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We present a method for quantum state tomography that enables the efficient estimation, with fixed precision,
of any of the matrix elements of the density matrix of a state, provided that the states from the basis in which the
matrix is written can be efficiently prepared in a controlled manner. Furthermore, we show how this algorithm
is well suited for quantum process tomography, enabling one to perform selective and efficient quantum process
tomography.
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I. INTRODUCTION

Quantum information processing tasks always involve the
preparation and manipulation of quantum systems. To be able
to perform such tasks it is essential to be able to characterize
both quantum states and quantum operations. The protocols
for characterizing a quantum state are usually referred to as
quantum state tomography (QST) [1–6]. In general, QST is
a hard task since it involves an exponentially large number
of measurements to be preformed (exponentially large on
the number of subsystems). Not only that, but the type of
measurements that one needs to perform on the systems are
usually not easy to perform.

On the other hand, the characterization of quantum
processes, known as quantum process tomography (QPT)
[1,7–9], is also an exponentially hard task. However, there
are some quantum algorithms that allow us to efficiently
extract important information about a given quantum process
[10–16]. Namely, the partial information obtained by the
aforementioned algorithms turns out to be essential for the
choice of an error correction algorithm and to compare
a given channel with some known target channel. These
algorithms do not require performing QST on the final states
but measuring quantities such as survival probabilities (or
transition probabilities). Other algorithms for QPT, however,
do depend upon QST. This makes algorithms for QST an
essential tool not just for state tomography, but for process
tomography also.

In this paper we will present a method for quantum state
tomography. To be specific, it is useful to describe the quantum
states in the following way: Let H be the Hilbert space for the
system in question, and letB = {|ψa〉,a = 1, . . . ,D} be a basis
of H, where D = dimH. Then the density matrix ρ of a state
can be written in the basis B as

ρ =
D∑

a,b=1

αab|ψa〉〈ψb|, (1)

where αab = 〈ψa|ρ|ψb〉.
In what follows, we will present a method for selective

and efficient quantum state tomography (SEQST) that allows
one to estimate any coefficient αab with resources scaling
polynomially with the number of subsystems. For this to
be possible, we require that any state from the basis B can
be efficiently prepared in a controlled manner. This method,

when applied for implementing QPT results in a protocol for
efficient and selective QPT that is equivalent to that presented
in Refs. [13,14], illustrating one of the virtues of such a
selective and efficient QST scheme.

This paper if organized as follows: First we briefly review
existing methods for QPT that rely on performing QST in the
final states of a certain process. Then we present the selective
and efficient algorithm for QST and show how it provides
the right tool for efficient and selective QPT, as opposed to
previous methods for QST. Finally, we compare that QPT
algorithm to that presented in Refs. [13,14], showing how
both can be understood in a common theoretical frame.

II. QUANTUM PROCESS TOMOGRAPHY BASED ON
STATE TOMOGRAPHY

The goal of QPT is to identify the temporal evolution
enforced by a certain quantum process. Any such process is
mathematically represented by a linear map E transforming
initial states into final states. In fact, the operation E is not
only linear but also completely positive, and acts as

E(ρin) = ρout. (2)

This operation represents the discrete (input-output) evolution
of quantum states. We will focus on maps that are trace
preserving and whose output dimension is the same as the
input dimension. To describe the quantum map it is convenient
to parametrize it in some way. It is simple to notice that any
linear map can be written in terms of a certain matrix, known
as the χ matrix. This is defined with respect to a certain
basis of the space of operators. In fact, if we choose a basis
{Em,m = 0, . . . ,D2 − 1}, the χ -matrix representation for E is
determined by the equation

E(ρ) =
∑
mn

χmnEmρE†
n. (3)

This description is completely general since the above expres-
sions can be written for any linear channel. Properties of the
channel are in one-to-one correspondence with properties of
the χ matrix. In fact, the channel preserves the Hermiticity
if and only if the χ matrix is Hermitian. Also, the channel
preserves trace if and only if the condition

∑
mn χmnE

†
nEm = I

is satisfied. Finally, the channel is completely positive if and
only if the χ matrix is positive. Thus, the χ matrix (which,
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FIG. 1. Scheme for the ancilla assisted process tomography
quantum algorithm.

as we mentioned above, depends on the choice of basis for
the space of operators) fully describes the channel. Therefore,
quantum process tomography is the task of estimating the
matrix elements of χ . To achieve this goal there are several
methods, some of which involve performing quantum state
tomography on final states. Let us review them now.

A. Ancilla assisted quantum process tomography

The ancilla assisted quantum process tomography (AAPT)
[7,8] uses n ancillary qubits and allows one to extract all the
information about the channel. However, as presented in Refs.
[7,8], it only allows one to obtain full information about the
process, being unable to obtain only useful partial information
about the channel. Thus it is inherently inefficient as full QPT
always is.

This is the first of two methods that we will mention
here that exploit the state-channel duality given by Choi-
Jamiołkowski isomorphism. Such isomorphism establishes a
one-to-one relationship between linear operators from H ⊗ H
to H ⊗ H and completely positive superoperators acting on
the space of operators from H to H. Choi-Jamiołkowski
isomorphism establishes a correspondence between states and
channels in the following way:

ρE = E ⊗ I(|I 〉〈I |), (4)

where |I 〉 = ∑
i |ii〉/

√
D is the maximally entangled state.

After the application of the channel to one of the parts,
one can perform state tomography to the state ρE , obtaining
full information about the process E . Figure 1 illustrates this
algorithm.

One of the strengths of AAPT is that the initial state can
be another state and not necessarily the maximally entangled
state. As the number of independent parameters defining
the initial state (the Schmidt number) is D2, such state can
always encode the necessary information to define the quantum
channel.

This method, besides requiring n ancillary qubits, has the
following two troublesome properties: First, it is not clear if
the information from the χ matrix can be directly accessed via
measurements on the resulting states. Second but related to
the previous point, it is not clear how to use QST on the final
state to efficiently extract partial and relevant information on
the channel. These two issues will be solved in what follows.

B. Direct characterization of quantum dynamics

The direct characterization of quantum dynamics (DQCD)
[8,9] is a quantum algorithm similar to that of AAPT in many
aspects. It also resorts to n ancillary qubits and relies on
the Choi-Jamiołkowski isomorphism. Contrary to the AAPT,

on the DCQD the authors explicitly showed a method to
efficiently and selectively measure the diagonal coefficients
of the χ matrix; however, off-diagonal elements still require
one to invert en exponentially large matrix. This makes the
method inefficient.

To describe the method let us consider the operator
basis consisting of the n-fold tensor product Pauli operators
acting on each qubit. We denote these operators as {Em,m =
0, . . . ,D2 − 1}. In that basis, the channel description is given
by

E(ρ) =
∑
mn

χmnEmρE†
n. (5)

In order to perform diagonal tomography, the algorithm
proceeds as follows: First, as for the AAPT, we have to generate
the state that is isomorphic to the channel

ρE = 1

D

∑
ijmn

χmnEm|i〉〈j |E†
n ⊗ |i〉〈j |. (6)

Now, the probability of measuring the state 1√
D

∑
i |ii〉 on the

output is given by

1

D

∑
kl

〈kk|ρE |ll〉 = 1

D2

∑
mn

χmnTr(Em)Tr(E†
n) = χ00. (7)

Thus, we see that the survival probability of the input state
directly gives the coefficient χ00. It is easy to show that the very
same method can be used to evaluate any diagonal coefficient
of the χ matrix. In fact, the probability of obtaining the final
state 1√

D

∑
i Ek ⊗ I|ii〉 is nothing but χkk . As the set

R = {Ek ⊗ I|I 〉,k = 0, . . . ,D2 − 1} (8)

forms an orthonormal basis of H ⊗ H, a measurement in that
basis will suffice for diagonal tomography of the χ matrix.

The main problem arises when off-diagonal tomography is
taken into account. The solution presented in Refs. [8,9] is to
use a state other than a maximally entangled state. However,
it can be shown that, in the most general case, this procedure
requires inverting an exponentially large matrix. Again, this
makes the method inefficient.

Below, we will introduce a method for QST that provides
not only a convenient tool for QST, but also provides the
necessary ingredient missing in AAPT and DCQD to obtain
an efficient and selective QPT.

III. SELECTIVE AND EFFICIENT QUANTUM STATE
TOMOGRAPHY

The standard method for QST was clearly described in
Ref. [1]. This method resorts to the description of the state in
the Pauli operator basis as

ρ = 1

D

∑
i

Tr(ρEi)Ei, (9)

where Ei are the n-fold Pauli operator basis for an n-qubit
system. It is straightforward to perform tomography in this
basis by just measuring the expectation value of every Ei .
Although this method is indeed selective and efficient, it is not
well suited for selective and efficient QPT.
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FIG. 2. Quantum circuit for selective and efficient quantum state
tomography.

The method we are about to introduce, selective and
efficient quantum state tomography (SEQST), is also efficient
and selective but, as opposed to the standard method, it is
selective in any basis of the corresponding Hilbert space. That
is, given the state written in the form

ρ =
D∑

a,b=1

αab|ψa〉〈ψb|, (10)

and provided we know how to prepare the states from the
corresponding basis in a controlled manner, we will be able
to selectively measure any given coefficient αab. Such a
measurement will be efficient, meaning that, given a precision,
the number of required single-click measurements does not
scale with the size of the system.

Consider the circuit shown in Fig. 2 where the operators
Va are the ones that prepare the states from the basis
B = {|ψa〉,a = 1, . . . ,D} from the state |ψ0〉 (Va|ψ0〉 = |ψa〉)
controlled by the state of the ancilla, and H is a Hadamard gate
that acts as H |0〉 = 1√

2
(|0〉 + |1〉) and H |1〉 = 1√

2
(|0〉 − |1〉).

The anticontrolled operation acts whenever there is a |0〉 on
the ancilla and does nothing when the ancilla is on the state
|1〉, as opposed to the controlled operation.

As we will show now, by measuring the average value of
the operator |ψ0〉〈ψ0| ⊗ σx (that is, the average value of the
operator σx conditioned on the detection of the state |ψ0〉 on
the main system) one obtains the real part of χab. Moreover,
replacing σx by σy , the same method provides the imaginary
part of the same matrix element.

Let us see that. The state corresponding to the system
and ancilla that enters the circuit is ρSA

0 = ρ ⊗ |0〉〈0|. After
applying the Hadamard gate on the ancilla, the resulting state
ρSA

1 is given by

ρSA
1 = 1

2 (ρ ⊗ |0〉〈0| + ρ ⊗ |0〉〈1|
+ ρ ⊗ |1〉〈0| + ρ ⊗ |1〉〈1|). (11)

The application of the controlled operations yields the state
ρSA

2 :

ρSA
2 = 1

2 (V †
b ρVb ⊗ |0〉〈0| + V

†
b ρVa ⊗ |0〉〈1|

+V †
a ρVb ⊗ |1〉〈0| + V †

a ρVa ⊗ |1〉〈1|). (12)

We will now show how the real part is obtained via
measuring |ψ0〉〈ψ0| ⊗ σx , but the imaginary part is obtained
exactly the same way; replacing σx by σy . That is,

Tr
(
ρSA

2 |ψ0〉〈ψ0| ⊗ σx

)
= 1

2 〈ψ0|V †
b ρVa|ψ0〉 + 1

2 〈ψ0|V †
a ρVb|ψ0〉

= 1
2 (〈ψb|ρ|ψa〉 + 〈ψa|ρ|ψa〉) = Re αab. (13)

Thus,

Tr
(
ρSA

2 |ψ0〉〈ψ0| ⊗ σx

) = Re αab, (14)

Tr
(
ρSA

2 |ψ0〉〈ψ0| ⊗ σy

) = Im αab, (15)

where the ancilla off-diagonal terms vanish because both σx

and σy have zeros on the diagonal. This is the result we wanted
to prove.

To discuss the efficiency of the method we should analyze
the resources needed by this algorithm. First of all, the effi-
ciency of the method is limited by that of the implementation
of the controlled-V †

a and controlled-V †
b operators. In fact, if the

implementation of such controlled operations require O(f (n))
operations, then the full circuit will also require O(f (n)).

Also, if V
†
a and V

†
b are efficiently implementable (and

we are not talking here about their controlled versions) for
systems of n qubits, then their controlled versions will also be
efficiently implementable with a linear overhead. This is due to
the fact that efficient implementation of the noncontrolled V

†
a

operations means that they can be implemented in O(poly(n))
single- and two-qubit gates and controlled NOT gates. In
order to perform a controlled V

†
a we need to replace every

single qubit rotation for a controlled qubit rotation, and
every controlled NOT for a Toffoli gate, which is nothing
but a three-qubit controlled-controlled NOT [1]. The number
of operations needed to implement a controlled single-qubit
rotation cannot depend on n, because it is always a two-qubit
gate. The Toffoli gates, on the other hand, can be implemented
with six controlled NOT gates and nine single-qubit gates [17].
Therefore, there is only a linear overhead in implementing the
controlled V

†
a operation when the noncontrolled versions have

a known implementation.
The other point to determine the efficiency of the method

is to determine the number of experimental runs required
to obtain the desired result to a given precision ε with a
probability of success p. To answer that question we just
need to consider that each experimental run gives one of three
results (+1 corresponding to |ψ0〉 on the system and |0〉 on
the ancilla, −1 corresponding to |ψ0〉 on the system and |1〉
on the ancilla, and 0 corresponding to another result on the
system). The χ -matrix element is estimated by computing the
average value these results after performing a certain number
of repetitions M . Each of the results are detected at random
with their corresponding probabilities. Therefore, one can use
a Chernoff bound to show that to obtain the correct result with
uncertainty ε and a probability p of success, the number of
experimental runs M must be such that

M �
2 ln

(
2
p

)
ε2

, (16)

which does not depend on n or D. This implies that the method
is efficient.

A. Application to quantum process tomography

In this section we will show how the SEQST algorithm
is the right tool to perform selective and efficient QPT when
combined with the AAPT method reviewed in Sec. II A.
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FIG. 3. Application of SEQST to QPT.

In order to proceed, we need to find out the way in which
the quantum state isomorphic to the channel E depends on the
χ matrix of such a channel. Thus, we will show that the χ

matrix of the channel is nothing but the matrix element of the
quantum state in a particular basis. Therefore, by performing
quantum state tomography in that basis we directly provide
the information about the χ matrix of the channel. To show
this, we use Eq. (4) and replace the expansion of E in the Pauli
basis:

ρE =
∑
mn

χmnEm ⊗ I|I 〉〈I |E†
n ⊗ I. (17)

Indeed, this shows that χ is the matrix representation of ρE in
the basisR shown in Eq. (8). Therefore, to selectively measure
a single χ coefficient one only needs to perform selective
tomography in the basis R.

Using the results already presented in the previous section,
we see that to do this we should implement the circuit described
in Fig. 3. Here, the application of the channel E to one of the
pieces of the maximally entangled state can be regarded as
the preparation of the state isomorphic to the channel. In turn,
the rest of the circuit is nothing but the SEQST algorithm
described above.

It is important to point out that, since the measurement
is direct, the analysis of the resources required to implement
the method (presented in the previous section) directly applies
to this case. The only extra resources needed in this case are
involved in the preparation and measurement of the maximally
entangled state which require O(n) additional single- and two-
qubit gates.

IV. COMPARISON WITH OTHER SELECTIVE AND
EFFICIENT QUANTUM PROCESS TOMOGRAPHY

SCHEMES

Another quantum algorithm for selective and efficient
quantum process tomography is the one known as SEQPT,
precisely for selective and efficient quantum process tomog-
raphy [13,14]. The main idea there is to follow the procedure
described by the circuit shown in Fig. 4 and to estimate the

FIG. 4. Circuit for the selective and efficient quantum process
tomography algorithm. Depending on the measurement of σx or σy ,
the real or imaginary part of χab will be obtained.

average answer averaging over the entire Hilbert space of the
system using the Haar measure for that purpose. As is shown
in Refs. [13,14], that average can be directly related to the
matrix element χab as∫

〈σx ⊗ |ψ〉〈ψ |〉dψ = DRe(χab) + δab

D + 1
, (18)

∫
〈σy ⊗ |ψ〉〈ψ |〉dψ = DIm(χab)

D + 1
. (19)

Moreover, it can be shown that the average over the entire
Hilbert space can be efficiently estimated by randomly
sampling over a special (and finite) set of states which is known
as a 2-design. For these reasons, the method SEQPT is not only
selective but also efficient.

As we mentioned above, in the SEQPT scheme, the average
is estimated by randomly sampling states. In the scheme we
propose above, the average is obtained automatically by the
quantum correlation between both parts of the maximally
entangled state, without the need to resort to randomly
preparing and detecting the special states of the 2-design.

V. SUMMARY

In this paper we presented a quantum algorithm to perform
selective and efficient quantum state tomography in any Hilbert
space basis, given that the states from that basis can be
efficiently prepared in a controlled manner.

We then showed that, when properly combined with the
ancilla assisted process tomography, it yields a protocol for
QPT that is both selective and efficient. Finally, we showed
that this protocol shares some properties with SEQPT, which
is a method presented in Refs. [13,14]. The main difference is
that the use of ancillae is a way to avoid the preparation of the
special states of the 2-design and sampling on them.
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