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Digital Closed-Loop High-Speed Thyristor Firing System

for Line-Commutated Converters

S.Maestri, M.Benedetti, G.Uicich, and J.L.Gomez Costa

Abstract

This report presents the implementation of an all-digital high-speed closed-loop thyristor �ring

system based on the Cassel technique. Di�erent aspects associated to digital implementations, like

sampling frequency, synchronism and �nite word-length are analyzed. Experimental results obtained

on a CERN GEREG crate are presented.

1 Introduction

Most of the high-precision high-power converters used in particle accelerator facilities are line-commutated
phase-controlled thyristorized converters (PCTC) due to their intrinsec ruggedness, reliability and large
overload tolerance. As the precision of the supplied output current in these applications is usually speci�ed
to be better than 100ppm, some key elements of its control system like the thyristor gate controller (TGC),
must be carefully engineered.

Several types of TGC's have been conceived so far. Some TGC systems have been speci�callly devised
to provide accurate time lags between a mains reference synchronism signal and each gating event regard-
less of any variable within the converter, whereas others generate the �ring pulses precisely according to
the evolution of a linear combination of representative magnitudes inside the PCTC. These techniques to
build a TGC are known as open-loop and closed-loop topologies respectively. The former are best suited
to be digitally implemented and the latter were originally analog wise. For high-precision converters,
digital TGC structures are preferred over analog designs in order to avoid the burden imposed by lengthy
calibration process, circuit tuning and component screening and matching. On the other hand, closed-loop
techniques o�er faster time response and feedforward mains disturbance compensation [1]. Hence, with the
objective of obtaining the fast response of a closed-loop TGC with the advantages of a digital design, this
work presents a novel gate controller based on the methodology proposed by Cassel-Ainsworth [2]. Digital
limitations due to DSP sequential operation and �nite machine time are circumvented by concurrent use
of FPGA parallel processing. Simulation results are provided along with measurements on a 6-pulses 1kW
controlled recti�er prototype.

2 Topology

Firing systems operating in closed-loop de�ne the �ring events based on the time-integral of the voltage
error, achieving the fastest time response when properly designed [1]. Considering this, a digital feedback
gating controller following the scheme proposed by Cassel and Ainsworth was devised [1] [2]. Fig. 1 shows
the corresponding block diagram.

The Cassel-Ainsworth �ring system has a �rst-order closed-loop response. The main feature of this
�ring system is the integral controller with the highest possible gain K, compatible with loop stability,
yielding the fastest time response to a line disturbance.

The voltage error Ve is de�ned as the di�erence between the reference Vref and the recti�ed output
voltage Vo multiplied by H, the feedback transfer. In steady state, the average feedback voltage H.Vo
equals the reference input due to the integration action performed by the loop, and the error signal contains
only the output ripple weighted by H, which is accomplished by generating a �ring pulse each time the
time-integral of the error crosses zero. This is equivalent to force the average value of the error to be zero
between consecutive gating events.

Closed-loop TGC's for PCTC's with maximum gain in the integrating controller for theoretically stable
operation according to the simpli�ed small-signal model produce subharmonic oscillations [3], [4]. This
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Figure 1: Analog �ring system implementation.

oscillation is similar to the observed in pulse-by-pulse current mode controllers in switched-mode power
supplies.

The standard solution to this problem is to introduce a compensating ramp in the comparison signal [1].
Hence, every time a �ring pulse is produced, a constant value Vx is substracted with the ramp as shown
in Fig.2.

Figure 2: Left: Compensating ramp and �ring pulses. Right: Time integral of the voltage error and compensating

ramp.

The conduction period (γ) of one conducting set of thyristors is 2π
p . Therefore, the ramp slope (mr)

is:

mr =
Vx
γ

=
Vx
2π
p

(1)

As can be seen in Fig.2, a change ∆V in the integrated voltage error will modify the �ring angle in
∆α. Therefore, the comparison with the ramp implies that the gate controller has a gain equal to ∆V

∆α , or
1
mr

, which has to be taken into account when the gain controller K is selected.
Regarding the PCTC small-signal transfer Gth(s), it may be approximated by Eq.2 assuming that the

closed-loop bandwidth has a maximum of
fripple

4 [3].

Gth(s) =
∂[EMAX · pπ · sin

π
p · cosα]

∂α
· (1− e−Tripples)

Tripples
(2)

where EMAX is the maximum line voltage, p is the number of pulses, α is the �ring angle and Tripple
is the output ripple period. According to Eq.2, the gain of the small-signal transfer Kth results:

Kth =
∂[EMAX · pπ · sin

π
p · cosα]

∂α
=
∂[Ed0 cosα]

∂α
= −Ed0 sinα (3)

Fig.3 shows the complete small-signal model of the system.
where H is the voltage divider.
The open-loop transfer GH(s) of the system is:
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Figure 3: Small-signal model of power converter in closed-loop.

GH(s) =
K

s
·

2π
p

Vx
· Edo · sinα ·H ;α = αop (4)

To avoid unstability for all α, and assuming H constant, the gain K for a given cut-o� frequency fc
results:

K = 2πfc

[
Vx/

2π
p

Edo ·H

]
= pfc ·

Vx
Edo ·H

(5)

3 Implementation

The gate controller conceived this way must include three well de�ned functional blocks:

• The time integral of the di�erence between the reference and the feedback voltage.

• A ramp generation and voltage comparator.

• A pulse distributor or multiplexer.

Fig. 4 shows the proposed scheme for a p-pulse PCTC. The di�erence equation corresponding to the
integral controller is structured on a 24-bit DSP. The DSP calculates the time-integral of the voltage error
and the result is sent to a low cost FPGA. The ramp generation and threshold comparison is performed
inside the FPGA. Due to the parallel processing performed in the FPGA, this task is accomplished without
signi�cant loss of precision and time. The pulse distribution is also solved inside the FPGA. The remaining
blocks involve A-to-D voltage acquisition and antialiasing �ltering.

Figure 4: Digital �ring system implementation.

The precision of the TGC developed depends on three key points: the sampling frequency, the digital
resolution and the synchronism subsystem.

For the Cassel-Ainsworth technique it is particularly important the resolution on Vo measurement.
Also, the �ring instant is de�ned by the time integral of Ve, which has an abrupt change at the gating

3



event. So, if the sampling frequency is not synchronized with Ve(t) there will not be an integer number of
calculations over a ripple period, leading to oscillations whose frequency depends on the sampling periods
necessary to obtain an integer number of ripple periods. When both frequencies (fripple and fs) are
synchronized, the ratio between them is a constant integer and the time-integral of the sampled error
has no AC component. In a practical situation, there is a very low frequency beating, that can easily be
�ltered by the relatively high gain of the loop by making fs = 2Nfripple.

The ramps required to adjust the gain and to prevent subharmonic instability are discrete in a digital
implementation. They are obtained by means of digital counters synchronized to the mains with a PLL.
Notice that the time resolution for these ramps must be consistent with the precision required for the
output voltage. Therefore, an M[ppm] voltage precision at full scale will demand n-bit ramps. Lower
resolution would produce dithering-like behavior between consecutive �ring pulses. the resolution required
could be determined as follows.

The ramp quantization produces an error ∆α in the �ring instant that produces an error in the output
voltage Vo. In a small-signal approach:

∆Vo
∆α

= Edo · sin(αop) ⇒ ∆Vo = Edo · sin(αop) ·∆α (6)

As the relevant precision for the system is usually speci�ed for the current in steady state:

Vo = Io ·R→ ∆Vo = ∆Io ·R⇒
∆Vo
Vo

=
∆Io ·R
Io ·R

=
∆Io
Io

(7)

Therefore, M[ppm] in the output voltage produces M[ppm] in the output current.

∆Vo
Vo

=
Edo · sin(αop) ·∆α
Edo · cos(αop)

≤M[ppm] ⇒ ∆α · tan(αop) ≤M[ppm] (8)

The time resolution is the ratio between the line period and the modulus N of the ramp counter which
is preferred to be expressed [5]:

fPLL = N · fLINE N = 2r · p (9)

where r is an integer.
The N -modulus counter reaches 2π in synchronism with the line period. Every time a �ring pulse

is produced a �xed amount k is substracted from the counter like in the analog system. There are N
transitions in a line period, and N

p transitions in a ripple period. Likewise the analog case, the gain of the
thyristor gate controller is de�ned as the inverse of the slope ramp:

mr =
k
N
p

GTGC =
1
mr

=
N
p

k
(10)

As α varies from 0 to π, it will be represented by only N
2 states of the counter. This implies that an

n-bits ramp leads to (n−1)-bits of resolution in α. The precision requiredM[ppm] will de�ne the resolution
of α:

∆α =
π
N
2

⇒ ∆α ≤M[ppm] ⇒ π
N
2

≤M[ppm] ⇒ N ≥ 2π
M[ppm]

(11)

4 Experimental results

The proposed system was implemented at CERN on a 6-pulse 1kW 50Hz thyristorized power converter.
As the precision required in the output voltage was close to 100ppm, N = 49152 is selected. Therefore:

N = 49152 = 2n ⇒ n = 15.5 fPLL = N · 50Hz = 2.4576Mhz (12)

With N = 49152, the PLL frequency was 2.4576 MHz. As the resolution is close to 15 bits, a 15-bit
word-length was selected.

The soft synchronization to the mains was carried out by software, polling the clock signal generated
with the PLL connected to the mains. The sampling frequency fs was selected assuming a loss in the
phase margin of 5◦ due to the sampling process [6]:
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fripple = 6 · 50Hz = 300Hz fs ≥
πfBW

∆ϕ[RAD]
=

πfripple
5◦ · ( π

180 )
→ fs = 64 · fripple = 19200Hz (13)

where fBW is the bandwidth of the system and ∆ϕ[RAD] is the phase margin loss in radians.
16-bit A-to-D converters were used in the prototype with 1.5kHz antialiasing �ltering. The performance

of the digital design was compared to the performance of an existing Cassel-Ainsworth analog controller
carefully adjusted on the same power converter. The analog controller has a theoretical cut-o� frequency
of 75Hz, which is nearly the maximum for a 6-pulse converter with π

4 phase margin in the control loop.
The digital controller was implemented using a bilinear approximation:

α[k] = Kz · Ve[k] + α[k − 1] (14)

where α[k] is the output of the algorithm, which is the integral of the voltage loop error, Ve[k] is the
voltage loop error, i.e., the di�erence between the loop reference and the output voltage �ltered by the
antialiasing �lter, α[k − 1] is the previous output of the algorithm and Kz is the constant used to choose
the bandwidth of the system. It was selected to have the same bandwidth than the analog controller.

Three key points were analyzed:

1. Steady state operation.

2. Rejection to mains frequency disturbances.

3. Rejection to mains voltage disturbances.

The performance of both controllers was compared as part of a current control system. Fig 5 shows a
typical current feedback system for particle accelerator applications.

Figure 5: Current control system.

In Fig. 5 Vp signal represents all the disturbances outside the loop �ring system (e.g., voltage ripple,
frequency shift, etc.).

Instead of building the whole control system, the experiment was carried out using only the power
converter and the �ring system. The power converter was fed with an Agilent 6834B programmable
mains source in order to perform the experiments named 1, 2 and 3, and it was set with a constant
voltage reference Vref using either an analog �ring system or a digital �ring system. The remaining
transfer functions were simulated with MATLAB/SIMULINK. The actual output voltage Vth using both
the analog and digital �ring systems was acquired and processed o�-line with this software. Fig.6 shows
the complete system.

In the SIMULINK model, the voltage loop was adjusted to have a cut-o� frequency of 20Hz whereas
the current controller cut-o� frequency selected was 5Hz. The passive �lter was modelled as -12dB/octave
with cut-o� frequency �xed at 30Hz and a damping factor of 1. The load parameters were selected to
have a small time-constant in order to clearly see the disturbances produced by �ring systems. So, R = 1
and L = 0.1Hy.

Regarding the parameter ∆Io
Io , it could be expressed in terms of the current reference Iref :

∆Io
Io

=
[ 1
Hi
Iref − Io]
1
Hi
Iref

= Hi

[ 1
Hi
Iref − Io]
Iref

⇒ ∆Io
Io

=
Ie
Iref

(15)

where, Iref is the reference for the current loop, 1
Hi

is the closed loop gain of the current loop.
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Figure 6: Current control system simulated with MATLAB.

Then the merit �gure ∆Io

Io
is the ratio between the current loop error Ie and the current reference Iref .

If the acquired output voltage of the actual system is entered to the system like a disturbance Vp and Iref
is set to zero, then Ie is a measure of the ∆Io

Io
due only to the disturbance signal. As Iref is set to zero,

Ie is used as a parameter for both analog and digital �ring systems instead of ∆Io

Io
.

The method implemented for comparing both �ring systems involved four steps:

• To measure Vth under conditions 1, 2 or 3.

• To enter vth measured as a perturbation Vp in a current control system simulated using MAT-
LAB/SIMULINK.

• To analyze the current error Ie.

• To compare the results of both �ring systems.

4.1 Steady state operation

Fig. 7 shows the signal Ie with the analog and the digital controllers with a constant �ring angle. Frequency
line is 50Hz. In both �gures can be seen the 300 Hz of the residual ripple voltage, and a low frequency
signal due to disturbances on the mains. In Fig. 7(b) (corresponding to the digital case) it should be seen
the in�uence of the digital operation (frequency sampling, �nite word-length, etc) in the quality of the
current. However, there are no remarkable di�erences, only a 50Hz component a bit higher because the
PLL adjusts its reference every 20msec.
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(a) Analog system.
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(b) Digital system.

Figure 7: Current error in steady state @α = 60
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4.2 Rejection to mains frequency disturbance

The �ring systems were tested under certain frequency shift similar to the disturbance produced by the
genset at PS-complex.Therefore, both systems were tested using a ramp variation of the mains frequency
from 48Hz to 52Hz in 2 seconds. Fig.8 shows the ramp case. The frequency line goes from 48 to 52Hz,
starting its variation in t = 1sec and reaching 52Hz in t = 3sec.

The second test applied was a frequency step of 2Hz. This situation is rather unrealistic, but it allows
to evaluate the robustness of the �ring system. Fig.9 shows the step case. The nominal frequency is 50Hz.
In t = 1sec the frequency goes to 48Hz and it is holded until t = 2.5sec, when it goes to 50Hz.

In both tests, the discrete system shows the same dynamic response than the analog one. In the
step case, instead of the severe disturbance, the digital system does not lose its reference and continues
controlling.
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(a) Analog system.
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(b) Digital system.

Figure 8: Current error @α = 60, frequency ramp from 48 to 52Hz
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(a) Analog system.
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(b) Digital system.

Figure 9: Current error @α = 60, frequency step from 50 to 48Hz

Rejection to mains voltage disturbances

The last test corresponds to possible variations of the mains voltages. The perturbation is applied in
t = 1sec, and it is hold until t = 3sec. During the perturbation, the voltage of 1, 2 or 3 phases is increased
5%. Fig.10 and Fig.11 shows the increase in one phase and two phases, respectively. In both cases, the
two systems have the same response. There is an increase in the amount of noise, because with these kind
of disturbances there is a 100Hz component much stronger than in normal operation.

Fig.12 shows Ie signal for three phases increasing. Both analog and digital controllers have the same
response. In this case, the amplitude of Ie during the perturbation remains equal than the amplitude in
normal operation, because there is 100Hz component.
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(a) Analog system.
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(b) Digital system.

Figure 10: Current error @α = 60, 5% voltage step in 1 phase
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(a) Analog system.
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(b) Digital system.

Figure 11: Current error @α = 60, 5% voltage step in 2 phase
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(a) Analog system.
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(b) Digital system.

Figure 12: Current error @α = 60, 5% voltage step in 3 phase

Conclusion

The results of the tests performed (steady state, and both frequency and voltage disturbances), evidenced
the same overall precision, bandwidth and disturbance rejection on both analog and digital systems for the
Cassel-Ainsworth TGC technique. Besides, a more robust, compact and �exible controller was achieved
with the digital implementation.
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