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Three-nucleon forces in the 1/Nc expansion
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The operator structures that can contribute to three-nucleon forces are classified in the 1/Nc expansion. At
leading order in 1/Nc a spin-flavor-independent term is present, as are the spin-flavor structures associated with
the Fujita-Miyazawa three-nucleon force. Modern phenomenological three-nucleon forces are thus consistent
with this O(Nc) leading force, corrections to which are suppressed by a power series in 1/N2

c . A complete basis
of operators for the three-nucleon force, including all independent momentum structures, is given explicitly up
to next-to-leading order in the 1/Nc expansion.
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I. INTRODUCTION

Over the past 15 years advances in few-body methods
and the steady increase in computational power have enabled
numerically accurate calculations of few-nucleon scattering
observables and the spectra of light nuclei. In the three-nucleon
system such calculations show clear evidence for three-
nucleon forces (3NFs) when compared with experimental
data [1,2]. The simplest and best-known example of this is
that the triton binding energy is underestimated by about
800 keV if a Hamiltonian with two-nucleon potentials alone
is employed [3]. A similar underbinding occurs for other light
nuclei as well [4–6]. (Although, see Ref. [7] for a study of the
dependence of this conclusion on the resolution scale at which
the NN potential is defined.) Indeed, the role of three-nucleon
forces in the spectra of light nuclei has been a subject of intense
investigation during this period (see, e.g., Refs. [8–10], as well
as Ref. [2]). Recently, state-of-the-art treatments of the role of
3NFs in heavier nuclei show that they could play a role in
determining the location of the neutron drip line in the oxygen
and calcium isotopes [11,12] and in extending the half-life of
carbon-14 [13].

Historically, 3NFs were first derived in the classic paper of
Fujita and Miyazawa [14]. There, a 3NF due to the exchange
of two pions was computed. This 3NF still forms a key portion
of the 3NFs employed today, appearing, for example, in the
Urbana three-nucleon force [15,16],

Vijk = V 2π
ijk + V R

ijk, (1)

with [17]

V 2π
ijk = Ã2π

σi · k1σk · k2(
k2

1 + m2
π

)(
k2

2 + m2
π

) [(a + b k1 · k2)τi · τk

+ d τi · (τj × τk)σj · (k1 × k2)]. (2)

Here k1,2 are the momenta of the two pions in the exchange;
σ and τ are the usual Pauli matrices for nucleon spin and
isospin; and the coefficients a, b, and d represent the strength
of s-wave and p-wave πN scattering. If, as was assumed by
Fujita and Miyazawa, we take the p-wave pieces to arise from
the spin-3/2, isospin-3/2, πN channel, where the �(1232)
resides, we have b = 4d.

Meanwhile, the term V R
ijk in Eq. (1) is spin and isospin

independent and produces repulsion. The strength of this
term and the overall strength of V 2π

ijk are adjusted so calcu-
lations with the AV18 NN potential and this 3NF reproduce
the triton binding energy and “...provide additional repul-
sion in hypernetted-chain variational calculations of nuclear
matter near equilibrium density” [16]. The combination
AV18/Urbana is quite successful in describing the spectrum
of nuclei up to A = 8 [4,5]. But it does fail to predict the
correct isospin dependence of binding in these systems and
also underpredicts the spin-orbit splitting of, e.g., the 3/2−
and 1/2− resonances in the A = 5 system. Consequently, the
Urbana 3NF has been updated to produce a set of “Illinois”
potentials, which include (phenomenologically, at least) the
effect of “pion ring” diagrams and have two to three parameters
that are tuned to reproduce levels in the spectra of nuclei up
to A � 8 [18]. These potentials, when acting in concert with
the AV18 NN force, do a good job of describing spectra in
systems with A = 9 and 10 [6].

However, it is not obvious that the Urbana and Illinois
potentials are grounded in QCD. Some of the structures
are derived from diagrams involving pion exchange, but
the coefficient functions in front of those structures are, in
some cases, chosen for ease of numerical implementation and
given strengths which are adjusted to reproduce data. Closer
connection to the chiral symmetry of QCD was sought in, e.g.,
the Tucson-Melbourne 3N potential, which considered the role
of the ρ meson, as well as the constraints of chiral symmetry
on the πN amplitude which appears in the two-pion-exchange
3NF [19,20]. The Brazilian 3NF also attempted to impose
constraints from chiral symmetry [21].

The advent of chiral perturbation theory (χPT) as a tool
for analyzing nuclear forces resulted in the derivation of a
3NF which is in accord with the pattern of chiral-symmetry
breaking in QCD [22]. If the chiral expansion is applied
directly to the 3N potential—as was done in Ref. [22]—then
three contributions occur at leading order (LO). They are as
follows: a short-range, spin-isospin–independent piece [as in
the V R

ijk of Eq. (1)]; a piece associated with the short-range
emission of a pion by an NN pair with its subsequent
absorption by the third nucleon; and a two-pion-exchange
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3NF. The πN amplitude that appears in the two-pion-exchange
piece of the chiral 3NF involves LECs fromL(2)

πN : c1, c3, and c4.
The LECs c3 and c4 encode p-wave πN scattering, so χPT has
the Fujita-Miyazawa force as one of the dominant pieces of
its 3NF. (Indeed, if a variant of χPT with an explicit Delta
degree of freedom is employed, then the Fujita-Miyazawa
3NF occurs one order earlier than the other pieces of the
chiral 3NF [22,23].) The leading χPT 3NF has been used
to investigate scattering in the 3N system [24], and nuclear
spectra in ab initio calculations up to A = 13 [9,10]. And, as
mentioned above, it has, under certain approximations to the
many-body physics, been shown to improve descriptions of the
binding of neutron-rich nuclei [11,12]. It has also been applied
to obtain an equation of state for neutron-rich matter [25].

In spite of these successes, puzzling discrepancies between
theory and data persist. One example is the analyzing power
Ay in neutron-deuteron scattering at low energies, with a
similar issue also occurring for neutron-3He scattering (see,
e.g., Ref. [26]). No modification of NN potentials which is
consistent with the NN data and the dominance of one-pion
exchange at long range seems able to explain this discrepancy,
leaving the “Ay puzzle” firmly in the realm of 3NFs to resolve.
However, neither the model 3NFs on the market nor the LO
chiral 3NF described in the previous paragraph can do so.
Of course, extending a χPT calculation of the 3NF to higher
orders in the chiral expansion might reveal the operator and
mechanism (or mechanisms) which solves this problem, and
work along these lines is in progress [27–30]. But, as the
chiral order increases, classifying the possible 3NF operators
becomes very involved. It would be interesting to have an
additional tool that could help sort out the most relevant
operator structures.

The 1/Nc expansion of QCD can be used to provide this
kind of insight [31,32]. This approach to the nonperturbative
regime of QCD has proven very useful in the study of baryons
[33]; for reviews, see Refs. [34,35]. In the context of nuclear
forces the 1/Nc expansion was first used to study the central
part of the NN potential by Savage and Kaplan [36] and
then to analyze the complete potential, classifying the relative
strengths of the central, spin-orbit, and tensor forces, by Kaplan
and Manohar [37]. These authors analyzed the NN potential
for momenta of order N0

c , i.e., p ∼ �QCD, and found that it
is an expansion in 1/N2

c . Furthermore, the 1/N2
c ≈ 1/10 (in

our world) hierarchy between the different contributions to the
NN potential is roughly borne out in the Nijm93 [38] NN
potential. The arguments that lead to this conclusion will be
recapitulated in Sec. II.

In this work we extend that analysis to the three-nucleon
system, classifying the possible operator structures that can
contribute to a general 3NF according to a counting in 1/Nc.
We do this by computing the energy of the 3N system as
Nc → ∞, starting with the Hartree expansion for the nuclear
Hamiltonian in the large-Nc limit [37,39],

H = Nc

∑
s,t,m

vstm

(
S

Nc

)s(
I

Nc

)t(
G

Nc

)m

, (3)

where we suppressed spin and isospin indices in the spin-flavor
structures O = {S, I,G} and vector indices in the coefficients

v. These coefficients are, in fact, O(1) functions of the
momenta. The explicit factors of 1/Nc ensure that an m-body
interaction scales generically as 1/Nm−1

c , as mandated by
large-Nc QCD counting [32]. Spin, isospin, and vector indices
are contracted so H is rotation and isospin invariant, as well as
parity even and time-reversal even. In a quark-operator basis
the spin-flavor structures are given by one-body operators

Si = q† σ
i

2
q, I a = q† τ

a

2
q, Gia = q† σ

iτ a

4
q, (4)

where q†, q are creation and annihilation operators for the light
quarks u, d and σ , τ are the standard SU(2) Pauli matrices
acting on spin and isospin, respectively. Taken together, the 15
operators in Eq. (4) generate the SU(4) algebra,

[Si, Sj ] = iεijkSk, [Si,Gja] = iεijkGka,

[I a, I b] = iεabcI c, [I a,Gib] = iεabcGic, (5)

[Si, I a] = 0, [Gia,Gib] = i

4
δij εabcI c + i

4
δabεijkSk.

Since we are interested in taking matrix elements between
nucleon states we will indicate with Oα that the operator
O acts on nucleon α = 1, 2, 3, so S, I,G in Eq. (3) can be
any of Sα, Iα,Gα . But products of operators acting on the
same nucleon in Eq. (3) must be reduced to a single operator.
As is explained in Secs. II and III B, this is achieved using
the relations and reduction rules for the powers of the basic
operators S, I,G that act on the same nucleon, which are
discussed in Ref. [39]. The contributions to the 3NF that result
after such reduction can be straightforwardly estimated, since
matrix elements of S and I between nucleon states are O(1),
which is in contrast to matrix elements of G, which are O(Nc).
The leading force thus will be constructed out of G’s and unit
operators, acting on the different nucleons. In fact, the algebra
Eq. (5) was derived in the one-nucleon sector for external
nucleon momenta of order N0

c , and so this conclusion holds
in that kinematic regime (a similar remark applies to the NN
potential derived in Ref. [37]). If results for lower momenta
are desired, then the counting of operators obtained here can
be modified accordingly. We present the analysis of leading
and subleading 3NFs in the 1/Nc expansion in Sec. III and
summarize our conclusions in Sec. IV.

In the large-Nc limit the mass of the nucleon tends to
infinity. This provides both a problem and an opportunity for
computation of the nuclear potential. The opportunity arises
because, in this limit, the nuclear potential can be computed
as the static energy of the system in a fixed configuration
in coordinate space (for analogous studies of heavy-quark
systems on the lattice see Ref. [40]). This implies that the 3N
potential (modulo issues of exchange diagrams, see below)
obtained from our argument is local, being, e.g., a function of
the Jacobi coordinates r12 and r3 (velocity-dependent forces
arise at subleading orders in 1/Nc and lead to nonlocalities).
The problem exists because the only measurable quantity
in this infinitely-massive-nucleon limit is the total potential
energy, and the large-Nc analysis gives no information on the
dependence of the force on r12 and r3—at least none beyond
the statement that the function encoding that dependence has
a size given by Nc counting. Thus, since we only “measure”
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the total potential energy, and we cannot tell which pieces
depend only on, say, r12, we can make no a priori distinction
between contributions to that energy from NN interactions
and contributions from 3NFs. The best we can do is to identify
operator structures which occur in the 3N energy and do
not arise within the large-Nc analysis of the NN potential
of Ref. [37].

One might be concerned that a 3NF derived from a large-
Nc analysis cannot be in accord with the meson-exchange
picture used successfully for many years to derive NN and
3N forces. In Refs. [41,42] Banerjee et al. and Belitsky
and Cohen explored the relationship between this picture
of the nuclear force and the large-Nc analysis of Ref. [37].
Initially, it appeared that multi-meson-exchange graphs led
to violations of the large-Nc scaling of the NN potential,
in particular to pieces of the NN potential that scaled with
powers of Nc larger than 1. However, Ref. [43] later explained
this apparent discrepancy between the meson-exchange and
large-Nc pictures by pointing out that the potentials analyzed
in Refs. [41,42] were energy dependent, whereas almost all
NN interactions used for phenomenological purposes are
energy independent. Reference [43] concluded that an energy-
independent NN potential could have Nc scaling consistent
with that derived in Ref. [37], and so large-Nc analysis is not
inconsistent with a meson-exchange picture of nuclear forces
for the NN case. An important point for a successful matching
calculation is that the Hartree Hamiltonian Eq. (3) and the
SU(4) algebra Eq. (5) implicitly assume the presence of the
� resonance with S = I = 3/2. In our discussion of the NN
and NNN potentials, when taking matrix elements, we project
H to the nucleons-only piece of the Hilbert space. We have
not performed a matching calculation to check the consistency
with the meson-exchange picture for the 3N potential, but it
would be a worthy subject for future study.

One might also wonder whether double counting will result
if the 3N potential obtained from the large-Nc analysis is
used in a multinucleon Schrödinger equation. To address this
issue we note that another assumption made in the derivation
of the algebra Eq. (5) was that meson energies are of order
�QCD. This implies that the energy of the intermediate nucleon
state in the 3NF (see, e.g., Fig. 1) must be order �QCD if an
analysis based on this algebra is to prevail. Having states of
this energy included in the computation of the nuclear potential
is consistent with the insertion of the resulting nuclear force
in the 3N Schrödinger equation (or, equivalently, a Faddeev
equation) provided a momentum cutoff is employed there. If
that momentum cutoff is above �QCD, but below

√
Nc�QCD,

p’

3p’

1p’

p2

p3

p1

2

FIG. 1. Tree-level two-meson exchange contribution to the 3NF.

the intermediate nucleonic states with energies of order �QCD

(i.e., momenta ∼ √
M�QCD) will not be accounted for by the

iteration of the potential via the Schrödinger/Faddeev equation
and so should be included in the potential. The NN and 3N
interactions derived here, and in Ref. [37], thus can be inserted
into the quantum-mechanical equation and used to compute
the wave function of nuclear systems.

With the conceptual underpinning of a 3NF in large-Nc

QCD defined, and the circumstances under which it should be
used in a Schrödinger equation for a multinucleon system clar-
ified, we now turn back to the NN system in order to explain
how the corresponding analysis works in that, simpler, case.

II. THE N N POTENTIAL IN THE 1/Nc

EXPANSION: REVIEW

Here we review the 1/Nc analysis of Kaplan and Manohar
[37] for the two-nucleon potential, setting up the notation that
we will use later in Sec. III to analyze the three-nucleon force.
In Ref. [37] the large-Nc expansion was used to analyze the
object,

UA
NN = (1 − P12)U, (6)

where U is the sum of all direct diagrams and Pij is the permu-
tation operator that switches all quantum numbers of particles
i and j . In nuclear physics computations it is the operator U
which is inserted into the Schrödinger equation. The correct
antisymmetry properties of the nuclear state are then imposed
by computing matrix elements only in partial waves which are
allowed by the Fermi-Dirac statistics of the nucleons.

In order to discuss the momentum dependence of the
potential, we first define initial and final relative momenta
as follows:

p = p1 − p2, p′ = p′
1 − p′

2, (7)

where pi(p′
i) is the initial (final) momentum of the i-th nucleon.

To simplify later analysis we also define time-reversal-odd (T-
odd) and time-reversal-even (T-even) combinations of these,

p± = p′ ± p. (8)

Notice that p+ is T-odd and p− is T-even, as initial and
final states are also exchanged under time reversal. Both
combinations, being vectors, are odd under parity. In U only
p− enters at leading order in Nc since the potential is local at
this order in the 1/Nc expansion. Powers of p+ indicate the
presence of nonlocality. In a meson-exchange picture they arise
due to the occurrence of relativistic corrections suppressed by
1/MN . Thus, each appearance of a power of p+ costs a power
of 1/Nc. Finally, energy conservation and the constraint that
the external NN states in a diagram be on-shell results in

p+ · p− = 0, (9)

which allows us to eliminate this momentum structure. In
Ref. [37] the potential U was written as a sum of products
of one-body operators, including the explicit factors of
1/Nc as shown in the Hartree Hamiltonian, Eq. (3). Isospin
invariance of the interaction requires that all isospin indices
are contracted.
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In general, operators acting on the same nucleon with spatial
or isospin indices contracted can be simplified. For instance,
GiaGia can be reduced to the unit operator and a subleading
contribution using

GiaGia = 3
16Nc(Nc + 4)1 − 1

4I aI a − 1
4SiSi, (10)

which is obtained from the quadratic SU(4) Casimir evaluated
on the completely symmetric representation SNc

. If the spatial
indices are not contracted we have the more general identity

GiaGja = 1
16Nc(Nc + 4)δij1 − 1

4δijS2 + 1
4SiSj + i

4εijkSk.

(11)

The complete set of operator reduction rules can be found in
Ref. [39].

It is thus sufficient to consider structures where the
contracted indices are carried by operators acting on different
nucleons. For instance, the leading order of the angular mo-
mentum zero (L = 0) component of the potential is obtained
from

U
Nc

L=0 ⊂ Nc

Nc∑
n=0

un(p2
−)

(
N−2

c Gia
1 Gia

2

)n
, (12)

where un(p2
−) are arbitrary scalar functions of p2

− that scale
like O(N0

c ). This yields two strings of G’s, one on each of
the two nucleons, with no contracted indices among the G’s
which act on an individual nucleon. Each such string of G’s
can, nevertheless, be reduced, because the matrix element of a
general m-quark operator between single-baryon states scales
as [36,37,39]

〈B1|N−m
c Om|B1〉 = 1

N
|I−S|
c

. (13)

Therefore, the dominant parts in the operator resulting from
each string of G’s have I = S. If, in addition, we restrict
ourselves to the case that the baryon is a nucleon only (I, S) =
(0, 0), (1, 1) contribute. But those I = S = 0 and I = S = 1
operators can, via the Wigner-Eckart theorem, be replaced
by the O(N0

c ) one-body operators 1 and N−1
c Gia , up to a

proportionality constant that ultimately gets absorbed in the
undetermined functions of momenta that appear in the large-Nc

NN potential. Thus, on a single-nucleon state, each string of
G’s with uncontracted indices yields a matrix element that can
be written as follows:

〈N | GG...G︸ ︷︷ ︸
r

|N〉 = Nr
c 〈1〉 + Nr−1

c 〈G〉 + O(
Nr−2

c

)
, (14)

where the spatial and isospin indices on the right-hand side
of Eq. (14) are carried by Kronecker δ’s and the completely
antisymmetric tensor ε. For an example, see the appendix, in
particular Eq. (A7).

Equations (14) and (11) show that it is enough to consider
the one-quark operators 1 and N−1

c Gia acting within each
nucleon to construct the leading-order spin-flavor structures.
With this simple rule one obtains correctly the explicit
1/Nc suppression factors contained in the Hartree expression,
Eq. (3), for the NN interaction.

The leading-order spin-flavor structures are thus 1112 and
Gia

1 G
ja
2 . The next step is to project out the different spin

TABLE I. Spin-flavor structures for the two-nucleon potential.
The (σ1 × σ2) structure arises in the large-Nc analysis, but its
appearance in U is precluded by permutation symmetry.

O Order Oττ Order S T

1 1 τ1 · τ2 1/N 2
c 0 +

σ1 · σ2 1/N 2
c σ1 · σ2τ1 · τ2 1 0 +

σ i
1 1/Nc σ i

1τ1 · τ2 1/Nc 1 −
σ i

2 1/Nc σ i
2τ1 · τ2 1/Nc 1 −

(σ1 × σ2)k 1/N 2
c (σ1 × σ2)kτ1 · τ2 1 1 +

[σ i
1σ

j
2 ]2 1/N 2

c [σ i
1σ

j
2 ]2τ1 · τ2 1 2 +

components of the leading-order G1G2 tensor, namely

Gia
1 Gia

2 , εijkG
ja
1 Gka

2 ,
[
Gia

1 G
ja
2

]
2, (15)

where the first two correspond to S = 0 and 1, respectively,
and [

Gia
1 G

ja
2

]
2 ≡ Gia

1 G
ja
2 + G

ja
1 Gia

2 − 2
3δijGka

1 Gka
2 (16)

is the S = 2 component. The final step is the reduction of the
operator G to σ iτ a when restricted to the nucleon subspace.
Table I shows a complete set of independent spin-flavor
structures in the NN subspace, together with their 1/Nc

scalings, spin content, and time-reversal properties.
Each of these spin-flavor structures then must be combined

with tensors formed out of the momenta p−, p+ to form a
T-even, P-even, rotationally invariant operator. In particular,
the S = 2 structure (16) must be contracted with a spatial
tensor of rank two. Since at LO we have a local NN potential
the only possible LO tensor is pi

−pj
−. Meanwhile, the second

(S = 1) spin-flavor structure must be contracted with a three-
vector. Parity invariance suggests p− × p+ is the only possible
candidate. However, p− × p+ is odd under time reversal. And
the constraint (9) means we cannot multiply by powers of the
T-odd rotational scalar p+ · p−—at least not on-shell. Thus
our S = 1 spin-flavor structure cannot be multiplied by any
combination of three-vectors that results in an overall P-even,
T-even object. The operator εijkG

ja
1 Gka

2 therefore will not
appear in the parity-conserving, time-reversal-non-violating
NN force [44]. Finally, the first structure in Eq. (15) and the
unit operator are the two leading-order S = 0, L = 0 operators.

The rotational scalars formed in this way may always be
multiplied by an arbitrary scalar function of p2

−. Therefore, to
leading order

UNc = Nc

(
U 1

S (p2
−)1 + U 2

S (p2
−)σ1 · σ2τ1 · τ2

+U 1
D(p2

−)[p−p−]2 · [σ1σ2]2τ1 · τ2
)
, (17)

with

[AiBj ]2 ≡ AiBj + AjBi − 2
3δijA · B, (18)

the L = 2 component of the tensor AiBj constructed from two
vector quantities, and U

1,2
S (p2

−), U 1
D(p2

−) arbitrary O(1) scalar
functions of p2

−. As discussed above, there are no S = 1 terms
at leading order.

Subleading corrections are associated with 1/Nc-
suppressed operators. Such suppression may occur for two
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reasons. First, NN operators involving S and I , instead of G,
will be reduced by factors of 1/Nc, because of the Nc scaling of
the nucleonic matrix elements of these operators. The second
source of 1/Nc suppression is the appearance in expressions
of the momentum p+. Time reversal and parity conservation
conspire so the expansion is in 1/N2

c .
With these two results regarding 1/Nc suppression in hand,

Kaplan and Manohar concluded that the following operators
give contributions to the NN potential of O(1/Nc) (see also
Table I) as follows:

U 1/Nc = δ(2)UNc + N−1
c

(
U 3

S p2
+1 + U 4

Sσ1 · σ2 + U 5
S τ1 · τ2

+U 6
S p2

+σ1 · σ2τ1 · τ2 + U 1
P (p+ × p−) · (σ1 + σ2)

+U 2
P (p+ × p−) · (σ1 + σ2)τ1 · τ2

+U 2
D[p−p−]2 · [σ1σ2]2

+U 3
D[p+p+]2 · [σ1σ2]2τ1 · τ2

)
. (19)

At this order the leading-order operators appear again, as they
can also be obtained by replacing one Gia/Nc by (SiI a)/N2

c

in the Hartree Hamiltonian. We denoted this contribution by
δ(2)UNc in the expression above. The spin-flavor structures
that appear here (and in Table I) and momentum tensors with
up to four momenta can also be read off from the results for
the 3NF that will be presented later in Sec. III by eliminating
the third nucleon and only keeping momentum structures that
depend on p±. Here we only show the potential up to quadratic
structures in momenta (modulo arbitrary functions of p−).

Comparing Table I with Eqs. (17) and (19), one can see
that the spin-flavor structures proportional to σ1 × σ2 are
missing because, as discussed for the LO case, they need to
be multiplied by a T-even, P-even, L = 1 momentum structure,
which cannot be constructed in the NN case.

However, there is an additional constraint from permutation
symmetry [44]. For example, σ1, σ2 appear only in the
σ1 + σ2 combination. The σ1 − σ2 combination is excluded
by permutation symmetry, as it is T-odd and parity-even and
needs to be contracted with a vector built from p+, p−, where
p± are both odd under exchange of the nucleons 1, 2. For
instance, if we would start from the general structure

U (p2
−)(p+ × p−)σ1 + U ′(p2

−)(p+ × p−)σ2 (20)

permutation symmetry imposes U = U ′ = U 1
P so only the

symmetric spin-flavor structure σ1 + σ2 appears in Eq. (19).
The σ1 × σ2 structure can also be eliminated by permutation
symmetry.

In summary, to leading order [O(Nc)] there are two
structures with L = 0 and one with L = 2. To subleading order
[O(1/Nc)] and up to two momenta, there are four structures
with L = 0, two with L = 1 and two with L = 2.

This translates into definite scaling predictions for the
different parts of the NN potential, which in the usual form is
given by

VNN = V 0
C + V 0

SSS1 · S2 + V 0
LSL · S + V 0

T S12 + V 0
QQ12

+ (
V 1

C + V 0
SSS1 · S2 + V 1

LSL · S + V 1
T S12

+V 1
QQ12

)
τ1 · τ2. (21)

Here L is the angular momentum operator, which is T-odd and
P-even and in our notation is replaced via the Wigner-Eckart
theorem by the p+ × p− structure. The quadratic spin-orbit
interaction Q12 involves four momenta in our notation and we
did not include it in Eq. (19).

A comparison with “experiment” can be achieved by
comparing with a successful phenomenological potential. This
has been done in Ref. [37] using the Nijmegen potential [38].
The 1/Nc scaling of the different structures in Eq. (21)
translates into a hierarchy for the functions used to parametrize
the Nijmegen potential, which is well satisfied by their
numerical values, as discussed in detail in Ref. [37].

Although in the two-nucleon case the operator structure of
the interaction is simple enough to be obtained by explicit
construction, as sketched above, at this point it is useful to
discuss a more systematic way of counting the number of
spin-flavor structures that can contribute, something that will
prove very useful in the more involved three-nucleon case. The
systematic classification can be done as follows.

The number of independent spin-flavor structures OIS

of isospin I and spin S that can contribute to the matrix
element 〈NN |OIS |NN〉 can be obtained by considering
the decomposition of R ⊗ R′, with R, R′ the irreducible
representations of spin flavor for the two nucleons, so the
matrix element is a scalar. To obtain the possible irreps R,
we decompose the tensor product of two-nucleon states, each
nucleon transforming as the fundamental representation of
SU(4),

4

≡ {p ↑, p ↓, n ↑, n ↓}. (22)

The two-nucleon states are obtained as the decomposition of
the tensor product 4 ⊗ 4 = 6 ⊕ 10. In terms of Young tableaux

4

⊗
4

=
6

⊕
10

. (23)

As states and operators are labeled by their isospin and
spin transformation properties, we decompose SU(4) irreps in
SU(2)I × SU(2)S ⊂ SU(4), labeled by (2I + 1, 2S + 1). The
result is [only SU(4) irreps are in bold]:

10

=
3

,
3 1

,
1

, (24)

6

=
3

,
1

⊕
1

,
3

. (25)

With this result in hand, we can determine the number, and
type, of spin-flavor structures that occur in OIS . We consider
the decomposition of R ⊗ R′, with R, R′ = 6, 10 into irreps of
SU(2)I × SU(2)S . We are interested in the pieces of the direct
product that yield I = 0 operators, which are∑

R,R′
R ⊗ R′ ⊃ 4(0, 0) ⊕ 6(0, 3) ⊕ 2(0, 5) + . . . , (26)
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i.e., the direct product contains four independent isoscalar
structures of S = 0, six of S = 1 and two of S = 2. Their
explicit forms are 1, σ1 · σ2, σ1, σ2, σ1 × σ2 and [σ1σ2]2 , each
of which can be multiplied by any of the two isospin invariants
1, τ1 · τ2. The resulting spin-flavor structures are shown in
Table I.

This finishes the review of the NN case. We proceed now
to the construction of the 3N potential.

III. THE 3N POTENTIAL IN THE 1/Nc EXPANSION

In this section we will extend the analysis that we reviewed
for the NN potential to the case of the 3N potential. The sum
of all 3N → 3N diagrams can be written in operator form as

V A
3N = (1 + P12P23 + P13P23)(1 − P23)V. (27)

The terms in parentheses in Eq. (27) thus generate the exchange
diagrams necessitated by the identicality of the nucleons from
the operator V , which itself is the sum of all direct diagrams
(see, e.g., Fig. 1) and is the object that enters the Schrödinger
equation in nuclear-physics computations. We will classify the
structures that contribute to V and derive their scaling behavior
with Nc.

We do this by first discussing the momenta involved and
the possible momentum structures obtainable therefrom. We
then derive the LO spin-flavor structures and count all possible
spin-flavor structures. We finish with the explicit construction
of the operators, including the spatial part.

A. Momenta and momentum structures

Throughout, we work in the 3N center-of-mass frame,
where

p1 + p2 + p3 = p′
1 + p′

2 + p′
3 = 0. (28)

Any graph then can be expressed as a function of the Jacobi
momenta p and q,

p = p1 − p2, q = p3 − (p1 + p2)/2, (29)

so the 3NF can be written as a function of four three-momenta
p, p′, q, and q′.

Conservation of energy yields the constraint

p2 + 4
3 q2 = p′ 2 + 4

3 q′ 2. (30)

In terms of the momenta with well-defined properties under
time reversal, p± as in Eq. (8), and the analogous q± = q′ ± q,
the constraint (30) becomes

p+ · p− = − 4
3 q+ · q−, (31)

which will allow us to eliminate q+ · q− in favor of p+ · p−.
Analysis of the contributions to Fig. 1 shows that the presence
of p+, q+ comes from relativistic corrections that introduce
powers of 1/MN , so each power of either p+ or q+ is associated
with a suppression factor of 1/Nc. The LO momentum
structures are O(N0

c ) and depend only on p− and q−. They
correspond to local potentials.

In fact, since all spin-flavor structures are built from P-even
objects, parity invariance of V requires that the momentum
structures appearing—at both leading and subleading orders

TABLE II. Tensors �TP constructed from up to two 3N -system
momenta, together with their T and P properties and their angular
momentum (L) content. Note that in the NN system none of the
tensors involving q± are present. The ± signs in the subscripts are
always to be read as correlated, so the last four entries in the table
each contain two possible tensors. The last column shows the 1/Nc

order at which the corresponding momentum structure appears.

T P �TP L Order

+ − p− 1 1
+ − q− 1 1
− − p+ 1 1/Nc

− − q+ 1 1/Nc

− + p+p− 0,1,2 1/Nc

− + q+q− 0,1,2 1/Nc

− + p±q∓ 0,1,2 1/Nc, 1/Nc

+ + p±q± 0,1,2 1/N 2
c , 1

+ + p±p± 0,2 1/N 2
c , 1

+ + q±q± 0,2 1/N 2
c , 1

in 1/Nc—must contain an even number of momenta. In
Table II we show the TP properties, L content, and order
in 1/Nc of the 3N -system momentum tensors which contain
up to two momenta. Time-reversal-odd momentum structures
appear only at subleading orders, as they must include at least
either a p+ or a q+.

B. Leading spin-flavor structures

As in the NN case, leading-order spin-flavor structures are
obtained from products of an arbitrary number of G’s, with
their indices contracted in order to get isoscalar operators of
spin S = 0, 1, 2, 3, which are the only quantum numbers rel-
evant for isospin conserving interactions in the 3N subspace.
Any spatial indices associated with the spin tensor of rank
0, 1, 2, or 3 are then contracted with a momentum tensor of
the same rank to form a singlet, so the interaction is invariant
under rotations.

For example, the leading-order S = 0 3N structures are
obtained from

V
Nc

L=0 ⊂ Nc

∑
n12,n13 ,n23

n123

vn12,n13...

(
N−2

c Gia
1 Gia

2

)n12

× (
N−2

c G
jb
1 G

jb
3

)n13
(
N−2

c Gkc
2 Gkc

3

)n23

× (
N−3

c εlmrεdef Gld
1 Gme

2 G
rf
3

)n123 + · · · , (32)

where the dots stand for terms with more complex index
contractions. A general structure has the form OαOβOγ , with
the greek index indicating the nucleon on which a particular
O acts. As in the NN case, products like Gia

1 G
ja
1 , where there

is at least one index contracted between operators acting on
the same nucleon, are not included. The structures shown in
Eq. (32) still seem hard to reduce, but this can be achieved after
taking matrix elements in the NNN subspace using Eq. (13)
and Eq. (14), as we did in the NN case. The simple rule is
again that, at leading order, an arbitrary product of G’s can
be reduced to a sum of I = S operators, which for the N
subspace reduce just to the unit operator and one G. So, as

034002-6



THREE-NUCLEON FORCES IN THE 1/Nc EXPANSION PHYSICAL REVIEW C 88, 034002 (2013)

TABLE III. Leading-order quark operators and their projection on nucleon spin-isospin structures. Structures are listed according to their
spin content within the nucleonic space. α, β, γ are a permutation of 1,2,3, designating on which nucleon the spin and isospin operators act.
The multiplicity indicates how many independent structures are generated by these permutations. The 17 leading-order structures are all parity
even and time-reversal even.

Spin content LO quark operator στ projection Multiplicity

S = 0 1 1 1

N−2
c Gia

α Gia
β σα · σβτα · τβ 3

N−3
c εijkεabcGia

α G
jb
β Gkc

γ (σα × σβ ) · σγ (τα × τβ ) · τγ 1

S = 1 N−2
c εijkGia

α G
ja
β (σα × σβ )τα · τβ 3

N−3
c εabcGia

α Gib
β Gkc

γ (σα · σβ )σγ (τα × τβ ) · τγ 3

S = 2 N−2
c [Gia

α G
ja
β ]2 [σασβ ]2τα · τβ 3

N−3
c εabc[(Gia

α G
jb
β εij l)Gkc

γ ]2 [(σα × σβ )σγ ]2 (τα × τβ ) · τγ 2

S = 3 N−3
c εabc[Gia

α G
jb
β Gkc

γ ]3 [σασβσγ ]3 (τα × τβ ) · τγ 1

17

in the NN force, the LO structures are found by considering
one-quark operators 1 and N−1

c Gia acting on each nucleon.
This gives the explicit 1/Nc suppression factors that come
from the spin-flavor part. Then, within the N subspace, we
replace Gia by σ iτ a . Bearing in mind that spin and isospin
indices should be contracted with δij , δab or εijk, εabc tensors,
one straightforwardly obtains the leading spin-flavor structures
shown in Table III.

The isospin structures are the unit operator, the three scalar
products τα · τβ , and a new structure that was not present in
the NN case, the triple product (τα × τβ) · τγ . It is important
to notice that the triple product of τ is time-reversal odd, as
under time reversal (τ 1, τ 2, τ 3) → (τ 1,−τ 2, τ 3). This is in
contrast to (σ 1, σ 2, σ 3) → (−σ 1,−σ 2,−σ 3). The different
transformation properties of the spin and isospin operators
under time reversal just reflect the fact that under time reversal
spins get flipped, while protons and neutrons retain their
identity and are not exchanged.

The last column of Table III shows the multiplicity
of each structure, obtained by running α, β, γ over all

the permutations of 1, 2, 3. For the spin-2 structures
a nontrivial constraint reduces the multiplicity of the
[(σα × σβ)σγ ]2 = {[(σ1 × σ2)σ3]2 , [(σ1 × σ3)σ2]2 , [(σ2 × σ3)
σ1]2} operator structure from three to two, because Eq. (B3),
projected onto a symmetric and traceless rank-2 tensor, gives

[(A × B)C]2 + [(B × C)A]2 + [(C × A)B]2 = 0. (33)

There are 17 independent structures at leading order. They are
all time-reversal even. Further details are given below, with the
leading potential exhibited in Eqs. (39), (43), (45), and (48).

C. Counting all the spin-flavor structures

However, in order to enumerate all subleading structures,
we find it important to first generalize our counting of
spin-flavor structures using SU(4) irreps from the NN to the
NNN case. In this way we determine the number of spin-flavor
structures we expect to find once we consider all orders in Nc.

The number of NNN states is given by 4 ⊗ 4 ⊗ 4 = 4 ⊕
20′ ⊕ 20′ ⊕ 20,

4

⊗
4

⊗
4

=

4

⊕
20

⊕
20

⊕
20

. (34)

Decomposing these SU(4) irreps into SU(2)I × SU(2)S ⊂ SU(4), we have [as above, the SU(2)I × SU(2)S irreps are labeled by
(2I + 1, 2S + 1) and only SU(4) irreps are in bold]:

20

=
4

,
4

⊕
2

,
2

, (35)

20

=
4

,
2

⊕
2

,
4

⊕
2

,
2

, (36)
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TABLE IV. S = 0 spin-isospin structures. The order given in the
second column is relative to Nc. The third column indicates the
behavior of each structure structure under time reversal, namely, even
(+) or odd (–), and its multiplicity is given in the last column. Here
α �= β �= γ label the nucleon on which each of the spin and isospin
operators act. In the last line we give the total number of independent
structures, obtained as the sum of M

(0)
0 = 5, M

(1)
0 = 6, M

(2)
0 = 12,

and M
(3)
0 = 2.

Operator Order T Multiplicity

S
(0)
1 = 1 1 + 1

S
(0)
2−4 = σα · σβτα · τβ 1 + 3

S
(0)
5 = (σα × σβ ) · σγ (τα × τβ ) · τγ 1 + 1

S
(1)
1−3 = σα · σβ (τα × τβ ) · τγ 1/Nc − 3

S
(1)
4−6 = (σα × σβ ) · σγ τα · τβ 1/Nc − 3

S
(2)
1−3 = τα · τβ 1/N 2

c + 3

S
(2)
4−6 = σα · σβ 1/N 2

c + 3

S
(2)
7−12 = σα · σβτβ · τγ 1/N 2

c + 6

S
(3)
1 = (τα × τβ ) · τγ 1/N 3

c − 1

S
(3)
2 = (σα × σβ ) · σγ 1/N 3

c − 1

25

4

=
2

,
2

. (37)

The number of independent operators OIS of isospin I and
spin S that can contribute to 〈NNN |OIS |NNN〉 can now be
obtained by considering the decomposition of R ⊗ R′, with
R, R′ = 4, 20′, 20 into irreps of SU(2)I × SU(2)S . Notice that
20′ has to be considered twice. We are interested in I = 0
spin-flavor structures, and for those we find∑
R,R′

R ⊗ R′ ⊃ 25(0, 0) ⊕ 45(0, 3) ⊕ 25(0, 5) ⊕ 5(0, 7) + . . . .

(38)

So, there are 25 independent isoscalar structures of S = 0, 45
of S = 1, 25 of S = 2, and 5 of S = 3. There are thus 100
spin-flavor structures in total, 50 T-even and 50 T-odd. This
provides an important check for the explicit construction of
operators that we will describe in the next subsection. The
results of that construction are shown in Tables IV–VII, and
we indeed find a total of 100 structures.

D. Explicit construction of the three-nucleon operators

In the following sections we write down, successively,
the 3N potential-energy operators which are built from
S = 0, 1, 2, 3 spin-flavor structures. Since we seek rotational
scalars, each spin-flavor structure is coupled to a momentum
structure of equal rank. We therefore use the terms “L = a”

TABLE V. S = 1 spin-isospin structures, as in Table IV. In the
last line we give the total number of independent structures, obtained
as the sum of M

(0)
1 = 6, M

(1)
1 = 21, M

(2)
1 = 12, and M

(3)
1 = 6.

Operator Order T Multiplicity

P
(0)
1−3 = (σα × σβ )τα · τβ 1 + 3

P
(0)
4−6 = (σα · σβ )σγ (τα × τβ ) · τγ 1 + 3

P
(1)
1−3 = σα 1/Nc − 3

P
(1)
4−9 = σατα · τβ 1/Nc − 6

P
(1)
10−12 = (σα × σβ )(τα × τβ ) · τγ 1/Nc − 3

P
(1)
13−15 = (σα · σβ )σγ τα · τβ 1/Nc − 3

P
(1)
16−21 = (σα · σβ )σγ τβ · τγ 1/Nc − 6

P
(2)
1−3 = σα(τα × τβ ) · τγ 1/N 2

c + 3

P
(2)
4−6 = (σα × σβ ) 1/N 2

c + 3

P
(2)
7−12 = (σα × σβ )τβ · τγ 1/N 2

c + 6

P
(3)
1−3 = σατβ · τγ 1/N 3

c − 3

P
(3)
4−6 = (σα · σβ )σγ 1/N 3

c − 3

45

and “S = a” interchangeably when referring to the operators
that appear in V . We present explicit expressions up to
O(1/Nc).

1. L = S = 0

A complete set of spin-flavor structures in the S = 0 sector
is given by the S

(r)
ξ listed in Table IV. The superscript (r)

indicates the relative order in Nc at which the spin-flavor
structure appears for the first time (i.e., its lowest order). This
corresponds to r = s + t in the Hartree Hamiltonian, Eq. (3),
and essentially counts the number of subleading operators S
and I that contribute to the structure. The resulting contribution
to the 3N force is obtained after taking into account the overall
factor of Nc in Eq. (3) and the momentum structure that

TABLE VI. S = 2 spin-isospin structures, as in Table IV. In the
last line we give the total number of independent structures, obtained
as the sum of M

(0)
2 = 5, M

(1)
2 = 9, M

(2)
2 = 9, and M

(3)
2 = 2.

Operator Order T Multiplicity

D
(0)
1−3 = [σασβ ]2τα · τβ 1 + 3

D
(0)
4,5 = [(σα × σβ )σγ ]2 (τα × τβ ) · τγ 1 + 2

D
(1)
1−3 = [σασβ ]2 (τα × τβ ) · τγ 1/Nc − 3

D
(1)
4,5 = [(σα × σβ )σγ ]2τα · τβ 1/Nc − 2

D
(1)
6−9 = [(σα × σβ )σγ ]2τβ · τγ 1/Nc − 4

D
(2)
1−3 = [σασβ ]2 1/N 2

c + 3

D
(2)
4−9 = [σασβ ]2τβ · τγ 1/N 2

c + 6

D
(3)
1,2 = [(σα × σβ )σγ ]2 1/N 3

c − 2

25
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TABLE VII. S = 3 spin-isospin structures, as in Table IV. In the
last line we give the total number of independent structures, obtained
as the sum of M

(0)
3 = 1, M

(1)
3 = 3, M

(2)
3 = 0, and M

(3)
3 = 1.

Operator Order T Multiplicity

F
(0)
1 = [σασβσγ ]3 (τα × τβ ) · τγ 1 + 1

F
(1)
1−3 = [σασβσγ ]3τα · τβ 1/Nc − 3

F
(3)
1 = [σασβσγ ]3 1/N 3

c − 1

5

combines with each spin-flavor structure to give a rotational
scalar, time-reversal-even, and parity-even Hamiltonian. Each
occurrence of a time-reversal-odd momentum p+, q+ costs an
additional power of 1/Nc.

The time-reversal-even spin-flavor structures at order N0
c

and order 1/N2
c can be straightforwardly incorporated into the

potential. They only need to be multiplied by arbitrary scalar
functions of the vectors p− and q−. We denote the functions,
which are all of O(N0

c ), V m
X (p2

−, q2
−, p− · q−), where X runs

over the different spin-flavor structures and m enumerates
functions V corresponding to different momentum structures.
Beyond the statement that they are O(N0

c ), the large-Nc

expansion sheds no light on the behavior of these functions.
With this notation the O(Nc) (leading-order) potential is

V
Nc

L=0 = Nc

M
(0)
0∑

ξ=1

V 1
Sξ

(p2
−, q2

−, p− · q−)S(0)
ξ , (39)

with M
(0)
0 = 5 the number of independent, leading-order,

S = 0 spin-flavor structures (see Table IV or Table III). In
fact, their contribution once the spatial part of the 3N state
is taken into account is not completely independent, since
the functions V 1

S2
, V 1

S3
, and V 1

S4
are related to one another by

permutation symmetry, i.e., the requirement that the total force
must be symmetric under permutations of all particle labels.
This constraint in the 3N case is, however, more complicated
than in the NN case, and there seems to be no obvious
simplification due to permutation symmetry.

There are thus five spin-flavor structures that contribute at
leading order in Nc to the L = 0 part of the 3N potential:
the identity, a σα · σβτα · τβ structure, where one of the
three nucleons is not involved, and the structure (σα × σβ) ·
σγ (τα × τβ) · τγ . Of these, the first two already occur in
the NN potential, and, as already discussed above, without
knowledge of the q− dependence in V , we cannot separate
their appearance here from the fact that they contribute to the
energy of the NN pairs in the 3N system.

We now turn our attention to subleading corrections to the
L = 0 3N force. It at first appears that there are spin-flavor
structures which generate contributions of relative order 1/Nc.
But in fact the resulting structures are all time-reversal odd. In
consequence, they must be multiplied by a time-reversal-odd
dot product in order to appear in the L = 0 component of the
3N potential. In contrast to the NN case such dot products
exist in this system, e.g., p+ · q−. But all of the T-odd ones in-
volve either p+ or q+. Thus the first subleading contribution is

suppressed by two powers of 1/N2
c relative to leading: one be-

cause of the matrix elements of the spin-flavor structures which
appear and one because of the necessity for a 1/MN factor in
order to generate some nonlocality and introduce p+ or q+.

At relative order 1/N2
c we also have the 12 structures S

(2)
ξ

shown in Table IV. In addition, the leading structures S
(0)
ξ

can reappear, now multiplied by two of the 1/Nc suppressed
dot products or by one 1/N2

c suppressed dot product of mo-
menta. Using the energy-conservation and on-shell condition,
Eq. (30), at O(1/Nc) we find three momentum structures of
O(1/Nc) and three structures of O(1/N2

c ), all of which involve
two momenta. With four momenta there are six new structures
of order O(1/N2

c ).
Last, we observe that operators from the LO potential occur

again at this order, as they can arise via the replacement of one
Gia/Nc by SiI a/N2

c in the Hartree Hamiltonian, as already
discussed for the NN potential. We denote this contribution
by δ(2)V

Nc

L=0 which stands for

δ(2)V
Nc

L=0 = N−1
c

M
(0)
0∑

ξ=1

V 1
Sξ ,1/N2

c
(p2

−, q2
−, p− · q−)S(0)

ξ , (40)

where the explicit Nc factors ensure that the
V 1

Sξ ,1/N2
c
(p2

−, q2
−, p− · q−) are of order O(N0

c ). Equations (39)
and (40) can be combined, with the effect that the functions
V 1

Sξ
each have their own expansion in 1/N2

c .
The full O(1/Nc) piece of the L = 0 3N potential is then

V
1/Nc

L=0 = δ(2)V
Nc

L=0 + Nc

M
(2)
0∑

ξ=1

V 2
Sξ

S
(2)
ξ

+Nc

M
(1)
0∑

ξ=1

(
V 3

Sξ
p+ · p− + V

4,5
Sξ

p± · q∓
)
S

(1)
ξ

+Nc

M
(0)
0∑

ξ=1

{
V 6

Sξ
p2

+ + V 7
Sξ

p+ · q+ + V 8
Sξ

q2
+

+V 9
Sξ

(p+ · p−)2 + V
10,11
Sξ

(p± · q∓)2

+V
12,13
Sξ

(p+ · p−)(p± · q∓)

+V 14
Sξ

(p+ · q−)(q+ · p−)
}
S

(0)
ξ . (41)

Here M
(2)
0 = 12 and M

(1)
0 = 6 are obtained summing over

the multiplicities shown in Table IV. Note that here any
momentum structure that involves more powers of the O(N0

c )
momenta p−, q−, is absorbed in the O(N0

c ) scalar functions
V 2−14

Sξ
(p2

−, q2
−, p− · q−).

There is no correction at order 1/N3
c , due to the T-odd nature

of the operators S
(3)
ξ listed above and the restrictions of parity

and time-reversal invariance regarding the vector dot products
which can be considered. The correction of order 1/N4

c can be
constructed in analogy to the results for 1/N2

c given in Eq. (41).
For example, the terms involving the M

(3)
0 = 2 operators S

(3)
ξ
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are

Nc

M
(3)
0∑

ξ=1

(
V 15

Sξ
p+ · p− + V

16,17
Sξ

p± · q∓
)
S

(3)
ξ . (42)

Meanwhile, there are many other terms at this order involving
δ(4)V

Nc

L=0, δ
(2)V

1/Nc

L=0 and various combinations of dot products
of momenta and the operators S

(2)
ξ , S(1)

ξ , and S
(0)
ξ . These are too

numerous to list here, but it is clear that the expansion of the
potential is in 1/N2

c , as was also the case for the NN potential.
Before proceeding to the construction of the L = 1, 2, 3

components of the potential it is important to explain why
there are no cross products in the momentum structures of the
L = 0 potential. Triple products like (p− × p+) · q− are parity
odd and should appear together with another triple product
giving a structure of six momenta, which can be written
in terms of scalar products alone. Quadruple products like
(p− × p+) · (p− × p+) can also be reduced to the ones already
present, as they involve two contracted epsilon tensors. The
identities used for this purpose can be found in Appendix B;
see, specifically, Eq. (B1).

In summary, for L = 0 there are five operators at LO, given
in Eq. (39), which are built from T-even spin-isospin structures.
At subleading order there are 57 additional operators which
are built from T-even spin-isospin structures, as well as
18 operators involving T-odd structures. These are listed in
Eq. (41). Up to O(1/Nc) we presented the explicit expressions
for this total of 80 operators, of which 17 only depend on
p−, q− and correspond to a local potential.

2. L = S = 1

In contrast to the two-nucleon potential, the three-nucleon
potential contains S = L = 1 terms at leading order. That is
because vector spin-flavor structures can be constructed from
two and three G’s, see Table III, and then contracted with the
P-even, T-even cross product p− × q−. No such time-reversal-
even cross product exists in the NN system at leading order.
The leading-order L = 1 force is then

V
Nc

L=1 = Nc

M
(0)
1∑

ξ=1

V 1
Pξ

(p− × q−) · P
(0)
ξ . (43)

Here M
(0)
1 = 6 is the number of leading-order S = 1 structures,

see Table V. Since q− appears in the momentum structure of
Eq. (43) they cannot occur in the NN force, and are unam-
biguously the result of 3N interactions. However, we note that,
once again, the functions V 1

P1−3
will be related to one another

through permutation symmetry, as will the functions V 1
P4−6

.
Operators with matrix elements suppressed by 1/Nc are

easily obtained; see Table V, where they are listed as P
(1)
ξ , with

ξ = 1, . . . , M
(1)
1 and M

(1)
1 = 21. However, as is displayed in

the table, these are all time-reversal odd. Thus they must be
contracted with T-odd cross products, and this costs another
power of 1/Nc, since it mandates that p+ or q+ be involved.
Thus the order of such contributions is 1/N2

c relative to leading.
At this order the T-even structures P

(2)
ξ also appear, contracted

with p− × q−, the leading-order momentum structure. The

L = 1 3N force of order 1/N2
c is therefore of the form

V
1/Nc

L=1 = δ(2)V
Nc

L=1 + Nc

M
(2)
1∑

ξ=1

V 2
Pξ

(p− × q−) · P
(2)
ξ

+Nc

M
(1)
1∑

ξ=1

{
V 3

Pξ
p+ × p− + V

4,5
Pξ

p± × q∓

+V 6
Pξ

q+ × q− + (
V 7

Pξ
p+ · p− + V

8,9
Pξ

p± · q∓
)

× (p− × q−)
} · P

(1)
ξ + Nc

M
(0)
1∑

ξ=1

{
V 10

Pξ
(p+ × q+)

+ (
V 11

Pξ
p2

+ + V 12
Pξ

p+ · q+ + V 13
Pξ

q2
+
)
(p− × q−)

+ (
V 14

Pξ
p+ · p− + V

15,16
Pξ

p± · q∓
)
(p+ × p−)

+ (
V 17

Pξ
p+ · p− + V

18,19
Pξ

p± · q∓
)
(p+ × q−)

+ (
V 20

Pξ
p+ · p− + V

21,22
Pξ

p± · q∓
)
(p− × q+)

+ (
V 23

Pξ
p+ · p− + V

24,25
Pξ

p± · q∓
)
(q+ × q−)

} · P
(0)
ξ .

(44)

In this equation M
(2)
1 = 12 and M

(1)
1 = 21. Using two

momenta there is only one structure of O(1). There are four
structures of O(1/Nc) and one structure of O(1/N2

c ). With
four momenta there are three structures at O(1/Nc) and 15
new structures of O(1/N2

c ). Triple products can be eliminated
using the identity (B3).

Once again, the new spin-flavor structures that appear at
O(1/N3

c ) are all T-odd. Thus they must be combined with p− ×
q+, or one of the three other T-odd cross products involving
a + vector, to yield something appropriate for inclusion in
VL=1. The overall result is then a contribution to the 3N force
of relative order 1/N4

c . The expansion for VL=1 is, like that for
VL=0, an expansion in 1/N2

c .
In summary, for L = 1 there are six operators at LO, given

in Eq. (43), which are built from T-even spin-isospin structures.
At subleading order there are 108 new operators involving
T-even spin-isospin structures and 147 operators involving T-
odd ones; see Eq. (44). To O(1/Nc) we presented the explicit
expressions for these 261 operators, of which 18 involve only
p−, q−, and so correspond to a local potential.

3. L = S = 2

The leading 3N spin-flavor structures with S = 2 are
constructed from G’s and 1’s, as shown in Table III. A
Cartesian rank-2 tensor with S = 2, constructed from two
vector quantities Ai and Bj , is symmetric and traceless in
its two indices and will be denoted [AiBj ]2 [see Eq. (18)].
Subleading structures are obtained after introducing a growing
number of S and I operators, following Eq. (3).

The complete set of resulting spin-flavor structures is
displayed in Table VI. This time we have M

(0)
2 = 5. The

five LO structures must be contracted with L = 2 tensors
constructed from p− and q− to obtain the LO contribution
to the 3N potential.
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We reiterate that Eq. (33) explains why there are only two structures D
(0)
4,5, instead of the multiplicity three in similar

structures with three spin operators in the L = 1 case. Similar reductions in multiplicity occur for subleading S = 2 spin-flavor
structures, too.

The leading force is then

V
Nc

L=2 = Nc

M
(0)
2∑

ξ=1

{
V 1

Dξ
[p−p−]2 + V 2

Dξ
[p−q−]2 + V 3

Dξ
[q−q−]2

} · D
(0)
ξ , (45)

with the sum over the M
(0)
2 = 5 structures as listed in Table VI. Note that the first three structures in the sum, i.e., D(0)

1−3, contracted
with the appropriate p−, already occur in the NN potential. Only q− dependence in V 1

D1−3
would reveal it is a “true” 3N force.

Using analogous arguments to those already discussed for the L = 0 and 1 cases, we obtain the subleading L = S = 2
contribution to the 3NF as follows:

V
1/Nc

L=2 = δ(2)V
Nc

L=2 + Nc

M
(2)
2∑

ξ=1

{
V 4

Dξ
[p−p−]2 + V 5

Dξ
[p−q−]2 + V 6

Dξ
[q−q−]2

} · D
(2)
ξ + Nc

M
(1)
2∑

ξ=1

{
V 7

Dξ
[p+p−]2 + V

8,9
Dξ

[p±q∓]2

+V 10
Dξ

[q+q−]2 + (
V 11

Dξ
p+ · p− + V

12,13
Dξ

p± · q∓
)
[p−p−]2 + (

V 14
Dξ

p+ · p− + V
15,16
Dξ

p± · q∓
)
[p−q−]2

+ (
V 17

Dξ
p+ · p− + V

18,19
Dξ

p± · q∓
)
[q−q−]2

} · D
(1)
ξ + Nc

M
(0)
2∑

ξ=1

{
V 20

Dξ
[p+p+]2 + V 21

Dξ
[p+q+]2 + V 22

Dξ
[q+q+]2

+ (
V 23

Dξ
p2

+ + V 24
Dξ

p+ · q+ + V 25
Dξ

q2
+
)
[p−p−]2 + (

V 26
Dξ

p2
+ + V 27

Dξ
p+ · q+ + V 28

Dξ
q2

+
)
[p−q−]2

+ (
V 29

Dξ
p2

+ + V 30
Dξ

p+ · q+ + V 31
Dξ

q2
+
)
[q−q−]2 + (

V 32
Dξ

p+ · p− + V
33,34
Dξ

p± · q∓
)
[p+p−]2

+ (
V 35

Dξ
p+ · p− + V

36,37
Dξ

p± · q∓
)
[p+q−]2 + (

V 38
Dξ

p+ · p− + V
39,40
Dξ

p± · q∓
)
[p−q+]2

+ (
V 41

Dξ
p+ · p− + V

42,43
Dξ

p± · q∓
)
[q+q−]2

} · D
(0)
ξ , (46)

where M
(1)
2 = 9,M

(2)
2 = 9. In writing Eq. (46) we employed

three tensors built from two momenta atO(1), four atO(1/Nc),
and three atO(1/N2

c ); with four momenta there are 9 structures
at O(1/Nc) and 21 at O(1/N2

c ). Of course, all structures are
again multiplied by the usual arbitrary functions of p2

−, q2
−, and

p− · q−. As in the L = S = 0 and L = S = 1 cases, the next-
to-next-to-leading-order contributions to V appear at relative
order 1/N4

c , as a consequence of parity and time reversal.
In summary, for this L = S = 2 part of the 3N force there

are 15 operators at LO, which are built from T-even spin-
isospin structures. These are given in Eq. (45). There are 264
new operators at relative order 1/N2

c , 147 (117) of which are
based on T-even (T-odd) spin-flavor structures; see Eq. (46).
To O(1/Nc) we presented the explicit expressions for all of
these 279 operators. Among these are 42 operators that only
depend on p−, q− and could appear in a local potential.

4. L = S = 3

These operators have no NN analog. The rank-3 Cartesian
tensor with L = 3 that can be constructed from three vectors
A,B,C is symmetric and traceless, namely

[AiBjCk]3 = AiBjCk + AjBkCi + AkBiCj + AjBiCk

+AiBkCj + AkBjCi

− 2
5δij (A · BCk + A · CBk + B · CAk)

− 2
5δik(A · BCj + A · CBj + B · CAj )

− 2
5δjk(A · BCi + A · CBi + B · CAi). (47)

There is just one leading-order spin-flavor structure, three
suppressed by 1/Nc and one suppressed by 1/N3

c , as shown
in Table VII. Note that there are no 1/N2

c structures in
this case, because of isospin conservation, as three σ op-
erators would need to appear along with one τ to generate
a structure at that order. Table VII again shows that the
suppressed structures are T-odd and so ultimately lead to
contributions to the 3N force that are down by 1/N2

c and 1/N4
c ,

respectively.
Because of parity conservation, we need at least four

momenta to construct the L = 3 component of the potential.
There are three L = 3, P-even, T-even, momentum tensors
at O(1). Both q− and p− are needed to construct these, as,
e.g., q−q−q−q− only contains L = 0, 2, 4 components. The
leading operator is

V
Nc

L=3 = Nc

{
V 1

F1
[(p− × q−)p−p−]3 + V 2

F1
[(p− × q−)p−q−]3

+V 3
F1

[(p− × q−)q−q−]3

} · F
(0)
1 . (48)

The subleading L = 3 force contains L = 3, P-even T-odd
tensors involving three q− or p− vectors, together with one
p+ or q+, contracted with the three F

(1)
1−3 structures. Also

appearing at this order are the terms which involve the
leading spin-flavor structure, contracted with P-even T-even
tensors in which two of the four vectors are p+ or q+.
Meanwhile, the subleading correction to the LO structure F

(0)
1

corresponds to s = t = 1 in Eq. (3) and is given by δ(2)V
Nc

L=3.
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Thus, finally we obtain

V
1/Nc

L=3 = δ(2)V
Nc

L=3

+Nc

M
(1)
3∑

ξ=1

{
V 4

Fξ
[(p+×p−)p−p−]3 + V 5

Fξ
[(p+ × p−)p−q−]3 + V 6

Fξ
[(p+ × p−)q−q−]3

+V
7,8
Fξ

[(p± × q∓)p−p−]3 + V
9,10
Fξ

[(p±×q∓)p−q−]3 + V
11,12
Fξ

[(p±×q∓)q−q−]3

+V 13
Fξ

[(q+ × q−)p−p−]3 + V 14
Fξ

[(q+ × q−)p−q−]3 + V 15
Fξ

[(q+ × q−)q−q−]3

} · F
(1)
ξ

+Nc

{
V 16

F1
[(p+ × p−)p+p−]3 + V

17,18
F1

[(p+ × p−)p±q∓]3 + V 19
F1

[(p+ × p−)q+q−]3

+V
20,21
F1

[(p± × q∓)p+p−]3 + V
22,23
F1

[(p± × q∓)p+q−]3 + V
24,25
F1

[(p± × q∓)q+p−]3

+V
26,27
F1

[(p± × q∓)q+q−]3 + V
28,29
F1

[(q+ × q−)p±q∓]3 + V 30
F1

[(q+ × q−)q+q−]3

} · F
(0)
1 , (49)

where M
(1)
3 = 3. There are 12 momentum structures at

O(1/Nc) and 15 momentum structures at O(1/N2
c ). Here

we used again Eq. (33) to reduce the number of momentum
structures. The usual arguments show that the next correction,
which involves the F

(3)
1 structure, is down by 1/N4

c compared
to the leading contribution, again because of the need to
contract F

(3)
1 with a P-even, T-odd tensor.

In summary, for L = 3 there are three operators at LO
built from T-even spin-isospin structures, given in Eq. (48),
and 51 additional (15 corresponding to new T-even and 36 to
T-odd structures) at relative order 1/N2

c , given in Eq. (49). We
presented the explicit expressions for these 54 operators which
occur up to O(1/Nc). Of these, three depend solely on p−, q−
and could be part of a local potential.

IV. SUMMARY AND DISCUSSION

We have classified all the spin-flavor structures that can
contribute to the three-nucleon force (3NF) and power counted
these structures in the 1/Nc expansion. The leading-order
(LO) part of the 3NF is constructed from Gia/Nc and the unit
operator, since these are the quark operators that have nucleon
matrix elements that are O(1). Isospin-invariant structures like

1α1β1γ , N−2
c Gia

α 1βGja
γ , N−3

c εabcGia
α G

jb
β Gkc

γ , (50)

with α, β, and γ labeling the three nucleons, are the leading
contributions. Contraction of these structures with spatial
tensors of the appropriate rank, built from the O(1) momenta
p− and q−, together with a re-expression in terms of the
angular momentum content of these structures, and use of
the reduction of Gia to σ iτ a when restricted to the nucleon
subspace, produces the LO force as follows:

V
Nc

3N = Nc

M
(0)
0∑

ξ=1

V 1
Sξ

S
(0)
ξ + Nc

M
(0)
1∑

ξ=1

V 1
Pξ

(p− × q−) · P
(0)
ξ

+Nc

M
(0)
2∑

ξ=1

{
V 1

Dξ
[p−p−]2 +V 2

Dξ
[p−q−]2 +V 3

Dξ
[q−q−]2

}·D(0)
ξ

+Nc

{
V 1

F1
[(p− × q−)p−p−]3 + V 2

F1
[(p− × q−)p−q−]3

+V 3
F1

[(p− × q−)q−q−]3

} · F
(0)
1 . (51)

Here the S, P,D, F spin-flavor structures are given in
Tables IV, V, VI, and VII. The corresponding multiplicities are
M

(0)
0,1,2,3 = 5, 6, 5, 1. Including all the independent momentum

structures, to leading order we have 29 operators distributed
as 5, 6, 15 and 3 operators with L = 0, 1, 2, 3 respectively.

It follows straightforwardly that our LO force contains
the structures present in the Fujita-Miyazawa three-nucleon
potential, Eq. (2). Indeed, the only structure beyond the Fujita-
Miyazawa result is the unit operator which is added to V 2π

ijk in
most modern implementations of the 3NF. Of course, models
of the 3NFs contain specific predictions for the coefficient
functions V m

Lξ
. The large-Nc expansion can say nothing about

these functions beyond the statement that they should be
“natural,” i.e., O(1); the insights from large-Nc reside in
the statements regarding the overall size that different spin-
isospin–momentum structures within the 3NF should have.

The LO 3NF contains spin-dependent forces, but it does
not contain the spin-orbit forces that have been proposed as a
solution to the Ay puzzle (see, e.g., Ref. [45]). The Ay puzzle
is not straightforwardly resolved by 1/Nc power counting
arguments.

Spin-orbit forces, together with several other operators, all
of which we have tabulated in Sec. III, appear at O(1/N2

c )
compared to leading. We have also shown that the next-to-
next-to-leading correction to the 3NF is at order 1/N4

c relative
to LO. The NNN force is therefore, like the NN force, an
expansion in 1/N2

c . We have given explicit expressions for the
674 operators that appear in the 3N potential up to (overall)
order 1/Nc in Eqs. (51), (41), (44), (46), and (49).

Many of these operators involve nonlocalities and time-
reversal-odd momentum structures. For a local 3NF only
time-reversal-even momentum structures involving p− or q−
can occur. Such structures occur in both the leading and
subleading 3NF but do not occur at higher orders, where
the presence of at least one time-reversal-odd momentum
is required. Taking into account the different momentum
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structures which satisfy this constraint, at relative order 1/N2
c

we have 12, 12, and 27 operators with L = 0, 1, 2, respectively.
No L = 3 local operator occurs at this relative order in
the expansion. Combining these operators with the 29 LO
operators yields a total of 80 operators that constitute the most
general basis for a local 3NF. These operators can be easily
read off from Eqs. (51), (41), (44), (46), and (49). In a recent
paper [29] the authors needed a basis of 89 operators to obtain
the most general contribution of a local 3NF. Their operator
basis differs somewhat from ours, so a comparison is not
immediate. An important subject for future investigation is the
relation between the two sets of operators and a determination
of the minimal basis of operators for a general, local 3NF.

We have not discussed the constraints imposed by the
permutation group on our analysis. In the NN case such
considerations resulted in the elimination of the spin structure
σ1 − σ2. In the 3N case such constraints will impose relations
between the different coefficient functions we have used in
our expansion. Since the 3N coefficient functions depend
on three rotational scalars, it seems unlikely that a general,
permutation-group-based argument can be used to eliminate
an operator structure from the 3NF—at least in the absence
of additional assumptions about the coefficient functions
themselves. A permutation-group analysis of the structures we
have obtained would be a useful step towards understanding
the particular 3N partial waves which the different operator
structures we have obtained contribute to.

It would also be interesting to test whether adding the
1/N2

c structures we have listed here to phenomenological
3NFs improves the description of few-nucleon scattering
data and light-nuclear spectra. Recently developed three-body
potentials like the lllinois force [18] or that derived from χPT
[27–29] include several of these structures. Matching such
3NFs to our large-Nc expressions is appreciably more involved
than in the NN case analyzed in Ref. [37], but nevertheless,
they could be matched to the list of operators presented here.
This would illuminate precisely which structures are present in
these particular potentials and whether the relative size of the
different contributions is well predicted by the 1/Nc expansion.
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APPENDIX A: AN EXPLICIT EXAMPLE
OF OPERATOR REDUCTION

For completeness, it is worth discussing an explicit example
of the operator reduction [Eq. (14)]. Consider the case of the

product of two G’s, which can be written as

GiaGjb = 1
2 {Gia,Gjb} + 1

2 [Gia,Gjb]. (A1)

The commutator contains the antisymmetric terms in (ia) and
(jb) and is suppressed by 1/N2

c . The symmetric part in (ia) and
(jb) can be written as a tensor W (ij ),(ab) which is symmetric
in the spatial indices i, j and symmetric in the isospin indices
a, b independently and a tensor W [ij ],[ab] that is antisymmetric
in the spatial and isospin indices taken separately,

{Gia,Gjb} = W (ij ),(ab) + W [ij ],[ab], (A2)

where

W (ij ),(ab) = 1
2 {Gia,Gjb} + 1

2 {Gib,Gja}, (A3)

W [ij ],[ab] = 1
2 {Gia,Gjb} − 1

2 {Gib,Gja} = εijkεabcAkc,

(A4)

with

Akc = 1
4εkij εabc{Gia,Gjb}. (A5)

Now we can use the following identity, see Ref. [39], to reduce
the number of G’s by 1,

εijkεabc{Gia,Gjb} = −(Nc + 2)Gkc + 1
2 {Sk, I c}. (A6)

The W (ij ),(ab) tensor has (I, S) = (0, 0), (2, 0), (0, 2), (2, 2)
components. Only the (0, 0) component contributes in the
nucleon subspace. It is obtained by contracting the indices
and is W

ij,ab
(0,0) = 2

9δij δabGkcGkc. The SU(4) quadratic Casimir
operator C2 = 1

2S2 + 1
2I 2 + 2GkcGkc evaluated in the sym-

metric irrep SN that corresponds to ground-state nucleons gives
C2(SNc

) = 3
8Nc(Nc + 4)1 and shows explicitly that, to leading

order, GkcGkc can be replaced by the unit operator. The two
terms in Eq. (A6) that enter in W [ij ],[ab] correspond to the (1, 1)
component, and only the first one contributes to leading order.

We obtain

〈N |N−2
c GiaGjb|N〉 = 〈N |Nc + 4

48Nc

δij δab1 − Nc + 2

8Nc

εijkεabc

×
(

Gkc

Nc

)
|N〉 + O(

N−2
c

)
, (A7)

where this is an example of Eq. (14) that shows explicitly the
tensor structure in the spatial and isospin indices.

APPENDIX B: USEFUL TENSOR IDENTITIES

Here we collect a few identities involving epsilon tensors
that are used to simplify the number of spin-flavor and also
momentum structures. The product of two epsilon tensors can
be written as

εijkεlmn = det

⎡
⎣ δil δim δin

δjl δjm δjn

δkl δkm δkn

⎤
⎦

= δil(δjmδkn − δjnδkm) − δim(δjlδkn − δjnδkl)

+ δin(δjlδkm − δjmδkl). (B1)

This expression is very useful for constructing an independent
set of momentum structures. Another useful identity can be
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obtained by contracting Eq. (B1) with εijp, giving

δkpεlmn = δknεlmp + δkmεlpn + δklεpmn, (B2)

from where

(A × B)iCj + (B × C)iAj + (C × A)iBj = (A × B) · Cδij

(B3)

is obtained. This can be used to eliminate triple products from
all our momentum structures and also to reduce the number
of momentum or spin-flavor structures that contain a cross
product.
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