

Communities

Membership

Events

Publications

Learning & Careers

 \bigcirc

SIGN IN

Join

2023 AIChE Annual Meeting

November 5-10, 2023 | Hyatt Regency Orlando, Orlando, FL

Sponsor & Exhibit

Accommodations

TECHNICAL PROGRAM

(647f) An Experimental and Theoretical Analysis of Hydrogen Sorption, Diffusion and Permeation in Semicrystalline Polymers

CONFERENCE

AIChE Annual Meeting

YEAR

2023

PROCEEDING

2023 AIChE Annual Meeting

GROUP

Materials Engineering and Sciences Division

SESSION

Transport Phenomena in

Polymers

TIME

Authors

Giacinti Baschetti, M. - Presenter, University of Bologna

De Angelis, M. G., INSTM

Barbosa, S., Universidad Nacional del Sur

Castillo, L. A., Universidad Nacional del Sur

Atiq, O., University of Bologna

Merlonghi, L., University of Bologna

Introduction

The notential of green hydrogen as sustainable energy carrier has boosted the

Our websites use cookies to offer you a better browsing experience and analyze site traffic. By using our websites, you

consent to our use of cookies.

Got it

More info

Sunday, November 5, 2023 - 5:00pm to 5:15pm

possible failure due to hydrogen diffusion. One solution to this issue is the use of high performance polymers to protect them against hydrogen penetration. Most such materials are semicrystalline, as crystal domains are impermeable to gases. The knowledge of gas diffusion in semicrystalline materials at moderate and high pressures however is very scarce, both at the experimental and modeling level. In this work, that involves different international groups and industrial partners, we address this problem comprehensively using theoretical models and experimental analysis. The aim is to obtain a reliable model which uses a few predictable parameters to design materials with desired performance, and introduce the innovation required for the hydrogen infrastructure.

Materials and Methods

The materials studied were High Density Polyethylene (HDPE) and Medium Density polyethylene (MDPE) with different crystallinity.

Modeling: a multiscale modelling platform was developed using Molecular Dynamics (MD) simulations to represent the polymeric structure at the atomistic scale and the Lattice Fluid Equation of State (LF EoS) ² for the calculation of the phase equilibrium between the gas and the polymeric phase, which allows to evaluate the gas sorption in the material. An additional parameter is introduced to represent the constraint exerted by the crystal domains on the amorphous polymer phase (Figure 1).³ Simulations of diffusion are carried out using the same MD approach considered for gas solubility, and a Finite Volume model.

Experimental: A time-lag equipment (ASTM D1434) was used to determine diffusivity and permeability on the different samples at the University of Bologna

Our websites use cookies to offer you a better browsing experience and analyze site traffic. By using our websites, you

consent to our use of cookies.

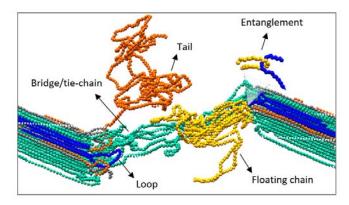
the Universidad Nacional del Sur.

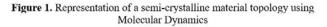
Results and Discussion

Based on our preliminary analysis the multiscale approach for sorption agrees with existing literature data for several gases in HDPE, based on only one adjustable parameter, the constraint pressure p_c , which expresses the constraining effect of the crystal phase on the amorphous one.⁴ Figure 2 shows the example of CO_2 solubility in HDPE at different temperatures, modeled using the multiscale model for solubility and a p_c value of 48 MPa.⁵ Future efforts will be devoted to predict this parameter based on a fully atomistic description of the semicrystalline system. Hydrogen sorption and diffusion tests carried out at various temperatures and pressures through the time-lag instrument shows consistent trends and allow to understand the pressure and temperature dependencies, as well as the effect of the polymers crystallinity on their performance, thus providing a validation to the models developed.

Significance

A way to correlate the performance of materials for hydrogen handling to their molecular structure using simple macroscopic adjustable parameters was established, paving the way for the informed design of hydrogen-ready materials.


This research is part of the research program of the Dutch Polymer Institute (DPI), project 844: Modelling and Design of Multiphase Polymeric Materials for High


Our websites use cookies to offer you a better browsing experience and analyze site traffic. By using our websites, you

consent to our use of cookies.

References

- 1. UK Hydrogen Strategy, 2021 gov.uk/official-documents
- Sanchez, I.C., Lacombe, R.H. Macromolecules. 1978, 11, 1145.
- Atiq, O., Ricci, E., Giacinti Baschetti, M., De Angelis, M.G. *Fluid Phase Equilib.* 2022, 556.
- 4. Minelli, M., De Angelis, M.G. Fluid Phase Equilib. 2014, 367, 173.
- 5. Atiq, O., Ricci, E., Giacinti Baschetti, M., De Angelis, M.G., *Fluid Phase Equilib.* 2023, submitted.
- 6. Von Solms, N., Nielsen, J.K., Hassager, O. Rubin, A., Dandekar, A.Y., Andersen, S.I., Stenby, E.H. *Appl. Polym. Sci.* 2004, 91, 1476.

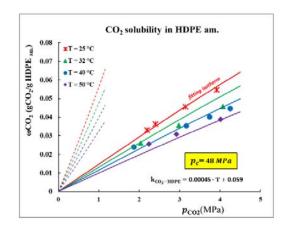


Figure 2. Multi-scale modelling of CO₂ solubility in semi-crystalline HDPE. Experimental solubility data points from ref. 6

Topics

Our websites use cookies to offer you a better browsing experience and analyze site traffic. By using our websites, you consent to our use of cookies.

Transport Phenomena

MORE CONFERENCE LINKS

Visit Orlando

Code of Conduct

Universal Studios Offer

Beware of Hotel and Attendee-list Scams

Cancellation Policy

FOLLOW AIChE

MORE COMMUNITIES

Learn more

about IDEAL

Learn more

about our Communities

Communities

CCPS Center for Chemical Process Safety

DIPPR Design Institute for Physical Properties

RAPID RAPID Manufacturing Institute

SBE Society for Biological Engineering

AMPs Advanced Manufacturing and Processing Society

CPE Community of Process Engineers

Our websites use cookies to offer you a better browsing experience and analyze site traffic. By using our websites, you

consent to our use of cookies.

AIChE

Join SIGN IN

Membership

Academy

About

Careers at AIChE

Awards

Contact

CIEE Center for Innovation & Entrepreneuring Excellence

DIERS Design Institute for Emergency Relief Systems

IfS Institute for Sustainability

IMES International Metabolic Engineering Society

ISWS International Society for Water Solutions

RES Regenerative Engineering Society

Choose a division or forum

Global Privacy & Security

Press

120 Wall Street, FL 23 New York, NY 10005-4020

OTHER SITES & TOOLS

Engage

SmartBrief

ChEnected

Copyright © American Institute of Chemical Engineers. All rights reserved.

AIChE® is a registered 501(c)(3). EIN: 13-1623892.

Our websites use cookies to offer you a better browsing experience and analyze site traffic. By using our websites, you

consent to our use of cookies.