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No-go theorem for static spherically symmetric configurations
composed of two charged pressureless fluid species
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We present a no-go theorem for spherically symmetric configurations of two charged fluid species in equilibrium. The fluid species are
assumed to be dusts, that is, perfect fluids without pressure, and the equilibrium can be attained for a single dust from the balance of electro-
static repulsion and gravitational attraction. We show that this is impossible for two dust species unless both of them are indistinguishable
in terms of their electric charge density to matter density ratio. The result is obtained in the main three theories of mechanics, that is, in
Newtonian Mechanics, in Special Relativity and in General Relativity. In particular, as charged dust solutions have been used to study the
possibility of black hole mimickers, this result shows that such mimickers can not be constructed unless the underlying charged particle has
the correct charge to mass ratio.
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1. Introduction

The general physical setting that we study is matter interact-
ing both gravitationally and electromagnetically. In particu-
lar, we want to consider equilibrium configurations. Within
the Newtonian Mechanics (NM) formalism this means that
the gravitational attraction needs to be exactly balanced by
the electric repulsion. For the description of matter we use
the approximation of dust, that is, a perfect fluid whose equa-
tion of state is simply that the pressure is zero, which comes
from considering that the thermal energy is negligible. In
order for the electromagnetic interaction to take place, the
dust needs to be electrically charged. Therefore there are two
densities to be known, the matter density,ρ, and the electric
charge density,σ. In NM it is easy to see that if

σ = ±
√

4πε0Gρ, (1)

then any static distribution of matter is possible, as the grav-
itational attraction between any two elements of the fluid
is balanced by the corresponding electric repulsion. In this
case the fluid is referred to as electrically counterpoised dust
(ECD). A bit surprising is the fact that the same happens in
General Relativity (GR): any static distribution of ECD is a
solution of the Einstein-Maxwell system of equations [1, 2].
This has been exploited to test features of the theory, like
constructing regular objects with diverging density [3] or un-
bounded redshifts [4], to test the “hoop conjecture” [5], and
to analyze the black hole limit for charged fluids [6,7].

Although theoretically any static distribution of matter
made of ECD is possible, the actual occurrence of such a
distribution poses a strong difficulty, as there is no funda-
mental particle that has the correct relationship between elec-
tric charge and mass. Leaving aside the± sign, which only
amounts to the charge sign convention, Eq. (1) tells us that

the relationship between charge density and matter density is
fixed and has the particular value

σ

ρ
≈ 8.6× 10−11 C · kg−1. (2)

This is tiny. For comparison, if we consider a gas made of
protons we have

e

mp
≈ 9.6× 107 C · kg−1, (3)

or for single ionized lead atoms

e

mPb
≈ 4.7× 105 C · kg−1. (4)

Therefore, if we want to have ECD made of ionized hydro-
gen, we need to ionize only one in1018 atoms, and for lead
atoms the relationship is2 : 1016. This responds to the fact
that all known particles belong in two classes. In one class,
the particles have no charge, and therefore the gravitational
attraction can not be balanced by electric repulsion. In the
other class, the electric repulsion is huge compared to the
gravitational attraction. In summary, there is no naturally oc-
curring fluid where Eq. (1) is satisfied.

If we want to pursue the previous line of thought, where
we start with a neutral gas and ionize the right proportion of
atoms in order for Eq. (1) to be satisfied, then instead of hav-
ing one single species fluid we have two species. For the hy-
drogen example, one of the species would consist of neutral
hydrogen with no charge, and the other would consist purely
of ionized hydrogen, having a charge density much higher
than required. To study the mechanical behaviour of this sys-
tem it is not enough to consider only one species. It is not
trivial to decide how can we physically tell if we are dealing
with one or two species, or if separating one fluid into two
components is unnecessary. It may seem that by making a
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thermodynamical average to arrive at a fluid description of
matter then all the microscopic quantities can be averaged,
and therefore we always end up with a description by a sin-
gle species. This is only true if the interactions that we are
considering can not distinguish those microscopic properties.
For example, if only gravitational interaction is considered,
then we can not separate the particles by their mass-charge
ratio. If we also include electromagnetic interaction, as we
do here, then said particles can be distinguished by the mass-
charge ratio. In this case, the thermodynamical average can
be made but only among the particles that share the same dis-
tinguishable properties. In conclusion, we are led to consider
the case of two charged fluid species, and to see if it is pos-
sible to construct configurations where the required relation-
ship Eq. (1) is satisfied ”on average”. If this is possible, then
the argument of starting with a neutral fluid and ionizing the
right amount of atoms has a solid base. If it is not possible,
then there is no natural situation where ECD can be expected
to occur.

Here we restrict our considerations to spherical symme-
try. This problem, within GR and without spatial symmetries,
has been solved in [8]. Restricting to spherical symmetry per-
mits dropping one technical assumption needed in GR. We
consider three theories: NM, Nordström gravity in Special
Relativity (SR) and GR. As we are dealing with electrically
charged matter, we need to satisfy Maxwell equations in the
setting of each theory.

The article is organized as follows. The considered prob-
lem and result are stated in Sec. 2. Then, the result is proved
using the formalism of NM in Sec. 3, of SR in Sec. 4, and of
GR in Sec. 5. We conclude with a Sec. 6.

2. Problem statement and no-go theorem

We consider two electrically charged dust species, denoted
A andB, in a static and spherically symmetric distribution.
This means that the density of matter and density of electric
charge of the first species are described by the functions

ρA(r), σA(r), (5)

and for the second species

ρB(r), σB(r), (6)

wherer is the radial coordinate. The fluid species are sub-
jected to gravitational and electromagnetic interaction.

No-go theorem:There is no static spherically symmetric
distribution with two electrically charged dust species unless

σA = ±
√

4πε0GρA and σB = ±
√

4πε0GρB . (7)

There are a few remarks worth making. The first is that
the same sign needs to be chosen in the equalities (7), as both
species need to have the same type of charge for gravitational
and electrical forces to be balanced. Also, if Eqs. (7) are sat-
isfied, then the two species can not be distinguished by their

mass-charge ratio, and for the setting that we are considering
they are effectively only one species. That is why we name
the result a no-go theorem, because if we can distinguish two
species then there is no equilibrium. In terms of what the
theorem affirms about the physical world, it states that it is
not possible to construct star-like objects of ECD if there is
no fundamental particle, atom or molecule with the correct
mass-charge ratio.

3. Newtonian mechanics

In this section we consider the problem from the perspective
of NM. Here and in Sec. 4 we use SI units. The fundamen-
tal quantities to consider are the forces to which each fluid
species is subjected, which in turn give us the accelerations
of the fluid elements. As we restrict the problem to spher-
ical symmetry, we use spherical coordinates, and the func-
tions that describe the dust species distributions are the cor-
responding matter and charge densities,

ρA(r), σA(r), ρB(r), σB(r). (8)

It is convenient to define two functions, the total mass and
charge inside the radiusr,

M(r) := 4π

∫ r

0

(ρA(r̃) + ρB(r̃)) r̃2dr̃, (9)

Q(r) := 4π

∫ r

0

(σA(r̃) + σB(r̃)) r̃2dr̃. (10)

If we consider an element of speciesA situated at radiusr
with volumeδV , then the gravitational force is

Fg = −G
M(r)

r2
ρA(r)δV, (11)

while the electric force is

Fe =
1

4πε0

Q(r)
r2

σA(r)δV. (12)

In order for the fluid element to be in equilibrium we need
Fe = −Fg, and therefore

4πε0GM(r)ρA(r) = Q(r)σA(r). (13)

This is the equilibrium equation for the first fluid species. The
same argument for the second species gives

4πε0GM(r)ρB(r) = Q(r)σB(r). (14)

If we add (13) and (14) and use the definitions (9) and (10)
we geti

4πε0GM(r)M ′(r) = Q(r)Q′(r), (15)

which , using thatM(0) = 0 andQ(0) = 0, integrates to

Q(r) = ±
√

4πε0GM(r). (16)
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If we insert this in Eq. (13) and Eq. (14) we obtain

σA(r) = ±
√

4πε0GρA(r), and

σB(r) = ±
√

4πε0GρB(r). (17)

It is clear from Eq. (13) and Eq. (14) that in both equations
the same sign needs to be chosen. The conclusion is that
the relationship between charge density and mass density is
fixed and the same for both fluid species, otherwise there is
no equilibrium and the distribution is not static. This com-
pletes the proof in the Newtonian paradigm.

4. Special relativity

In SR we are concerned with the fields that describe the dy-
namical behaviour of the fluid species, that is, their four-
velocities. The other fields related to the species that we have
to account for are the matter density and the electric charge
density. So, we have

ρA, σA, uµ
A, ρB , σB , uµ

B , (18)

as the mass densities, charge densities and four-velocities of
the fluid species. The electromagnetic theory was incorpo-
rated from the onset in SR, and in fact it was one of the main
motivations for the development of SR. On the contrary, the
incorporation of gravity into flat spacetime is not so straight-
forward. In this section we consider the problem in Nord-
ström scalar theory of gravity. This theory is constructed in
SR, the spacetime is Minkowski and we use standard Carte-
sian coordinates. For a general discussion of Nordström the-
ory and for the conventions in units and signs we follow [9].
This theory of gravity allows the introduction of the gravita-
tional interaction trough a scalar potential, whose source term
is the trace of the energy-momentum tensor. It needs to be
mentioned that Nordström theory is not a physically correct
theory, as it is not compatible with observations. In particu-
lar, it predicts a periastron retardation instead of the observed
periastron advance. Nevertheless, it is a useful middle step
between NM and GR, which permits gaining insights within
the relativistic setting.

For the electromagnetic field, we use the description
through a vector potential,Aµ, and gravity is given by a
scalar potential,Φ. The electromagnetic field is governed by
Maxwell equations. The Faraday tensor is

Fµν = ∂µAν − ∂νAµ. (19)

For simplicity we use the Lorenz gauge,∂µAµ = 0, and
therefore the equation forAµ is

¤Aµ = − 1
ε0

jµ, (20)

where¤ is the d’Alembertian operatorii andjµ is the electric
current density. With the notation (18) we have

jµ = σAuµ
A + σBuµ

B . (21)

The governing equation forΦ is

¤Φ = −4πG

c2
T, (22)

where T is the trace of the energy-momentum tensor.
The energy-momentum tensor is the sum of the energy-
momentum tensor of the dust species and the energy-
momentum tensor of the electromagnetic field. For dust, the
energy momentum tensor is

Tµν
d = Tµν

A + Tµν
B = c2ρAuµ

Auν
A + c2ρBuµ

Buν
B . (23)

The electromagnetic energy-momentum tensor is

Tµν
e = ε0

(
Fγ

µF γν − 1
4
FγλF γλgµν

)
. (24)

Taking the trace we haveTd = −c2(ρA + ρB) andTe = 0,
therefore

¤Φ = 4πG(ρA + ρB). (25)

As the last set of equations, we need the equations of mo-
tion for the fluid species. The Lorentz force in a fluid element
is

fµ
e = σFµνuν , (26)

and the gravitational force, which comes from the scalar field
interaction, is

fµ
g = −ρ∂νΦ(gµν + uµuν)− ρΦaµ, (27)

whereaµ is the four-acceleration of the fluid element. The
equation of motion is

ρc2aµ = fµ
e + fµ

g . (28)

If we put this together for each fluid species, the equations
are

ρA(c2 + Φ)aµ
A = σAFµ

νuν
A

− ρA∂νΦ(gµν + uµ
Auν

A), (29)

ρB(c2 + Φ)aµ
B = σBFµ

νuν
B

− ρB∂νΦ(gµν + uµ
Buν

B). (30)

Now that we have collected all the equations that have
to be satisfied, we restrict them to the static case. In the
first place this means that none of the functions depend on
the time coordinatet. Also, the four-velocities and four-
accelerations are

uµ
A = uµ

B = δµ
0 , aµ

A = aµ
B = 0. (31)

Using these in (20) we have thatiii

∆Aµ = − 1
ε0

(σA + σB)δµ
0 , (32)
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and therefore

Aµ = V δµ
0 , (33)

whereV is a function that does not depend ont and satisfies

∆V = − 1
ε0

(σA + σB). (34)

With this V the Lorenz gauge condition onAµ is directly
satisfied. Also, from (25),

∆Φ = 4πG(ρA + ρB). (35)

Completing the transition to the static case, (29) and (30)
giveiv

ρA∇Φ = −σA∇V, ρB∇Φ = −σB∇V. (36)

It is interesting to note that the system of Eqs. (34)-(35)-(36)
is the same as in the static case in NM.

Finally, if we also impose spherical symmetry, then all
considered functions depend only on the radial coordinate,r,
and

∆Φ =
1
r2

(r2Φ′)′. (37)

Then, (35) can be integrated as

Φ′ =
4πG

r2

∫ r

0

(ρA(r̃) + ρB(r̃))r̃2dr̃ = 4πG
M(r)

r2
. (38)

Analogously, from (34),

V ′ = − 1
ε0r2

∫ r

0

(σA(r̃) + σB(r̃)) r̃2dr̃

= − 1
ε0

Q(r)
r2

. (39)

Inserting these last two equations in Eq. (36) we obtain

4πε0GMρA = QσA, 4πε0GMρB = QσB . (40)

These equations are the same as (13)-(14) and the result fol-
lows identically.

5. General relativity

In this section we attack the problem from the perspective
of GR. We use geometrized units, whereG = c = 1, and
alsoε0 = (4π)−1. As in SR, for the description of the dust
species the variables are the matter densities, charge densities
and four-velocities, that is

ρA, σA, uµ
A, ρB , σB , uµ

B . (41)

For the electromagnetic field, we use again the electromag-
netic potential,Aµ, and for the spacetime the fundamental
object is the metric,gµν .

The Einstein equations are

Gµν = 8πTµν , (42)

whereGµν is the Einstein tensor,

Gµν := Rµν − 1
2
Rgµν , (43)

beingRµν the Ricci tensor andR the curvature scalar.Tµν

is the energy momentum tensor, and in our case it has a con-
tribution from the dust species and a contribution from the
electromagnetic field,

Tµν = T d
µν + T e

µν . (44)

The dust part is

T d
µν = TA

µν + TB
µν = ρAuA

µ uB
ν + ρBuB

µ uB
ν . (45)

The electromagnetic energy-momentum tensor is

T e
µν =

1
4π

(
FγµF γ

ν − 1
4
FγλF γλgµν

)
, (46)

where the Faraday tensor is given byv

Fµν = ∇µAν −∇νAµ. (47)

Although not an independent equation, the energy-
momentum conservation,∇νTµν = 0, is useful to simplify
the calculations. This equation encodes an equation of mo-
tion if there is only one four-velocity in spacetime, meaning
the presence of only one species. It constitutes the most di-
rect and typical procedure for solving equilibrium equations
for isolated systems in GR, and it can be a direct analogy
to Newton’s equations. However, in this case, it is merely a
conservation equation, as happens in NM with energy con-
servation.

The Maxwell equations are

∇νFµν = 4πjµ, (48)

wherejµ is the current density. With the notation (41) we
have

jµ = σAuµ
A + σBuµ

B . (49)

As the last set of equations, we need the equations of mo-
tion for the fluid species, since the conservation equation does
not give them individually. Although there is more than one
way to arrive at said equations, the shortest path is to take the
already known equation of movement for a fluid subjected
to electromagnetic interaction in SR, and use the equivalence
principle to generalize it to curved spacetime. The Lorentz
force in a fluid element is

fµ
e = σFµνuν , (50)

and the equation of motion is

ρuν∇νuµ = fµ
e . (51)
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Then, for each fluid species

ρAuν
A∇νuµ

A = σAFµ
νuν

A, (52)

ρBuν
B∇νuµ

B = σBFµ
νuν

B . (53)

Now we impose staticity and spherical symmetry, consid-
ering that we use adapted coordinates,(t, r, θ, φ), and there-
fore all the involved functions depend only on the radial co-
ordinater. In these coordinates, the metric has the form

gµνdxµdxν = −e2Φdt2 + e2Λdr2

+ r2(dθ2 + sin2 θdφ2). (54)

As both species are static, then

uµ
A = uµ

B = e−Φδµ
0 (55)

and

jµ = (σA + σB)e−Φδµ
0 , (56)

which used in Eq. (48) shows that there is an ”electrostatic
potential”,V (r), such that

Aµ = V δ0
µ, (57)

and Maxwell equations simplify to

V ′′ +
(

2
r
− Λ′ − Φ′

)
V ′ = 4πe2 Λ+Φ(σA + σB). (58)

The non-zero Einstein equations are thett, rr, θθ and
φφ components, although theφφ is directly equivalent toθθ.
After some rearrangement, the Einstein equations are

2rΛ′ + e2Λ − 1− r2e−2ΦV ′2 = 8πr2e2Λ(ρA + ρB), (59)

e2Λ − 1− 2rΦ′ = r2e−2ΦV ′2, (60)

rΦ′′ + (1 + rΦ′)(Φ′ − Λ′) = re−2ΦV ′2. (61)

The conservation equation is

V ′V ′′ +
(

2
r
− Λ′ − Φ′

)
V ′2

= 4πe2Λ+2ΦΦ′(ρA + ρB). (62)

For the fluid species, Eqs. (53) and (54) become:

ρAeΦΦ′ = σAV ′, ρBeΦΦ′ = σBV ′. (63)

If we multiply (61) by r and subtract (60), we get

e2Λ + rΛ′(1 + rΦ′) = (1 + rΦ′)2 + r(rΦ′′ + Φ′), (64)

which can be integrated as

Λ = ln(1 + rΦ′). (65)

Substituting this in Eq. (60) we get that

V = ±eΦ. (66)

Finally, Eqs. (63) give

σA = ±ρA, σB = ±ρB , (67)

where the sign needs to be the same as in Eq. (66). This com-
pletes the proof.

For completeness, if we multiply (58) by V ′ and subtract
(62), then

σA + σB = ±(ρA + ρB), (68)

where again the sign needs to coincide with the sign in (66),
and is also a consequence of (67). To have the full set of
equations, an equation forΦ can be obtained from (59) or
(62). We get

ρA + ρB =
Φ′′ + Φ′(Φ′ + 2/r)

4π(1 + rΦ′)3
. (69)

6. Discussion

We have presented and proved a no-go theorem in NM, SR
and GR. The first remark to be made is that the extension of
the theorem to more than two species is straightforward. The
problem at hand, as it has the same stating and result for the
three theories considered, highlights the particular perspec-
tive of each theory. In NM, the emphasis is on forces, and
the equilibrium of forces is what is important for the equilib-
rium of the fluid elements. In SR, also forces are important,
but the forces are the results of the fields, in this case the
electromagnetic field and the scalar gravitational field. Fi-
nally, in GR there is no gravitational field, and therefore the
fluid elements are accelerated, there is equilibrium because
the electromagnetic force has the exact value as to produce
the correct acceleration.

Our result implies that it is not possible to form spher-
ically symmetric static ECD objects using charged dust
species that do not satisfy (1) and averaging the mass and
charge densities. Given that no known particle satisfies (1),
being the charge and mass not balanced by orders of magni-
tude, then star-like distributions of charged dust are not ex-
pected to occur.

In the context of GR, this means that black hole mimick-
ers made of ECD are not viable. Also, extremal black holes
are seen as the way of passing (or being an impassable bar-
rier) between black holes and naked singularities. It seems
that to form an extremal black hole by gravitational collapse
it is necessary to start with a distribution of matter which
is already extremal [10–12]. But it also seems that before
this extremal matter limit is attained any object undergoes
gravitational collapse, which strongly suggests that extremal
Reissner-Nordström (ERN) black holes can not be produced
by the collapse of charged spheres [13]. Then, ECD is the
natural candidate to form an ERN black hole by collapse,
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being the relationship (1) the microscopic equivalent of the
extremality conditionQ = M . In this line, it has been shown
that in the linear perturbations regime an ERN black hole can
be formed from an ECD spacetime [14]. The present result
shows that unless there is a particle with the correct charge-
mass ratio to start with this would not happen.
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i. We denote by a prime the derivative with respect tor.

ii. In Minkowski spacetime the d’Alembertian operator is

¤ = − 1

c2

∂2

∂t2
+

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (a.1)

iii. We denote by∆ the three-dimensional Laplacian, that is,

∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (a.2)

iv. By ∇ we denote the gradient:

∇ =

(
∂

∂x
,

∂

∂y
,

∂

∂z

)
. (a.3)

v. We denote by∇µ the torsion-free metric connection.
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