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a  b  s  t  r  a  c  t

This  paper  deals  with  the  problem  of robust  tracking  of  target  sets  using  a  model  predictive  control
(MPC)  law.  Real  industries  applications  often  require  a control  strategy  in  which  some  system  outputs
are  controlled  within  specified  ranges  or zones  (zone  control),  while  some  others  variables  – possibly
including  input  variables  – are  steered  to fixed  target  or  setpoint.  From  a theoretical  point  of view,  the
control  objective  of  this  kind of  problem  can be seen  as  a  target  set  (in  the  output  space)  instead  of a
target  point,  since  inside  the zones  there  are  no preferences  between  one  point  or  another.  This  problem  is
particularly  interesting  in  case  of  additive  disturbances  which  might  push  the  outputs  out  of  the  zones.  In
this work,  a  stable  robust  MPC  formulation  for  constrained  linear  systems,  based  on  nominal  predictions  is
presented.  The  main  features  of  this  controller  are  the  use  of  nominal  predictions,  restricted  constraints
and the  concept  of  distance  from  a point  to  a  set  as offset  cost  function.  The  controller  ensures  both
recursive  feasibility  and  local  optimality.  The  properties  of  the  controller  are  shown  in  a simulation  test,
in which  we  consider  a subsystem  of  an  industrial  FCC  system.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Set-interval control

In modern processing plants, MPC  controllers are usually imple-
mented as part of a multilevel hierarchy of control functions [1,2].
At the intermediary levels of this control structure, the process unit
optimizer computes an optimal economic steady state and provides
this information to the MPC  in a lower level for implementation.
The role of the MPC  is then to drive the plant to the most profitable
operating condition, fulfilling the constraints and minimizing the
dynamic error along the path.

In many cases, the optimal economic steady state operating con-
dition is not given by a point in the output space (fixed setpoint),
but by a region or zone into which the output should lie most of the
time. Conceptually, these output zones can be seen as a generaliza-
tion of the output targets from a point to a set (i.e., a generalized
setpoint) rather than an output constraint, since they are desired
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steady state sets that can be transitorily disregarded, while the con-
straints must be fulfilled at each time step. In this way, the concept
of degrees of freedom is substantially altered. In fact, it is gener-
alized in such a way  that even systems with more outputs than
inputs allow (economic) targets for some inputs. A kind of hierar-
chy of objectives arises in the MPC  control problem, in which the
first one is to find a feasible solution (i.e. one that fulfills the input
and output constraints), the second one is to reach and maintain
the outputs inside their corresponding zones and the third one is
to steer the inputs as close as possible to the desired economic tar-
gets. Only once a higher priority objective is reached, the remainder
“degrees of freedom” can be used to reach the lower one.

From the point of view of real systems, the zone control may
appear in different kind of dynamic systems: (i) process systems
with highly correlated outputs to be controlled, in which there are
not enough inputs to control all the outputs; (ii) process systems
with problems to use the surge capacity of tanks to smooth out the
operation of a process unit (in this case, it is desired to let the level of
the tank to float between limits, as necessary, to buffer disturbances
between sections of a plant); (iii) biological systems, such as dia-
betes patient, in which tracking a given output setpoint (glycemic
level) could demand an excessive and unnecessary control effort
(insulin administration) while maintaining the glycemic level in a
given safety interval is sufficient to guaranty the control objectives
[3].

Several approaches have been proposed to account for the MPC
set-interval or zone control. [4] shows how some commercial MPC
controllers are adapted to account for the zone control problem,
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including the so-called funnel strategy. In [5] and [3] it can be found
simple approaches to tackle the zone control problem: they penal-
ize an output into the MPC  cost function only if it is inside the zone.
Although this kind of switching control has shown to be plausible
to be applied in real control systems (as diverse as process sys-
tem control and biological system control), stability and recursive
feasibility cannot be proved under their formulation framework. A
closed-loop stable and recursively feasible MPC  controller is pre-
sented in [6].  In this approach, the authors develop a controller that
incorporates steady state economic targets for input and output
in the control cost function. Assuming open-loop stable systems,
classical stability proofs are extended to the zone control strat-
egy by considering artificial output setpoints as additional decision
variables. This controller, however, is formulated only for open-
loop stable systems, and since it considers a null controller as local
controller, it does not achieve local optimality.

1.2. Robust set-interval control

The explicit consideration of model uncertainties or distur-
bances is quite different in the context of set-interval control.
Since the uncertainty affects the system gains, it also affects the
compatibility between the available input set (given by the input
constraints) and the desired output set (given by the output zones).
Thus, an efficient robust design should take these problems into
account in order to avoid unfeasibilities, even unfeasibilities at
steady state. An extension to the robust case of the strategy pre-
sented in [6] (considering multi-model uncertainty) was  proposed
in [7].  Although these approaches account for the tracking of non-
zero targets and the second one considers time delayed systems,
they also fail to guarantee local optimality and they are only for-
mulated for open-loop stable systems.

1.3. MPC  and the tracking problem

Most of the rigorous MPC  stability, feasibility and optimality
results consider the regulation problem, that is steering the sys-
tem to a fixed steady state (typically the origin) [8,9]. If, for a given
non-zero set point, a suitable choice of the steady state is taken, the
problem can be posed as a regulation problem translating the state
and input of the system [10]. The steady state target is usually deter-
mined by solving an optimization problem that can be formulated
as different mathematical programs for the cases of perfect target
tracking or non-square systems [11], or by solving a unique prob-
lem for both situations [12]. However, since the stabilizing choice
of the terminal cost and constraints depends on the desired steady
state, when the target operating point changes, the feasibility of the
controller may  be lost and the controller fails to track the reference
[13–16], thus requiring to re-design the MPC  at each change of the
reference.

In [17], a rigorous MPC  formulation for tracking is proposed,
which is able to steer the system to any admissible setpoint in
an admissible way, by considering the steady conditions as opti-
mization variable of the MPC  problem. This controller ensures both,
recursive feasibility and convergence to the target (if admissible)
for any change of the steady state target. Furthermore, if the target
is not admissible, the system is steered to the closest admissible
steady state. In [18], the MPC  for tracking is extended considering a
general offset cost function. Under some mild sufficient assump-
tions, the new offset cost function ensures the local optimality
property, letting the controller achieve optimal closed-loop per-
formance. In [19] this controller is extended to the case of tracking
target sets (a generalized set-interval control) by using the con-
cept of distance of a point to a set. In contrast to the approach
presented in [6],  this strategy allows local optimality an it is suitable
for non-stable systems.

In this paper, the controller presented in [19] is extended to
cope with the problem of robust tracking of target sets in pres-
ence of additive disturbance. Although here we consider a different
uncertainty representation than the one used in [7],  the proposed
controller constitutes an improved robust MPC  formulation for the
zone control problem (i.e. a robust control suitable for non-stable
systems, which preserves local optimality). Based on some of the
results presented in [20], we propose here an MPC  based on nomi-
nal predictions and restricted constraints, which ensures stability,
robust satisfaction of the constraints, recursive feasibility and local
optimality.

The paper is organized as follows. In Section 2 the control prob-
lem is stated. Sections 3 and 4 present the proposed controller and
its main properties, respectively. In Section 5 the properties of the
controller are shown in a simulation test, in which we  consider a
subsystem of an industrial FCC system. Finally, in Section 6, some
conclusions are drawn.

Notation: A positive definite symmetric matrix T is denoted as
T > 0 and T > P denotes that T − P > 0. For a given symmetric matrix
P > 0, ‖x ‖ P denotes the weighted Euclidean norm of x, i.e. ‖x‖P =√

x′Px.  Consider a ∈ Rna and b ∈ Rnb , the vector made from stacking
both vectors is defined as (a, b) � [a′, b′]′Rna+nb ; for a set � ⊂ Rna+nb ,
the projection of � onto a is defined as Proja(� ) = {a ∈ Rna : ∃ b ∈ Rnb ,
(a, b) ∈ � }. A vector t in bold denotes a finite sequence of vec-
tors, that is, a vector defined as {t(0), t(1), . . .,  t(N)}, where N is
deduced from the context. The norm of a signal t is defined as
‖t‖∞ = sup

k≥0
(t(k)). A matrix 0n,m ∈ Rn×m denotes a matrix of zeros

and In ∈ Rn×n denotes the identity matrix. Given two  sets U and
V, such that U ⊂ Rn and V ⊂ Rn, the Minkowski sum is defined
by U ⊕ V � {u + v : u ∈ U,  v ∈ V}, the Pontryagin set difference is:
U � V � {u : u ⊕ V ⊆ U}; given a matrix M ∈ Rp×n, the set MU ⊂ Rp is
defined as MU � {Mu : u ∈ U}; for a given �, �U � (�In)U.

2. Problem statement

Consider a plant described by the following uncertain discrete-
time LTI system

x+ = Ax + Bu + w

y = Cx + Du
(1)

where x ∈ R
n is the state of the system at the current time instant,

x+ denotes the successor state, that is, the state of the system at next
sampling time, u ∈ R

m is the manipulated control input, y ∈ R
p is

the controlled variables and w ∈ R
n is an unknown but bounded

state disturbance. In what follows, x(k), u(k), y(k) and w(k) denote
the state, the manipulable variable, controlled variable and the dis-
turbance respectively, at sampling time k.

The plant is subject to hard constraints on state and control:

(x(k), u(k)) ∈ Z (2)

where Z = X  × U is a compact convex polyhedron containing the
origin in its interior.

Define also the plant nominal model, given by (1) neglecting the
disturbance input w:

x+ = Ax + Bu

y = Cx + Du
(3)

The plant model is assumed to fulfil the following assumption:

Assumption 1.

• The pair (A, B) is controllable.
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• The uncertainty vector w is bounded and lies in a compact convex
polyhedron containing the origin in its interior

W = {w ∈ R
n : Aww ≤ bw} (4)

• The state of the system is measured, and hence x(k) is known at
each sample time.

It is remarkable that no assumption is considered on the num-
ber of inputs m and outputs p, allowing thin plants (p > m), square
plants (p = m)  and flat plants (p < m).  Moreover, it is not assumed
that (A, B, C, D) is a minimal realization of the state-space model.
This allows us to use state-space models derived from input–output
models, that is, using as state a collection of past inputs and out-
puts of the plant [8].  The necessity of an observer is also avoided
while the global uncertainty and the noise can be posed as additive
uncertainties in the state-space model (1).

The aim of this paper is to find a control law u(k) = �N(x(k),
� t) such that the system is steered into a (possibly time varying)
region � t, which defines the range into which the controlled out-
puts should remain fulfilling the plant constraints (x(k), u(k)) ∈ Z,
despite the uncertainties.

3. Robust MPC  for tracking zone regions based on nominal
predictions

In this section the proposed controller is presented. The pro-
posed controller is an extension to the robust case of the MPC  for
tracking zone regions [19], using the concepts presented in [20].

3.1. Preliminaries: the robust MPC  based on nominal predictions
and restricted constraints

The keystone of the robust MPC  presented in [20] is to use
predictions based on the nominal system for the MPC  cost (i.e.,
predictions that neglect the disturbance input w), and to restrict
the constraints set X  and U at any step of the prediction horizon.

The controller is based on a pre-stabilization of the plant using a
state feedback control gain K, such that AK = A + BK has all its eigen-
values in the interior of the unit circle. The controlled system is
then given by

x(k + 1) = AK x(k) + Bc(k) + w(k)

u(k) = Kx(k) + c(k)

Neglecting the disturbances w, the nominal prediction model is
then given by:

x(k + 1) = AK x(k) + Bc(k)

u(k) = Kx(k) + c(k)

The notion of robust positively invariant (RPI) set [21,22] plays an
important role in the design of robust controllers for constrained
systems. This is defined as follows:

Definition 1. A set  ̋ is called a robust positively invariant (RPI)
set for the uncertain system x(k + 1) = AK x(k) + w(k) with w(k) ∈ W
if AK  ̋ ⊕ W ⊆ ˝.

It  is also necessary to define the so-called reachable sets, that
represents the forced response of the system due to the uncertainty.

Definition 2. The reachable set in j steps, Rj , is given by

Rj �
j−1⊕
i=0

Ai
KW

This is the set of states of the nominal closed-loop systems which
are reachable in j steps from the origin, under the disturbance input
w [20]. This set satisfies the following properties:

(i) It is given by the recursion Rj ⊕ Aj
KW = Rj+1 with R1 = W.

(ii) AKRj ⊕ W = Rj+1 = Rj ⊕ Aj
KW

(iii) Rj ⊆ Rj+1
(iv) The sequence of sets Rj has a limit R∞ as j→ ∞,  and R∞ is a

robust positive invariant set.
(v) R∞ is the minimal RPI set.

Based on this, the sets of restricted constraints on the nominal
predictions considered in the optimization problem are given by:

Xj � X  � Rj

Uj �U�  KRj

(5)

These sets are non-empty if the following assumption holds

Assumption 2. R∞ ⊂ X  and KR∞ ⊂ U.

Remark 1. The calculation of the restricted constraints X� Rj is
not an easy task, due to the complexity of the calculation of the
set Rj , based on a series of Minkowsky’s sums. The computational
burden can be reduced if the set W is given by an interval or an
affine map  of an hypercube [23]. It is also important to note that
the calculation of such sets is made off-line, so it has no practical
effects on the MPC  problem.

Remark 2. An important parameter on the design of this con-
troller, is the control gain K. This parameter determines the
dynamic of the closed-loop system in presence of disturbances and
hence, it has to ensure that Assumption 2 holds. In [24] it is pro-
posed an LMI-based method for the calculation of the control gain
K which ensures that Assumption 2 holds and that the set R∞ is
minimized.

3.2. Preliminaries: characterization of the steady state

Every nominal steady state and input zs = (xs, us) is a solution of
the equation

[ A − In B ]

[
xs

us

]
= 0n,1 (6)

Therefore, there exists a matrix M� ∈ R
(n+m)×m such that every

nominal steady state and input can be posed as

zs = M�� (7)

for certain � ∈ R
m [17]. The nominal steady outputs are then given

by

ys = N�� (8)

where N� � [C D]M� .
Defining Z � XN × UN , the set of admissible nominal steady

states and inputs and the set of admissible nominal controlled vari-
ables are given by

Zs � {(x, u) ∈ Z : (A − In)x + Bu = 0n,1}
Ys � {Cx + Du : (x, u) ∈ �Zs}

where � ∈ (0, 1) is a given parameter added to avoid those steady
states and inputs that provide active constraints.

3.3. The proposed controller

As in [19], the proposed controller maintains the main ingredi-
ents of the MPC  for tracking target sets: the steady state conditions
of the system are decision variables in the optimization problem
(artificial reference), the stage cost is a measure of the distance to
the artificial reference, the so-called offset cost function is added in
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order to penalize the deviation between the artificial reference and
the target, the terminal constraint is an invariant set for tracking.

The proposed controllers is derived following the results pre-
sented in Section 3.1.  Therefore, the plant is pre-stabilized by the
following control law

u(k) = Kx(k) + L� + c(k) (9)

where L = [− K Im]M� . Then the nominal system can be rewritten as
follows:

x+ = AK x + BL� + Bc

u = Kx + L� + c
(10)

The cost function to minimize is given by:

VN(x, �t; c, �) �
N−1∑
j=0

‖c(j)‖2
� + VO(ys, �t) (11)

where c = {c(0), c(1), . . .,  c(N − 1)}, � = � ′ > 0, the pair (xs, us) = M��
is the artificial steady state and input and ys = N�� the artificial out-
put, all of them parameterized by �; � t is the zone in which the
controlled variables have to be steered. VO(ys, � t) is the so-called
offset cost function and it is such that the following assumption is
ensured

Assumption 3.

1. � t is a compact convex set.
2. VO(ys, � t) is convex w.r.t. ys.
3. If ys ∈ � t, then VO(ys, � t)≥ 0. Otherwise, VO(ys, � t)>0.

Remark 3. Following same arguments as in [20,25], it is possible
to prove that, in the case that K is the gain of the LQR, minimiz-
ing VN(x, � t ; c, �) is equivalent to minimizing the following cost
function

ṼN(x, �t; c, �) =
N−1∑
j=0

‖x(j) − xs‖2
Q + ‖u(j) − us‖2

R + ‖x(N) − xs‖2
P

+ VO(ys, �t) (12)

where x(j) is the nominal prediction of the model for u(j) = Kx(j) +
L� + c(j); Q is a real symmetric positive semidefinite matrix such
that the couple (Q1/2, A) is detectable; R is a real symmetric positive
definite matrix; P is the unique solution of the Riccati equation

(A + BK)′P(A + BK) − P = −(Q + K ′RK)

In fact, if � is chosen as � = R + B′PB,  the equivalence between cost
(11) and (12) holds since

ṼN(x, �t; c, �) = VN(x, �t; c, �) + ‖x(0) − xs‖2
P

Then, taking K = KLQR, minimizing the cost (11) is equivalent to min-
imize the cost of the predicted nominal trajectory.

The optimization problem PN(x, � t) is now given by:

where ˝a
t is a suitable polyhedral set. Notice that the decision

variables are: (i) the sequence of the future actions of the nomi-
nal system c and (ii) the parameter vector � that determines the
artificial target steady state, input and output (xs, us, ys).

Considering the receding horizon policy, the control law is given
by

�N(x, �t) � Kx + L�0(x, �t) + c0(0; x, �t)

where c0(0 ; x, � t) is the first element of the control sequence c0(x,
� t) which is the optimal solution of problem PN(x, � t). Notice also
that, in the following, the optimal value of the cost function will be
denoted as V0

N(x, �t), the optimal value of the other decision vari-

able as �0(x, � t), the nominal optimal state trajectory as x0(x, �t)
and the optimal artificial reference (x0

s (x, �t), u0
s (x, �t), y0

s (x, �t)).
Since the set of constraints of PN(x, � t) does not depend on � t,

its feasibility region does not depend on the target region � t. The
feasible set of the proposed controller is a polyhedral region XN ⊆
R

n given by the set of initial states that can be steered into ˝t =
Projx(˝a

t ) in N steps fulfilling the constraint (16), for all admissible
disturbances.

3.4. Stability of the proposed controller

Consider the following assumption on the controller parame-
ters:

Assumption 4.

1. Define the extended state xa = (x, �), and

Aa =
[

A + BK BL

0 Im

]
where L = [− K Im]M� . Define also

Xi
a = {(x, �) : x ∈ Xi, Kx + L� ∈ Ui, M�� ∈ �Zs}

and

˙t = {xa : Ai
axa ∈ Xi

a, for i ≥ 0}

Then

˝a
t = ˙t � (RN × {0})

In the following theorem, stability and constraints satisfaction
of the controlled system are stated.

Theorem 1 (Stability). Consider that Assumptions 1–4 hold and con-
sider a given target operation zone � t. The system controlled by the
proposed MPC controller �N(x, � t) is such that:

(i) For all initial condition x(0) ∈ XN and for every � t, the evolution
of the system is robustly feasible and admissible, that is, x(j) ∈ XN

and (x(j), �N(x(j), �t)) ∈ Z,  ∀w(k) ∈ W, k = 0, 1, · · · , j − 1.
(ii) lim

k→∞
c(k) = 0

(iii) If �t ∩ Ys /= ∅ then the closed-loop system asymptotically con-
verges to a set y(∞) ⊕ (C + DK)R∞, such that y(∞) ∈ �t .

(iv) If �t ∩ Ys = ∅, the closed-loop system asymptotically converges to
a set y∗

s ⊕ (C + DK)R∞, where y∗
s is the reachable nominal steady

output such that

y∗
s � argmin

ys∈Ys

VO(ys, �t)
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4. Properties of the proposed controller

The proposed controller is a robust formulation of the MPC  for
tracking target sets presented in [19]. As a consequence, it inherits
all the good properties of that controllers:

• Steady state optimization.  The offset cost function can be con-
sidered as a steady state target optimizer (SSTO) built in the same
MPC, since the proposed controller drives the system to a neigh-
borhood of the optimal operating point minimizing the offset cost
function VO(ys, � t).

• Feasibility for any reachable target zone. Since the set of con-
straint of the proposed controller does not depend on the target
set � t, feasibility is ensured for any � t and for any prediction
horizon N. Therefore, if the initial condition is an admissible equi-
librium point, the proposed controller is able to drive the system
to any admissible target zone (i.e. �t ∩ Ys /= ∅) even for N = 1.

Moreover, if � t varies with the time, the results of Theorem 1
still hold.

• Input target.  The proposed controller can be formulated consid-
ering input targets of the form umin ≤ ut ≤ umax, by defining an
offset cost function VO(us, � u,t) convex w.r.t. us, where � u,t is a
convex polyhedron.

• Enlargement of the domain of attraction.  The terminal con-
straint of the proposed controller is an invariant set for any
equilibrium point. In standard MPC, the invariant set is calculated
for a fixed equilibrium point. Therefore, the terminal constraint,
and as a consequence the domain of attraction of the proposed
controller are (potentially) larger than in standard MPC. This
property allows to consider small values of the control horizon.

• Optimization problem posed as a QP.  Since all the ingredients
(functions and sets) of the optimization problem PN(x, � t) are
convex, then it derives that PN(x, � t) is a convex mathematical
programming problem that can be efficiently solved in poly-
nomial time by specialized Algorithms [26,27]. As in [19], this
problem can be re-casted as a standard QP problem, choosing
one of the following formulations of the offset cost function:

(i) distance from a set as ∞-norm

VO(ys, �t) �min
y∈�t

‖ys − y‖∞ (20)

(ii) distance from a set as 1-norm

VO(ys, �t) � min
y∈�t

‖ys − y‖1 (21)

(iii) distance from a set as a scaling factor: in this implementation,
the target region is defined as
�t � yt ⊕ �t

where yt is a desired target point and �t is a polyhedron that
defines the zone. Then

VO(ys, �t) = min
�,y

�

s.t. � ≥ 0

y − yt ∈ ��t

(22)

Notice that, this measure is such that, if y /∈ � t then � > 1,
and if y ∈ � t then � ∈ [0, 1]. In particular, if y = yt, hence � = 0.
Therefore, � has the double role of measuring the distance to
a set and to a point.

4.1. Robust convergence to the target zone

The objective of the robust MPC  for tracking zone regions pro-
posed in this paper is to ensure that the output of the system y will

robustly converge to the target zone � t. Since Theorem 1 ensures
that the output y converges to the set y∗

s ⊕ (C + DK)R∞, then

y∗
s ⊕ (C + DK)R∞ ⊆ �t

Hence y converges to a point y∗
s ∈ �̃t , where

�̃t = �t � (C + DK)R∞

Due to this fact, the robust convergence of the closed-loop sys-
tem to the target zone � t is ensured if the proposed controller
control law is given by �N(x, �̃t). In particular

• If �̃t ∩ Ys /= ∅ then the closed-loop system asymptotically con-
verges to � t.

• If �̃t ∩ Ys = ∅, the closed-loop system asymptotically converges
to y∗

s ⊕ (C + DK)R∞.

Remark 4. The calculation of R∞ is not trivial. In [22,23] approx-
imation methods are proposed based on outer estimations.

In the case of the formulation based on the scaling factor, robust
convergence to � t is ensured without calculating the set R∞ if
(C + DK)R∞ ⊆ �t and yt ∈ Ys. In this case the closed-loop system
converges to yt ⊕ (C + DK)R∞.

5. Simulation results

To test the proposed control strategy, a subsystem of a fluid cat-
alytic cracking (FCC) unit, presented in [28], will be used. The main
objective of this simplified choice is to clearly show the ability of the
proposed robust controller to handle both, persistent disturbance
rejection and output zone control in systems with more output than
inputs. The original system has two  manipulated inputs (u1 repre-
sents the air flow rate to the catalyst regenerator and u2 represents
the opening of the regenerated catalyst valve) and three controlled
outputs (y1 represents the riser temperature, y2 the regenerator
dense phase temperature and y3 the regenerator dilute phase tem-
perature), while the selected subsystem only consider the second
input and the first two  controlled outputs.

5.1. Nominal system description

The nominal linear model of the selected subsystem is given by:

G(S) =

⎡⎢⎣ 0.2033
1.7187s + 1

0.1886s + 3.8087
17.7347s2 + 10.8348s + 1

⎤⎥⎦ (23)

For a sample time of T = 1, the following discrete state space
model is obtained:

A =

⎡⎢⎢⎣
0.5589 0 0

0 0.5240 −0.1672

0 0.1853 0.9769

⎤⎥⎥⎦ , B =

⎡⎣ 0.1895

0.7413

0.1025

⎤⎦ (24)

and

C =
[

0.4731 0 0

0 0.0106 −0.8590

]
(25)

To complete the system description, the manipulated input will
be constrained to be in U = {u ∈ R : ‖u‖∞ ≤ 5}. Notice that for this
(2 × 1) system, the set of admissible nominal steady state output, Ys,
is in a subspace of dimension 1. Therefore, from the operation point
of view, only the output desired zones with a non-empty inter-
section with Ys will be reachable at steady state. The sequence of
desired zones proposed for the simulations is given by 4 sets of
the form � t = {ymin ≤ y ≤ ymax}, which are shown in Table 1. Fig. 1
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Table  1
Target zones used in the simulation example.

� t ymin ymax

� t,1 (− 1.6, 12.5) (0, 17.5)
� t,2 (0, − 17.5) (1.6, − 13.5)
� t,3 (− 1.8, − 13) (− 0.2, − 8.5)
� t,4 (− 0.8, − 2.5) (0.8, 2.5)

shows these desired set together with the set of admissible nomi-
nal steady state output, Ys. The intersection of these sets constitutes
the nominal reachable desired outputs zones. Notice that the sets
� t,i, for i = 1, 2, 3, 4, constitute disjoint sets of the output space. Fur-
thermore, as can be seen, the third target set is unreachable for the
nominal system.

5.2. Disturbance description

The set W of possible disturbance realizations is given by W =
{w ∈ R3 : ‖w‖∞ ≤ 0.5}. This choice allows a possible disturbance of
2 percent of the maximal state excursion selected for the simula-
tion, which means that it can be, in many cases, the same order of
the current system state. The sets Wy = CW and Ry

∞ = CR∞ (placed
in the output space), which derive from the set W, are shown in
Fig. 2. Notice that the set W is such that the nominal MPC  con-
troller, even if it is designed to handle target zones, as the one
presented in [19], cannot reject the disturbance realization used
in these simulations.

5.3. Dynamic simulations

The simulation starts at x0 = (0, 0). The parameters of the pro-
posed MPC  are as follows: N = 3, Q = 100I3 and R = I2. This particular
choice of Q and R is motivated by the fact that it provides a reason-
ably small R∞, thus reducing the conservatism of the controller.
The gain matrix K of the local controller is given by the LQR and
matrix P is the solution of the Riccati equation.

As it was already said, the simulation consists in the four output
target (zone) changes shown in Table 1. Furthermore, a persistent
disturbance w that remain switching between extreme points of W
is injected to the system along the complete simulation. To clearly
show that the disturbance w is in fact difficult to reject (given
that it has not a stationary behavior), we simulate the closed-loop
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Fig. 1. Set Ys (red-dashed line), the desired output sets � t,1,  � t,2, � t,3 and � t,4 (blue-
solid line) and the intersection of these sets (green-solid line). (For interpretation of
the  references to color in this figure legend, the reader is referred to the web version
of  the article.)
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Fig. 2. The sets Wy and Ry
∞ for the selected disturbance set W.

under a nominal controller; i.e., a controller that accounts for the
zone control but does not include the disturbance model. As can be
seen in Fig. 3 the closed-loop performance is clearly unacceptable
for the second output, while the input saturates at different time
intervals. In a second simulation stage, we  simulate the closed-
loop under the proposed robust controller, using an offset cost
VO(ys, �t) = min

y∈�t

‖ys − y‖1. The system evolution in the output space

is shown in Fig. 4. As can be seen, the nature of the offset cost VO
is crucial when the target zone is not reachable, as it does occur
in the third change. Fig. 4 clearly shows that the controller steers
the system to the corresponding output zone, if possible, and to a
region around a steady state point which minimizes the 1-norm,
if not. The corresponding time evolutions of the input and outputs
are shown in Fig. 5.

Finally, the same simulation sequence is repeated for the pro-
posed controller, but now using an offset cost given by VO(ys, �t) =
min
y∈�t

‖ys − y‖∞. Figs. 6 and 7 show the system evolution in the output

space and the input and outputs time evolution. The main differ-
ence between this simulation and the previous one, is that for the
third change the distance to the unreachable target is determined
by the ∞-norm.
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Fig. 3. Input and the outputs time evolutions for the nominal controller.
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Fig. 4. System evolution in the output space, for VO(ys, �t ) = min
y∈�t

‖ys − y‖1.
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Fig. 5. Input and the outputs time evolutions, for VO(ys, �t ) = min
y∈�t

‖ys − y‖1.
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Fig. 6. System evolution in the output space, for VO(ys, �t ) = min
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‖ys − y‖∞ .
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Fig. 7. Input and the outputs time evolutions, for VO(ys, �t ) = min
y∈�t

‖ys − y‖∞ .

5.4. Comment about the nature of the disturbance and the robust
controller conservatism

This subsection is devoted to clearly elucidate the meaning of
Ry

∞ and the relation with the conservatism of the proposed strat-
egy. The set Ry

∞ corresponds to the complete dynamic of the system
output under the effect of the disturbance, i.e., it includes both,
the stationary and the transitory regime of the evolution. Here
we assume for the simulation a disturbance realization with a
permanent variation along the time (i.e., with no steady state).
Most of the disturbance models, however, assume a permanent
but constant disturbance, since this assumption has sense in real
application as they account for model mismatches usually more
significant than the disturbance itself. In fact, a more realistic (and
less conservative) situation is to consider a constant disturbance
(maybe, plus a small variable signal) once the system reach a
given target zone. In this case, the system output will be stabi-
lized at a fixed point inside the desired zone (if reachable), and
mainly, this desired zone could be too much tighter (i.e., the zone
will conserve the reachability condition for tighter limits). The
reason for that is that the set to be subtracted from the output
zone to obtain �̃t is no longer Ry

∞, but an approximation of Wy,
which is clearly smaller (see Fig. 2). This could be an important
point since it shows that the conservatism of the proposed strat-
egy could be significantly reduced for some frequent application
cases.

6. Conclusion

The zone control strategy is implemented in applications where
the exact values of the controlled outputs are not important, as long
as they remain inside a range with specified limits. In this paper, a
robust extension of the MPC  for tracking zone regions control has
been presented, based on nominal predictions and restricted con-
straints. From a tracking point of view, the controller considers a
set, instead of a point, as target. The concept of deviation between
two  points used in the offset cost function has been generalized
to the concept of distance from a point to a set. A characteri-
zation of the offset cost function has been given as the minimal
distance between the output and some point inside the target set.
The controller ensures recursive feasibility and robust satisfaction
of the constraints by using nominal predictions and restricted con-
straints.
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Appendix A. Stability proof

In this section, the stability proof of Theorem 1 is presented.
Firstly, it is necessary to introduce some lemmas. To this aim, define
as (c0(x(k), � t), �0(x(k), � t)) the optimal solution of problem PN(x,
� t) at the time instant k, where

c0(x(k), �t) = {c0(0; x(k), �t), c0(1; x(k), �t), . . . , c0(N − 1; x(k), �t)}

Define the control sequence

c̃(x(k + 1),  �t) = {c0(1; x(k), �t), . . . , c0(N − 1; x(k), �t), 0}

and define �̃(x(k + 1),  �t) = �0(x(k), �t). Moreover, define as
x̃(j; x(k + 1),  �t) the jth step prediction, given x(k + 1). Hence

x̃(j; x(k + 1),  �t) = Aj
K x(k + 1) +

j−1∑
i=0

Ai
K B[c̃(j − i − 1; x(k + 1),  �t)

+ L�̃(x(k + 1),  �t)]

In what follows, the dependence from (x, � t) will be omitted for
the sake of clarity, namely, x(j ; k) will denote x(j ; x(k), � t).

Lemma  1. For all j = 0, . . .,  N − 1

x̃(j; k + 1) − x(j + 1; k) = Aj
K w(k)

Proof. Since

x0(j + 1; k) = Aj
K x0(1; k) +

j−1∑
i=0

Ai
K B[c0(j − i; k) + L�0(k)]

and

x̃(j; k + 1) = Aj
K x(k + 1) +

j−1∑
i=0

Ai
K B[c̃(j − i − 1; k + 1) + L�̃(k + 1)]

= Aj
K x(k + 1) +

j−1∑
i=0

Ai
K B[c0(j − i; k) + L�0(k)]

hence

x̃(j; k + 1) − x(j + 1; k) = Aj
K [x(k + 1) − x0(1; k)] = Aj

K w(k)

�

Lemma  2. If x0(j; k) ∈ Xj , then x̃(j − 1; k + 1) ∈ Xj−1, for all j = 0, . . .,
N.

Proof. Since x̃(j − 1; k + 1) = x0(j; k) + Aj−1
K w(k), then

x̃(j − 1; k + 1) ∈ Xj ⊕ Aj−1
K W = X  � [

j−1⊕
i=0

Ai
KW] ⊕ Aj−1

K W

⊆ X  � [

j−2⊕
i=0

Ai
KW]

⊆ Xj−1

�
Lemma  3. If Kx0(j; k) + c0(j; k) + L�0(k) ∈ Uj , then Kx̃(j − 1; k +
1) + c̃(j − 1; k + 1) + L�̃(k + 1) ∈ Uj−1, for all j = 1, . . .,  N − 1.

Proof. Taking into account that

Kx0(j; k) + c0(j; k) + L�0(k) = Kx̃(j − 1; k + 1) − KAj−1
K w(k)

+ c̃(j − 1; k + 1) + L�̃(k + 1)

hence

Kx̃(j − 1; k + 1) + c̃(j − 1; k + 1) + L�̃(k + 1) ∈ Uj ⊕ KAj−1
K W

and

Uj ⊕ KAj−1
K W = U � KRj ⊕ KAj−1

K W = U � KRj−1 = Uj−1

�

Lemma  4. [Recursive feasibility of the terminal constraint]For all
k ≥ 0,

(x0(N; k), �0(k)) ∈ ˝a
t

Proof. Consider that at time k (x0(N; k), �0(k)) ∈ ˝a
t . Since ˝a

t =
˙t � (RN × 0), hence

(x0(N − 1; k + 1),  �0(k + 1)) ∈ ˙t � (RN × 0) ⊕ (AN−1
K W × 0)

Then, since (x0(N; k + 1),  �0(k + 1)) = Aa(x0(N − 1; k + 1), �0(k +
1)), hence

(x0(N; k + 1),  �0(k + 1)) ∈ Aa(˙t � (RN × 0) ⊕ (AN−1
K W × 0))

Taking into account that

Aa(˙t� (RN × 0) ⊕ (AN−1
K W × 0))

= Aa˙t � (AKRN × 0) ⊕ (AN
KW × 0)

= Aa˙t �

⎛⎝ N⊕
j=1

Aj
KW × 0

⎞⎠ ⊕ (AN
KW × 0)

= Aa˙t �

⎛⎝N−1⊕
j=1

Aj
KW × 0

⎞⎠ � (AN
KW × 0) ⊕ (AN

KW × 0)

⊆ Aa˙t �

⎛⎝N−1⊕
j=1

Aj
KW × 0

⎞⎠
⊆ (˙t � (W × 0)) �

⎛⎝N−1⊕
j=1

Aj
KW × 0

⎞⎠
= ˙t �

⎛⎝N−1⊕
j=0

Aj
KW × 0

⎞⎠
= ˙t � (RN × 0)

where the second from last equality comes from Aa˙t ⊕ (W × 0) ⊆
˙t ⇔ Aa˙t ⊆ ˙t � (W × 0).

Hence,

(x0(N; k + 1),  �0(k + 1)) ∈ ˙t � (RN × 0) = ˝a
t

�

A.1. Proof of Theorem 1

Before starting with the proof, we introduce the notion of Input-
to-State Stability (ISS) [29]. To this aim, consider a closed-loop
disturbed system

x(k + 1) = fK (x(k), w(k)) (19)

where fK (x, w) � f (x, K(x), w). The solution of this equation at
sampling time k, for the initial state x(0) and the sequence of dis-
turbances w,  is denoted as 	K(k ; x(0), w).
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Definition 3. System (19) is ISS for all initial conditions x(0) and
sequence of disturbances w if there exist a KL function  ̌ and a K
function 
 such that

|	K (k; x(0), w)| ≤ ˇ(|x(0)|, k) + 
(‖w‖)

In what follows, it will be proved that the closed-loop system is
ISS for all x(0) ∈ XN .

Proof. From Lemmas 1–4,  it is derived that the couple (c̃(k +
1), �̃(k + 1)) is a feasible solution of problem PN(x, � t).

Consider now the optimal value of the cost function V0
N(x(k), �t),

due to the optimal solution of problem PN(x(k), � t), given by (c0(k),
�0(k)). Define

ṼN(x(k + 1),  �t; c̃, �̃)  =
N−1∑
j=0

‖c̃(j; k + 1)‖2
� + VO(ys, �t)

Comparing ṼN(x(k + 1),  �t; c̃, �̃)  with V0
N(x(k), �t), we have that

ṼN(x(k + 1),  �t; c̃, �̃)  − V0
N(x(k), �t) = −‖c0(0; k)‖2

�

and hence, by optimality:

V0
N(x(k + 1),  �t) − V0

N(x(k), �t) ≤ −‖c0(0; k)‖2
�

Since � > 0, we can state that:

lim
k→∞

c0(0; k) = 0

and (ii) is proved.
The fact that c0(0 ; k) → 0 implies that u(k) → K(x(k) − x0

s (k)) +
u0

s (k), and hence:

x(k) → x0
s (k) ⊕ R∞, u(k) → u0

s (k) ⊕ KR∞

Using the same arguments as in [19], it can be proved that
(x0

s (k), u0
s (k)) converges to the optimal equilibrium point (x∗

s , u∗
s )

which is the minimizer of the offset cost function VO(ys, � t).
Now, the stability of the equilibrium point will be proved. If the

uncertainty is null, then (following [19]) the system is asymptot-
ically stable in (x∗

s , u∗
s ). If w /= 0, the continuity of the control law

provides that the closed-loop system is such that the closed-loop
prediction 	cl(j; x, w) = 	(j; x, kN(x, �t), w) is continuous in x and
w. Then, resorting to ISS arguments [29], it can be proved that there
exist a KL function  ̌ and a K function 
 such that

|x(k) − x∗
s | ≤ ˇ(|x(0) − x∗

s |, k) + 
(‖w‖)

for all initial state x(0) ∈ XN and all disturbances w(k). �
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