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for a class of generalised Painlevé II equations. Existence results are obtained via the
method of upper and lower solutions together with a diagonal argument.
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1. Introduction

Hastings and McLeod [1] investigated a class of boundary value problems on a half-line for a Painlevé-type equation
that arises in plasma physics (De Boer and Ludford [2]). Boundary value problems on the half-line x ∈ [0,∞) for the
integrable Painlevé reduction with behaviour ≈ x

1
2 as x → ∞ have been investigated by Holmes and Spence [3], Heiffer

andWeissler [4]. Bass [5], in 1963, derived the Painlevé II equation in the context of a steady electrolysismodel arising out of
a more general non-steady system [6]. This work was later subsumed in a multi-ion electrodiffusion model by Leuchtag [7].
The Painlevé structure underlying the latter nonlinear system has been recently investigated by Conte et al. [8]. Bass in [5,6]
was also concernedwith boundary value problems on the half-line [0,∞) and discussed critically the appropriate boundary
conditions to be imposed. However, his analytic treatment only proceeded for a linearised version of the Painlevé IImodel. In
fact, the integrability of the Painlevé II equations allows the sequential application of Bäcklund transformations to generate
exact solutions of the Bass model (Rogers et al. [9]). The solvability of certain two-point boundary value problems for the
latter has been investigated by Mariani et al. [10]. Recently, the method of upper and lower solutions [11] has been applied
by Amster et al. in [12] to establish the solvability of Dirichlet or periodic boundary value problems for a generalised Painlevé
equation originally derived in an electrodiffusion context by Leuchtag in [7]. Third-order problems arising in the three-ion
case were recently investigated in [13]. Here, it is established that the method of upper and lower solutions may, in fact, be
applied to establish the existence of solutions to basic classes of boundary value problems on the half-line for an extension
of the Painlevé II equation. It should be noted, however, that the application of this method to such half-line problems is
not straightforward. This is due to the fact that, unlike in the case of a bounded interval, the associated linear operator for
the half-line problem does not have a compact inverse and a direct application of a Schauder fixed point argument seems
inappropriate. This motivates our use here of a diagonal argument, which essentially consists in finding a solution uN of
the equation on the bounded interval [0,N] under an appropriate boundary condition, and then proving the existence of a
subsequence that converges to some limit function u, which solves the problem. The choice of this subsequence relies on
the computation of accurate a priori bounds of the solution uN restricted to the interval [0,M], withM ≤ N .
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In the above mentioned works [10,12], only the case of a bounded interval was considered. Here we study the extended
Painlevé II± type of equations

p′′ = a|p|γ p+ b |p|δ pp′ ± xp+ C, (1)

with constants a > 0γ , δ ≥ 0 and b, C ∈ R, on the unbounded interval [0,∞), under the following boundary conditions:

I

p(0) = p0, lim
x→+∞

p(x) = 0 (2)

II

p(0) = p0, lim
x→+∞

p(x)
x
= 0. (3)

Initially, we proceed with Case I for (1)+. Case II is then dealt with at the end of the paper for problem (1)−, for which the
existence of solutions under the stronger condition (1)+ cannot be ensured.

2. Upper and lower solutions and a diagonal argument

Our existence results are derived via themethod of lower and upper solutions and a diagonal argument. Let us recall that
a smooth function α is deemed to be a lower solution of problems (1)± when

α′′ ≥ a |α|γ α + b|α|δαα′ ± xα + C .

Similarly, a smooth function β is said to be an upper solution of (1)± when

β ′′ ≤ a|β|γβ + b|β|δββ ′ ± xβ + C .

If moreover α ≤ β , we shall say that (α, β) is an ordered couple consisting of a lower and an upper solution of (1)±.
In order to investigate the solvability of the boundary value problems (1)± under conditions (2) or (3) on the half-line,

we first recall a standard existence result for an associated Dirichlet boundary value problem on a bounded interval [0, T ]
(cf. [11]).

Theorem 2.1. Let (α, β) be an ordered couple consisting of a lower and an upper solution of the boundary value problem
(1)+ (respectively (1)+), and let p0 ∈ [α(0), β(0)], pT ∈ [α(T ), β(T )]. Then, (1)+ (resp. (1)−) admits at least one solution
p : [0, T ] → R with α ≤ p ≤ β , satisfying the Dirichlet boundary conditions

p(0) = p0, p(T ) = pT .

It is noted that the nonlinear lower order term

g±(x, p, p′) := a |p|γ p+ b |p|δ pp′ ± xp+ C

satisfies a Nagumo condition [14]: indeed, if x ∈ [0, T ] and α(x) ≤ p ≤ β(x), then

|g±(x, p, q)| ≤ A|q| + B

for some constants A and B and the method of upper and lower solutions applies.
Next, we introduce a diagonal argument which demonstrates the existence of a solution for (1)± under the boundary

conditions (2) or (3).

Theorem 2.2. Let (α, β) be an ordered couple consisting of a lower and an upper solution of (1)+ (respectively (1)−) such that
α(0) ≤ p0 ≤ β(0).
Then (1)+ (resp. (1)−) admits at least one solution p with α ≤ p ≤ β such that p(0) = p0. If moreover

lim
x→+∞

α(x) = lim
x→+∞

β(x) = 0,

or

lim
x→+∞

α(x)
x
= lim
x→+∞

β(x)
x
= 0,

then p satisfies condition (2) or (3), respectively.

Proof. For any N ∈ N, consider the Dirichlet boundary value problem{
p′′ = a |p|γ p+ b|p|δpp′ ± xp+ C x ∈ (0,N)
p(0) = p0, p(N) = (α(N)+ β(N))/2. (4)
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By Theorem 2.1, there exists at least one solution pN of (4) such that α|[0,N] ≤ pN ≤ β|[0,N]. For fixedM and N ≥ M , set

ϕN(x) =
pN(M)− p0

M
x+ p0

and

hN(x) = −b
∫ x

0
|pN(t)|δpN(t) dt.

Then (
ehN (pN − ϕN)′

)′
:= θN(x),

with ‖θN‖C([0,M]) ≤ c̄ for some constant c̄ depending only onM . Then∫ M

0
ehN (x)[(pN − ϕN)′]2(x)dx = −

∫ M

0
θN(x)(pN − ϕN)(x)dx ≤ c

for some constant c independent ofN . As pN satisfies (4), it is seen that ‖p′′N‖L2(0,M) is bounded. It follows that ‖pN−ϕN‖H2(0,M)
is bounded by a constant cM independent of N .
From the compact embedding H2(0,M) ↪→ C1([0,M]), there exists a subsequence of {pN}N≥M that converges on [0,M]

for the C1-norm. Thus, we proceed as follows. TakeM = 1 and choose a subsequence, still denoted as {pN}, which converges
in C1([0, 1]) to some function p1. Repeating the procedure forM = 2, 3, . . ., wemay assume that pN |[0,M] converges to some
function pM in the sense of C1.
By construction, pM+1|[0,M] = pM ; thus, the function p : [0,+∞) → R given by p(x) = pM(x) if 0 ≤ x ≤ M is

well-defined. Moreover, p(0) = p0, and p′′N converges uniformly in [0,M] to

a|p|γ p± xp+ b|p|δpp′ + C .

Thus, for any test function ξ ∈ C∞0 (0,M) it is seen that∫ M

0
(a|p|γ p± xp+ b|p|δpp′ + C)ξ = lim

N→∞

∫ M

0
p′′Nξ = lim

N→∞

∫ M

0
pNξ ′′ =

∫ M

0
pξ ′′,

whence

p′′ = a |p|γ p± xp+ b|p|δpp′ + C

in [0,M], in theweak sense. By construction, p is continuously differentiable; thus, p is a classical solution of (1)± on [0,+∞),
and the result follows. �

3. Application to problems (1)±

The above Theorem 2.2 is now applied to establish the following:

Theorem 3.1. The boundary value problem (1)+–(2) admits at least one solution.

Proof. It suffices to construct an ordered couple (α, β) consisting of a lower and an upper solution of (1)+ such that

α(0) ≤ p0 ≤ β(0), lim
x→+∞

α(x) = lim
x→+∞

β(x) = 0.

Fix a non-increasing function ψ ∈ C2([0, 1]) such that 0 ≤ ψ ≤ 1, and

ψ |
[0, 14 ]
≡ 1, ψ |

[
3
4 ,1]
≡ 0.

We shall define an upper solution β in the following way. Let {cn} be a non-increasing sequence such that cn → 0, and
define

β(x) = (cn − cn+1)ψ(x− n)+ cn+1 for n ≤ x ≤ n+ 1.

It follows that β : [0,+∞) −→ [0,+∞) is well-defined, non-increasing and twice continuously differentiable, with
β(x)→ 0 as x→+∞. Moreover,

|β ′(x)| = −(cn − cn+1)ψ ′(x− n) ≤ (cn − cn+1)R1

and

β ′′(x) = (cn − cn+1)ψ ′′(x− n) ≤ (cn − cn+1)R2
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for some positive constants R1 and R2. On the other hand,

aβ(x)γ+1 + xβ(x)+ bβδ+1β ′ + C ≥ acγ+1n+1 + ncn+1 − |b|c
δ+1
0 (cn − cn+1)R1 + C .

Thus, if for every n

acγ+1n+1 + (n+ K)cn+1 + C ≥ cnK ,

where K = R2 + |b|cδ+10 R1, then β is an upper solution. For instance, we may consider c0 ≥ max{p0, 0} such that
acγ+10 + C ≥ 0, and fix n0 such that

n+ K
√
n+ 1

c0 + C ≥ c0K

for all n ≥ n0. It suffices to define

cn =

{
c0, n ≤ n0
c0
√
n
, n > n0.

In the same way, we may define a lower solution α ≤ 0, and Theorem 2.2 applies. �

Remark I. If b = 0, then the solution given by Theorem 3.1 is unique. Indeed, if p1, p2 are two solutions, defineW = p1−p2.
Then,W satisfies

W ′′ = φ(x)W + xW , W (0) = lim
x→+∞

W (x) = 0,

where φ(x) = a(γ + 1)|ξ(x)|γ for some mean value ξ(x) between p1(x) and p2(x).
IfW (x0) > 0 for some x0 > 0, we may assume that x0 is a maximum, and soW ′′(x0) ≤ 0, a contradiction. It follows that

W ≤ 0, and in the same way we deduce thatW ≥ 0.

Remark II. If δ = 0 and γ = 2 we recover the two-ion electrodiffusion model set down in Leuchtag [7]. In this case, an
ordered couple (α, β) is readily obtained as follows. Set

β(x) =
d

x+ K
,

for some positive constants K and d, with d large enough that dK ≥ p0, and that the inequality[
2+ bd−

1
2
ad2
]

d
(x+ K)3

−
x

x+ K
+
C
d
≤ 0

is satisfied. In the same way, taking d � 0, a lower solution is constructed. The specific choice of the constants a = 2 and
b = 0 yields the well-known Painlevé II+ equation

p′′ = 2p3 + xp+ C .

To conclude, we consider the boundary value problem (1). In this case, it is seen that the construction of the previous
theorem fails; however, existence of solutions can be proved under the weaker condition of sub-linearity at infinity (3). The
following result is established:

Theorem 3.2. Assume that γ > max{1, δ}. Then the boundary value problem (1)−, (3) admits at least one solution.

Proof. It suffices to construct an ordered couple (α, β) consisting of a lower and an upper solution of (1)− satisfying

α(0) ≤ p0 ≤ β(0), lim
x→+∞

α(x)
x
= lim
x→+∞

β(x)
x
= 0.

Let ψ be defined as in Theorem 3.1, and consider the function given by

β(x) = [cn(x)− cn+1(x)]ψ(x− n)+ cn+1(x) for n ≤ x ≤ n+ 1,

where cn(x) = rnx+ sn for some positive numbers

r0 ≥ r1 ≥ · · · → 0

and

s0 ≤ s1 ≤ · · · → +∞
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to be chosen. A simple computation shows that if x ∈ [n, n+ 1] then

rn+1x+ sn ≤ β(x) ≤ rnx+ sn+1,
|β ′(x)| ≤ R1[(rn − rn+1)x+ sn+1 − sn] + rn,

and

β ′′(x) ≤ R2[(rn − rn+1)x+ sn+1 − sn]

for some positive constants R1, R2.
For convenience, write

aβγ+1 − xβ + bβδ+1β ′ + C = β
( a
2
βγ − x

)
+ βδ+1

( a
2
βγ−δ + bβ ′

)
+ C,

and observe that if x ∈ [n, n+ 1], then

βγ ≥ sγn

(
rn+1
sn
x+ 1

)γ
≥ sγn

(
γ
rn+1
sn
x+ 1

)
= sγn + γ rn+1s

γ−1
n x.

Thus, we may fix some appropriate value of n0 ∈ N to be established and define

sn =
{√
n0, n ≤ n0√
n, n > n0,

r0 = r1, rn+1 =
2

aγ sγ−1n
.

Then we have, for x ∈ [n, n+ 1],

aβγ+1 − xβ + bβδ+1β ′ + C ≥
a
2
(rn+1x+ sn)sγn + C,

provided that

a
2
βγ−δ(x)+ bβ ′(x) ≥ 0. (5)

If n ≥ n0, a simple computation shows that

sn+1 − sn =
1

√
n+
√
n+ 1

,

and

rn − rn+1 ≤
γ − 1

aγ n(γ+1)/2
.

Hence, if n0 is large enough, then (5) is satisfied, and moreover

β ′′ ≤
a
2
(rn+1x+ sn)sγn + C

on [n0,+∞). Enlarging n0 if necessary, in order to satisfy

n0 ≥ p20,
a
2
n(γ+1)/20 + C ≥ 0,

a
2
n(2γ−δ−1)/20 +

2b
aγ
≥ 0,

it follows that β is also an upper solution over [0, n0], and β(0) =
√
n0 ≥ p0. Furthermore, for [x] = n ≥ n0

β(x)
x
≤ rn +

√
n+ 1
n
→ 0

as n→ +∞. In a similar way, we define a lower solution α : [0,+∞)→ R≤0 such that α(0) ≤ p0, and limx→∞ α(x)
x = 0.

The result now follows. �
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