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Abstract

We analyze the chiral restoration and deconfinement transitions in the framework of a non-local

chiral quark model which includes terms leading to the quark wave function renormalization, and

takes care of the effect of gauge interactions by coupling the quarks with the Polyakov loop. Non-

local interactions are described by considering both a set of exponential form factors, and a set

of form factors obtained from a fit to the mass and renormalization functions obtained in lattice

calculations.
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I. INTRODUCTION

The detailed understanding of the behavior of strongly interacting matter under extreme

conditions of temperature and/or density has become an issue of great interest in recent

years. Unfortunately, even if a significant progress has been made on the development of ab

initio calculations such as lattice QCD, these are not yet able to provide a full understand-

ing of the QCD phase diagram and the related hadron properties, due to the well-known

difficulties of dealing with small current quark masses and finite chemical potentials. Thus

it is important to develop effective models that show consistency with lattice results and

can be extrapolated into regions not accessible by lattice calculation techniques. Recently,

models in which quark fields interact via local four point vertices and where the Polyakov

loop is introduced to account for the confinement-deconfinement phase transition (so-called

Polyakov-Nambu-Jona-Lasinio (PNJL) models [1, 2, 3, 4, 5]) have received considerable

attention. Here, we consider a non-local extension of these PNJL models, which includes

terms leading to the quark wave function renormalization. Two different parameterizations

are used: an exponential form, and a parametrization based on a fit to the mass and renor-

malization function obtained in lattice calculations. In the context of this type of model the

properties of the vacuum and meson sectors at T = µ = 0 have been studied in Ref.[6].

This contribution is organized as follows. In Sec. 2 we introduce the model lagrangian

and its parameterizations. In Sec. 3 we present and discuss our results for the behavior of

some thermodynamical properties and the corresponding phase diagrams. Finally, in Sec. 4

our main conclusions are summarized.

II. THE MODEL AND ITS PARAMETRIZATIONS

We consider here a nonlocal SU(2) chiral quark model which includes quark couplings to

the color gauge fields. The corresponding Euclidean effective action is given by

SE =

∫

d4x

{

ψ̄(x)[−i/D + m̂]ψ(x)−GS

2

[

ja(x)ja(x)−jP (x)jP (x)
]

+U (Φ[A(x)])

}

, (1)

where ψ is the Nf = 2 fermion doublet ψ ≡ (u, d)T , and m̂ = diag(mu, md) is the current

quark mass matrix, in what follows we consider isospin symmetry, that is mf = mu = md.

The fermion kinetic term includes a covariant derivative Dµ ≡ ∂µ− iAµ, where Aµ are color
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gauge fields. The nonlocal currents ja(x), jP (x) are given by

ja(x) =

∫

d4z g(z) ψ̄
(

x+
z

2

)

Γa ψ
(

x− z

2

)

,

jP (x) =

∫

d4z f(z) ψ̄
(

x+
z

2

) i
←→
/∂

2 κp
ψ

(

x− z

2

)

, (2)

Here, Γa = (11, iγ5~τ ) and u(x′)
←→
∂ v(x) = u(x′)∂xv(x) − ∂x′u(x′)v(x). The functions g(z)

and f(z) in Eq.(2), are nonlocal covariant form factors characterizing the corresponding in-

teractions. The scalar-isoscalar component of the ja(x) current will generate the momentum

dependent quark mass in the quark propagator, while the “momentum” current, jP (x), will

be responsible for a momentum dependent wave function renormalization of this propagator.

To proceed it is convenient to perform a standard bosonization of the theory. Thus, we

introduce the bosonic fields σ1,2(x) and πa(x), and integrate out the quark fields. In what

follows, we work within the mean-field approximation (MFA), in which these bosonic fields

are replaced by their vacuum expectation values σ̄1,2 and π̄a = 0. Next, we extend the

so obtained bosonized effective MFA action to finite temperature T and chemical potential

µ using the Matsubara formalism. Concerning the gluon fields we will assume that they

provide a constant background color field A4 = iA0 = ig δµ0 G
µ
aλ

a/2, where Gµ
a are the

SU(3) color gauge fields. Then the traced Polyakov loop, which is taken as order parameter

of confinement, is given by Φ = 1
3
Tr exp(iβφ), where β = 1/T , φ = iA0. We will work

in the so-called Polyakov gauge, in which the matrix φ is given a diagonal representation

φ = φ3λ3+φ8λ8, which leaves only two independent variables, φ3 and φ8. Owing to the charge

conjugation properties of the QCD Lagrangian [7], the mean field value of the Polyakov loop

field Φ̄ is expected to be a real quantity. In addition, we assume as usual that φ3 and φ8 are

real-valued fields [5], this implies that φ8 = 0, then Φ̄ = [2 cos(φ3/T ) + 1]/3.

Within this framework the mean field thermodynamical potential ΩMFA results

ΩMFA = − 4T

π2

∑

c

∫

p,n

ln

[

(ρc
n,~p)

2 +M2(ρc
n,~p)

Z2(ρc
n,~p)

]

+
σ̄2

1

2GS
+
κ2

p σ̄
2
2

2GS
+ U(Φ̄, T ) , (3)

Here, the shorthand notation
∫

p,n
=

∑

n

∫

d3~p/(2π)3 has been used, and M(p) and Z(p) are

given by

M(p) = Z(p) [mf + σ̄1 g(p)] , Z(p) = [1− σ̄2 f(p)]−1 , (4)

3



where g(p) and f(p) are the Fourier transform of g(z) and f(z), respectively. In addition,

we have defined
(

ρc
n,~p

)2

=
[

(2n+ 1)πT − iµ+ φc

]2

+ ~p 2 , (5)

where the quantities φc are given by the relation φ = diag(φr, φg, φb). Namely, φc = c φ3

with c = 1,−1, 0 for r, g, b respectively. At this stage we need to specify the explicit form of

the Polyakov loop effective potential. Here, we used the fit to QCD lattice results proposed

in Ref. [5].

ΩMFA turns out to be divergent and, thus, needs to be regularized. For this purpose we

use the same prescription as in Ref. [8]. Namely

ΩMFA
(reg) = ΩMFA − Ωfree + Ωfree

(reg) + Ω0 , (6)

where Ωfree is obtained from the first term in Eq.(3) by setting σ̄1 = σ̄2 = 0 and Ωfree
(reg) is the

regularized expression for the quark thermodynamical potential in the absence of fermion

interactions,

Ωfree
(reg) = −4 T

∫

d3~p

(2π)3

∑

c,k

ln

[

1 + e
−

“√
~p2+m2−kµ+iφc

”

/T

]

, (7)

with k = ±1. Finally, note that in Eq.(6) we have included a constant Ω0 which is fixed by

the condition that ΩMFA
(reg) vanishes at T = µ = 0.

The mean field values σ̄1,2 and φ̄3 at a given temperature or chemical potential, are

obtained from a set of three coupled “gap” equations. This set of equations follows from

the minimization of the regularized thermodynamical potential, that is

∂Ωreg
MFA

∂σ̄1
=
∂Ωreg

MFA

∂σ̄2
=
∂Ωreg

MFA

∂φ̄3

= 0 . (8)

Once the mean field values are obtained, the (T, µ) behavior of other relevant quantities can

be determined.

In order to fully specify the model under consideration we have to fix the model parame-

ters as well as the form factors g(q) and f(q) which characterize the non-local interactions.

Following Ref.[6], we consider two different type of functional dependencies for these form

factors. The first one corresponds to the often used exponential forms,

g(q) = exp[−q2/Λ2
0] , f(q) = exp[−q2/Λ2

1] . (9)
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Note that the range (in momentum space) of the nonlocality in each channel is determined

by the parameters Λ0 and Λ1, respectively. Fixing the T = µ = 0 values of mc and chiral

quark condensate to reasonable values mc = 5.7 MeV and 〈q̄q〉1/3 = 240 MeV the rest of

the parameters are determined so as to reproduce the empirical values fπ = 92.4 MeV and

mπ = 139 MeV, and Z(0) = 0.7 which is within the range of values suggested by recent

lattice calculations[9]. In what follows this choice of model parameters and form factors

will be referred as parametrization S1. The second type of form factor functional forms we

consider is given by

g(q) =
1 + αz

1 + αz fz(q)

αm fm(q)−mf αzfz(q)

αm −mf αz

, f(q) =
1 + αz

1 + αz fz(q)
fz(q) , (10)

where

fm(q) =
[

1 +
(

q2/Λ2
0

)3/2
]

−1

; fz(q) =
[

1 +
(

q2/Λ2
1

)]

−5/2
. (11)

As shown in Ref.[6], with a convenient choice of parameters one can very well reproduce

the momentum dependence of mass and the renormalization function obtained in a Landau

gauge lattice calculation as well as the physical values of mπ and fπ. In what follows

this parametrization will be referred as S2. Finally, in order to compare with previous

studies where the wavefunction renormalization of the quark propagator has been ignored

we consider a third parametrization (S3). In such case we take Z(p) = 1 (setting f(p) = 0)

and exponential parametrization for g(p). The values of the model parameters for each of

the chosen parameterizations are summarized in Table I.

TABLE I: Sets of parameters.

S1 S2 S3

mc MeV 5.70 2.37 5.78

GsΛ
2
0 32.030 20.818 20.650

Λ0 MeV 814.42 850.00 752.20

κP GeV 4.180 6.034 −

Λ1 MeV 1034.5 1400.0 −
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III. RESULTS

We start by analyzing the behavior of some mean field quantities as functions of T and µ.

Since the results obtained for our three different parameterizations are qualitatively quite

similar we only present explicitly those corresponding to the parametrization S1. They are
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FIG. 1: Mean fields σ̄1, σ̄2 and Φ̄ as functions of T for low (left), high (right) and CEP (central)

chemical potentials. Note that the scale to the left corresponds to that of σ̄1 while that to the right

to σ̄2 and Φ̄. Since σ̄2 turns out to be negative we plot −σ̄2.

given in Fig.1 where we plot σ̄1 , σ̄2 and Φ̄ as functions of T for some values of the chemical

potential. Fig. 1a shows that at µ = 0 there is a certain value of T at which σ̄1 drops rapidly

signalling the existence of a chiral symmetry restoration crossover transition, its position

being determined by the peak of the chiral susceptibility. At basically the same temperature

the Polyakov loop Φ̄ increases which can be interpreted as the onset of the deconfinement

transition. As µ increases there is a certain value of µ = µCEP above which the transition

starts to be discontinuous. At this precise chemical potential the transition is of second

order. This situation is illustrated in Fig.1b. The corresponding values (TCEP , µCEP ) define

the position of the so-called “critical end point”. As displays in Fig.1c, for µ > µCEP the

transition becomes discontinuous, i.e. of first order. Finally, for chemical potentials above

µc(T = 0) ≃ 310 MeV the system is in the chirally restored phase for all values of the

temperature. It is important to note that although σ̄2 appears to be rather constant in

Fig.1, at higher values of T it does go to zero as expected. Concerning the deconfinement

transition we see that as µ increases there appears a region where system remains in its
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confined phase (signalled by Φ̄ smaller than ≃ 0.3) even though chiral symmetry has been

restored. This corresponds to the recently proposed quarkyonic phase[10].

The phase diagrams corresponding to our three different parameterizations are given in

Fig.2. Here the dotted line corresponds to the line of crossover chiral transition while the

full line to the line of first order chiral transition. The dashed lines correspond to the

deconfinement transition (the lower and upper lines correspond to Φ̄ = 0.3 and Φ̄ = 0.5,

respectively). Comparing those of S1 and S3 we see that the main effect of the wave function

renormalization term is to shift the location of the CEP towards lower values of T and higher

values µ. Concerning the lattice adjusted parametrization S2 we observe that it leads to

even lower values of TCEP and higher values µCEP .
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FIG. 2: Phase diagrams for the three parameterizations considered. S1 and S2 include quark wave

function renormalization while S3 does not. S1 and S3 correspond to exponential form factors while

S2 to lattice motivated form factors. The dotted line corresponds to the line of crossover chiral

transition and the full line to that of first order chiral transition. The dashed lines correspond to the

deconfinement transition (the lower and upper lines being for Φ̄ = 0.3 and Φ̄ = 0.5, respectively).

IV. SUMMARY AND CONCLUSIONS

A non-local extension of the PNJL model momentum which leads to momentum depen-

dent quark mass and wave function renormalization has been studied. This model provides

a simultaneous description for the deconfinement and chiral phase transition. Non-local

interactions have been described by considering both a set of exponential form factors, and
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a set of form factors obtained from a fit to the mass and renormalization functions obtained

in lattice calculations. The resulting phase diagrams turn out to be qualitative similar, the

position of the critical end point being the feature which depends more crucially on each

particular parametrization.

Acknowledgments

We would like to thank the members of the Organizing Committee for their warm hospi-

tality during the workshop. This work has been supported in part by ANPCyT (Argentina),

under grant PICT07 03-00818.

[1] P. N. Meisinger and M. C. Ogilvie, Phys. Lett. B 379 (1996) 163.

[2] K. Fukushima, Phys. Lett. B 591 (2004) 277.

[3] E. Megias, E. Ruiz Arriola and L. L. Salcedo, Phys. Rev. D 74 (2006) 065005.

[4] C. Ratti, M. A. Thaler and W. Weise, Phys. Rev. D 73 (2006) 014019.

[5] S. Roessner, C. Ratti and W. Weise, Phys. Rev. D 75 (2007) 034007.

[6] S. Noguera, N. N. Scoccola, Phys. Rev. D 78 (2008) 114002.

[7] A. Dumitru, R. D. Pisarski and D. Zschiesche, Phys. Rev. D 72 (2005) 065008.

[8] D. Gomez Dumm and N. N. Scoccola, Phys. Rev. C 72 (2005) 014909.

[9] M. B. Parappilly et al, Phys. Rev. D 73, 054504 (2006).

[10] L. McLerran and R. D. Pisarski, Nucl. Phys. A 796, 83 (2007).

8


	Introduction
	The model and its parametrizations
	Results
	Summary and conclusions
	Acknowledgments
	References

