6 plots, all B. glandula recruits were allowed 
to develop (Fig. S1, hereafter ‘Barnacles’ treatment). 
Of note, B. glandula recruitment was minimal during 
the rest of the experiment (see Broitman et al. 2008 
for examples of annual recruitment failure in B. 
 glandula). 

The experimental plots were monitored on a nearly 
monthly basis (see Table S1). On each visit, barnacles 
were removed from the ‘No barnacles’ treatment 
plots (see Fig. S1), whereas the percent cover of ses-
sile species (mussels, barnacles, algae) and the den-
sities of limpets (5 × 5 cm subsample) were quantified 
in each plot. The percent cover of sessile species was 
quantified using the point-intersection counting 
method (5 × 5 cm grid and 36 total points including 
edge; see Soria et al. 2023), whereas limpet densities 
were calculated as the number of individuals per 
25 cm2. 
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2.3.  Data analyses 

Generalized linear models with generalized estima-
tion equations (GEEs; Zuur et al. 2009) were used to 
analyze variation in mussel cover and the abundance 
of other dominant species or groups (crustose algae, 
macroalgae, and pulmonate limpets Siphonaria less-
onii; see Section 3) between Treatments (fixed effect) 
over Time (within subjects, repeated measure). A 
binomial distribution was used for the analyses of the 
percent cover of mussels, crustose algae, and macro-
algae and a Poisson distribution for the analysis of S. 
lessonii densities. Several models with different cor-
relation matrices (i.e. autoregressive, exchangeable, 
and independent) were compared using the quasi-
probability information criterion (QIC) to identify the 
appropriate correlation structure for the model that 
used each response variable. According to QIC, an 
unstructured correlation matrix was the appropriate 
correlation structure for the percent cover of mussels 
and macroalgae and the density of limpets, whereas 
an independent matrix was the appropriate correla-
tion structure for the percent cover of crustose algae. 
All GEEs were performed with the ‘geepack’ package 
in R (Halekoh et al. 2006, R Core Team 2020). p-
values < 0.05 were considered significant in these 
and subsequent statistical tests. 

The effects of barnacles on the identity and relative 
abundance of benthic groups or taxa (i.e. the abun-
dance of groups or taxa as a proportion of a total 
assemblage) along the successional process were 
evaluated with multivariate methods. Differences in 
assemblage structure were evaluated using permuta-
tional multivariate analysis of variance (PERM-
ANOVA) with Treatments (No barnacles, Barnacles) 
and Time (i.e. sampling dates) as fixed factors and 
Replicates (nested within Treatment) as a random fac-
tor to account for the temporal non-independence of 
the data. Successional trajectories of assemblage 
structure were visually represented with non-metric 
multidimensional scaling (nMDS) using Bray-Curtis 
distance as the dissimilarity index with PRIMER 6.0 
(Clarke 1993). Percent cover and density data were 
standardized to unify units using a standardization 
based on the range within a variable (Quinn & 
Keough 2002). To achieve this, each observation was 
divided by the maximum value of its variable, so that 
each observation was expressed as a proportion of the 
largest value for its variable (see Quinn & Keough 
2002, Soria et al. 2023). Pairwise PERMANOVA tests 
were performed a posteriori to analyze significant dif-
ferences among factor levels, and an analysis of simi-
larity percentages (SIMPER) was then conducted to 

identify the taxa that contributed the most to the dif-
ferences in the relative abundance between treat-
ments with PRIMER 6.0 (Clarke 1993). 

3.  RESULTS 

Mussel cover was higher in the ‘Barnacles’ plots 
than in the ‘No-barnacles’ plots and did not follow the 
same pattern over time (i.e. the interaction between 
Treatment and Time was significant, Table 1, Fig. 1). 
Maximum percent cover of mussels was observed 
440 d after the beginning of the experiment (sum -
mer), with 79.17 ± 8% (mean ± SD) in the ‘Barnacles’ 
plots and 59.26 ± 13.57% in the ‘No barnacles’ plots 
(Fig. 1). 

The identity of species in the plots did not diverge 
between treatments over time (Table 2, Fig. 2). On the 
other hand, the relative abundance of species estab-
lishing into the plots during the successional process 
was affected by the presence of Balanus glandula 
(Table 2, Fig. 2). During early successional stages, the 
data points occupied a similar location in the multi-
variate space regardless of the presence of B. glan-
dula, but after the third month, successional trajec-
tories progressively diverged for plots with and 
without B. glandula. Differences in the relative abun-
dance of species in the assemblage between both 
treatments were observed from Days 97 to 383 (i.e. 
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Variable                                                 χ2            df               p 
 
Mussel cover 
Treatments                                          8.2            1         <0.001* 
Time                                                     55.3           1         <0.001* 
Treatments × Time                          22.3           1         <0.001* 
Siphonaria lessonii density 
Treatments                                         27.4           1         <0.001* 
Time                                                     35.8           1         <0.001* 
Treatments × Time                           1.2            1             0.28 
Crustose algae cover 
Treatments                                         77.2           1         <0.001* 
Time                                                     48.1           1         <0.001* 
Treatments × Time                             0              1             0.86 
Macroalgae cover 
Treatments                                        0.032          1             0.86 
Time                                                    2.229          1             0.14 
Treatments × Time                         0.029          1             0.86

Table 1. Analysis of the Wald statistic for generalized linear 
models with generalized estimation equations relating mus-
sel cover, Siphonaria lessonii density, crustose algae cover, 
and macroalgae cover between Treatments (‘Barnacles’ and 
‘No barnacles’) and Time. Asterisks indicate significant  

effects (p < 0.05)
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late summer to late spring) and from Days 471 to 542 
(i.e. late summer to autumn; pairwise PERMANOVA: 
t > 1.48, p < 0.05 in all of these cases; Fig. 2b). Lim-
pets (Siphonaria lessonii) contributed most to dif -
ferences between treatments from Days 97 to 192 
(mid-summer to late autumn; SIMPER: 32–52% con-
tribution to assemblage dissimilarity in all cases; 
Table S2). Crustose algae (Ralfsia sp.) contributed the 
most to differences between treatments in 2 periods 
(from Days 226 to 349 and 471 to 542, i.e. winter to 
spring and late summer to autumn, respectively; 

SIMPER: 14–40% contribution to as -
semblage dissimilarity; Table S2). In 
addition, mussels also contributed to 
differences from Days 471 to 542 (late 
summer to autumn; SIMPER: 20–30% 
contribution to as semblage dissimilar-
ity; Table S2). 

The species that characterized the 
early- to mid-successional stages in 
this experiment were S. lessonii lim-
pets and crustose algae (Hildenbran-
dia sp. and Ralfsia sp.). ‘No barnacles’ 
plots showed lower limpet densities 
and higher cover of crustose algae 
than ‘Barnacles’ plots, and both vari-
ables followed a similar pattern over 
time (non-significant interaction be -
tween time and treatment was ob -
served, see Table 1, Fig. 3). The per-
cent cover of macroalgae (see species 
in Table S3) in the ‘Barnacles’ and ‘No 
barnacles’ plots did not differ through-
out the experiment (Table 1, Fig. 3). 

4.  DISCUSSION 

Our findings indicate that the pres-
ence of Balanus glandula in experi-
mentally exposed rock surfaces com-
parable to gaps affects the successional 
process and accelerates recovery of 
mussel cover. As many studies illus-
trate, sessile organisms such as bar-
nacles can facilitate subsequent mussel 
establishment by increasing surface 
rugosity and providing potentially suit-
able microhabitats for recruitment, at-
tachment, and survival (Menge 1976, 
Lively & Raimondi 1987, Petraitis 1990, 
Hunt & Scheibling 1996). A peculiarity 
of our study is that it illustrates that 

similar facilitative effects on mussels can be mediated 
by non-native barnacles, even though they lack a 
shared evolutionary history. Due the lack of native 
barnacle species (or other species that contribute to 
surface rugosity in a similar fashion) in the northern 
Argentinean rocky shores dominated by the mussel 
Brachidontes rodriguezii, we posit that this novel fa-
cilitative interaction may have increased the capacity 
of this mussel foundation species to recover from dis-
turbances and, ultimately, its overall resilience against 
various anthropogenic or anthropogenically en -

77

Fig. 1. Percent cover of the mussel Brachidontes rodriguezii through time in 
the ‘Barnacles’ (black) and ‘No barnacles’ (grey) experimental plots (n = 6).  

Error bars indicate standard deviation

Source                                     df           MS          Pseudo-F        perms        p(perm) 
 
Abundance 
 Treatments                           1         22000             9.41                410             0.003* 
 Time                                     16         5775             14.05               996             0.001* 
 Replicate (Treatments)   10         2337              5.68                997             0.001* 
 Treatments:Time              16          831               2.02                998             0.001* 
 Residual                              160         411 
Total                                       203 
Presence/absence 
 Treatments                           1          2985               2.9                 462              0.057 
 Time                                     16         2226              13.3                992            0.001* 
 Replicate (Treatments)   10          998                5.9                 994            0.001* 
 Treatments:Time              16          255                1.5                 922              0.090 
 Residual                              160         167 
Total                                       203

Table 2. Two-way PERMANOVA testing the fixed effect of Treatment (‘Bar-
nacles’ and ‘No barnacles’) and the random effect of Time (replica nested in 
treatment) on the relative abundance and identity of benthic groups or taxa. 
MS: mean squares; Pseudo-F : PERMANOVA statistic; perms: number of  

permutations. Asterisks indicate significant effects (p < 0.05)
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hanced stressors that cause patchy mussel mortality 
(e.g. extreme climatic events such as heat waves or 
storms). 

As for the mechanisms leading to the recovery of 
mussel cover in the experimental plots (not quanti-
tatively addressed in this study), we observed that, 
even when mussels recruited into these plots, the re-
covery of mussel cover was primarily driven by the lat-
eral expansion of the surrounding mussel bed (see also 
Penchaszadeh 1973, Soria et al. 2022 for further ev-
idence of this in this study system). Mussel adults are 
known to move (e.g. in response to predators or 
crowding by neighbors; Nicastro et al. 2008, Garner & 
Litvaitis 2013, Brante et al. 2019). Mussel movement 
involves severing existing byssal threads and produc-
ing new ones with concomitant temporal reductions in 

attachment strength (Garner & Litvaitis 
2013, Brante et al. 2019). It seems plau-
sible that barnacles aided the migration 
of adult mussels into the experimental 
plots by providing protected microhab-
itats and safer adhesion surfaces during 
the movement and reattachment phase, 
when they may be more vulnerable to 
hydrodynamic drag and dislodgment 
(see Nicastro et al. 2008, McQuaid et 
al. 2015). 

Aside from its positive effects on re-
covery rates of mussel cover, the pres-
ence of non-native barnacles in early 
successional stages also alters the suc-
cessional trajectories that follow the 
disturbance of mussel beds. Whilst the 
species recruiting in exposed rock 
areas with and without barnacles were 
virtually the same throughout the sec-
ondary succession process, their rel-
ative abundance varied depending on 
the presence of barnacles. In particular, 
the densities of the limpet Siphonaria 
lessonii were higher in the presence of 
non-native barnacles. At low tide, these 
limpets aggregate in pits and crevices, 
or around other organisms (e.g. mus-
sels, conspecific limpets), possibly as a 
way to reduce their exposure to detri-
mental heat and desiccation levels 
(Bazterrica et al. 2007, Bagur et al. 
2016, Soria et al. 2022). Facilitation of 
limpets by B. glandula (possibly via 
moisture retention) has recently been 
documented in an Argentinian rocky 
shore (Hesketh et al. 2021) and the ag-

gregation of these limpets around this non-native bar-
nacle was observed during the course of this study 
and elsewhere along the Argentinian coast (J. Gutiér-
rez pers. obs.). Here, the positive effect of barnacles 
on limpets was accompanied by a reduced cover of 
crustose algae in the presence of barnacles, which 
suggests that barnacles inhibit the development of 
crustose algae indirectly via the increase in the 
density of grazing limpets (Adami 2008, see Hesketh 
et al. 2021 for additional evidence of this indirect fa-
cilitation interaction). Yet, the observed increases in 
limpet densities in the presence of barnacles had no 
effect on overall macroalgal cover as evidenced by 
similar temporal variations in both treatments. This 
suggests that limpets primarily graze on crustose 
algae, at least in this system. 
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Fig. 2. Non-metric multidimensional scaling (nMDS) comparing temporal tra-
jectories in (a) the relative abundance of species (after standardizing cover and 
count data) and (b) the identity of species between the ‘Barnacles’ and ‘No bar-
nacles’ treatments. The numbers near data points indicate the order of the 
sampling dates (see Table S1 in the Supplement for detailed information on the 
precise number of days elapsed since the beginning of the experiment). Each 
point represents standardized abundances averaged across replicates (n = 6). 
The points with a blue and red edge indicate the first and last sampling date, 
respectively. The Bray-Curtis distance was used as a measure of dissimilarity  

in standardized abundances
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Moreover, the positive effect of bar-
nacles on limpet densities further re -
inforces our above arguments on the 
prominence of adult immigration over 
recruitment in driving mussel cover 
recovery on the experimental plots. 
Indeed, limpets and other grazing gas-
tropods are known to reduce mussel 
recruitment by mechanically dislodg-
ing — or ‘bulldozing’ — their recently 
settled larvae (e.g. Steffani & Branch 
2005). While bulldozing of mussel lar-
vae by S. lessonii might have occurred 
in our experiment, the results suggests 
that any reduction in mussel recruit-
ment due to limpet bulldozing was 
over compensated by positive effects of 
barnacles on adult immigration. 

The net positive impact of barnacles 
on mussel bed recovery rates is ex -
pected to vary depending on the timing 
of disturbance relative to the  barnacle 
recruitment season. In our ex periment, 
barnacles quickly re cruited into the 
 experimental plots (i.e. within the first 
month from initial disturbance; see 
Section 2), which means that they 
began facilitating mussel recovery 
quick ly after disturbance. Clearly, 
slower mussel recovery rates should be 
expected with an increasing time in -
terval from disturbance to barnacle 
 settlement. Yet, previous studies sug-
gest that the re cruitment of barnacles 
quickly after mussel bed disturbance 
should be frequent in our region. 
Indeed, B. glandula recruitment in this 
region was ob served to occur from July 
to December (Vallarino & Elías 1997), 
whereas storm disturbances occur all 
year round in a nonseasonal fashion 
(Fiore et al. 2009, Gonzalez et al. 2021). 
This implies that there are 6 months 
per year where quick barnacle recruit-
ment after wave disturbance is plau-
sible to occur. Ad ditionally, since mus-
sels re cruit all year round in this region 
(Arribas et al. 2015) and also immigrate 
into disturbed plots from adjacent beds 
(see previous paragraph), their positive 
re sponses to barnacle presence are ex -
pected to be rapid irrespective of the 
time of the year. 
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Fig. 3. (a) Limpet (Siphonaria lessonii) density, (b) percent cover of crustose 
algae, and (c) percent cover of macroalgae through time in the ‘Barnacles’ 
(black) and ‘No barnacles’ (grey) experimental plots (n = 6). Error bars indi- 
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The facilitative impact of barnacles on mussel bed 
recovery and the concomitant potential for increases 
in the resilience of mussel beds to disturbance could 
help counteract some of the detrimental impacts of 
anthropogenic climate change on mussel bed hab-
itats (e.g. increasing gap formation rates and persis-
tence due to increased frequency of storms and heat 
waves; Soria et al. 2023). As with other foundation 
species (Ellison et al. 2005, Alongi 2008, Waycott et 
al. 2009, Smale et al. 2022), anthropogenic losses of 
mussel bed habitats are raising concern from the con-
servation standpoint given their importance in sup-
porting biodiversity and functions in coastal ecosys-
tems (e.g. Mendez et al. 2021, Fields & Silbiger 2022). 
In this context, non-native species are typically 
viewed as threats to mussel bed habitats that can out-
compete, or otherwise detrimentally affect, mussels 
(e.g. Nehls et al. 2009, Mainwaring et al. 2014). Our 
findings, however, illustrate that a non-native species 
such as B. glandula can aid the persistence of mussel 
foundation species against increasing disturbances 
associated with anthropogenic global change. 

Although invasion biologists initially emphasized 
detrimental impacts of non-native species, the posi-
tive effects of non-native species on native ones have 
received increasing attention over the last 2 decades 
(e.g. Rodriguez 2006, Davis et al. 2011, Doody et al. 
2013, Pintor & Byers 2015, Ramus et al. 2017). Our 
study adds to this growing body of literature by illus-
trating that non-native barnacles facilitate the recov-
ery of a native mussel foundation species following a 
disturbance. This novel, facilitative interaction can 
be construed as a habitat cascade (Thomsen et al. 
2010), where non-native barnacles, as primary hab-
itat-modifying species, facilitate the establishment 
of native mussels that act as foundation species and 
support much of the rocky shore biodiversity. Yet, 
we prefer to be cautious about whether non-native B. 
glandula can be considered as a ‘beneficial’ non-
native species in the recipient rocky shore commu-
nities. Even when mussel beds support a substantial 
fraction of the overall biodiversity in these commu-
nities (Bagur et al. 2016, Soria et al. 2022), gap spe-
cialists might be negatively affected by the presence 
of barnacles as they positively affect limpet densities 
and grazing rates (Hesketh et al. 2021) while narrow-
ing the timeframe available for gap colonization by 
accelerating the recovery of mussel cover. As is 
usually the case with non-native species impacts 
(e.g. Ruesink et al. 2005, Ward & Ricciardi 2007, 
Byers et al. 2012), there should be both winners and 
losers from the establishment of non-native B. glan-
dula in the recipient rocky shore communities. 

Knowledge on the species that lose from accelerated 
mussel recovery rates and studies in other rocky 
shores in our region are still needed for a more 
definitive and general assessment of the impact of B. 
glandula in these communities. 
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