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Abstract

This paper proposes a contemporaneous smooth transition threshold autoregressive model

(C-STAR) as a modification of the smooth transition threshold autoregressive model surveyed in

Teräsvirta [1998. Modelling economic relationships with smooth transition regressions. In: Ullah, A.,

Giles, D.E.A. (Eds.), Handbook of Applied Economic Statistics. Marcel Dekker, New York, pp.

507–552.], in which the regime weights depend on the ex ante probability that a latent regime-specific

variable will exceed a threshold value. We argue that the contemporaneous model is well suited to

rational expectations applications (and pricing exercises), in that it does not require the initial

regimes to be predetermined. We investigate the properties of the model and evaluate its finite-sample

maximum likelihood performance. We also propose a method to determine the number of regimes

based on a modified Hansen [1992. The likelihood ratio test under nonstandard conditions: testing

the Markov switching model of GNP. Journal of Applied Econometrics 7, S61–S82.] procedure.

Furthermore, we construct multiple-step ahead forecasts and evaluate the forecasting performance of
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the model. Finally, an empirical application of the short term interest rate yield is presented and

discussed.
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1. Introduction

In recent years, a rich class of models has appeared in which economic time series are
allowed to undergo regime shifts. One hallmark of these models is that the public cannot
anticipate perfectly the regime shifts and, in many cases, the public can only infer regime
shifts up to a probability. Such beliefs concerning the state of the business cycle or
economic policies may, in turn, affect the stochastic properties of the economic time series
under analysis. For example, Hamilton (1988) introduced a regime switching model of
interest rates in which the unobserved states evolve according to a Markov chain process.
In this type of model, the public is allowed to learn about the underlying state of the
economy and to use this knowledge when pricing bonds. Other popular nonlinear
autoregressive models that account for a similar phenomenon are the threshold models of
Tong (1978, 1983) and Tong and Lim (1980) and the smooth transition threshold
autoregressive (STAR) model of Chan and Tong (1986), Luukkonen et al. (1988), and
Teräsvirta (1994). These models reflect the idea that variables such as interest rates might
have different dynamics when rates are unusually high. In particular Pfann et al. (1996)
used self-exciting threshold autoregressive (SETAR) models to characterize the evolution
of the interest rates and found mean reversion only when the level of the interest rates was
above a certain threshold. Moreover, Aı̈t-Sahalia (1996) has shown that several anomalies
of the term structure of interest rates can be accounted for only by using nonlinear
modeling.1

In this paper we propose a new class of contemporaneous smooth transition threshold
autoregressive (C-STAR) model, in which the regime weights depend on the ex ante
probability that a latent regime-specific variable will exceed a threshold value. Another key
feature of the C-STAR is that its transition function depends on all the parameters of the
model as well as on the data. These characteristics allow the model to generate a wide
variety of empirical distributions. Therefore, we analyze in detail the response of the
transition function to changes in all the parameters of the model, how different parameter
configurations affect the empirical distribution of the data generated by the model and its
stability properties.
Since the C-STAR model is continuous with respect to all the parameters of the model,

we estimate them jointly by maximum likelihood (ML) and evaluate the quality of
asymptotic approximations to the finite-sample distribution. We propose a procedure to
1Applications of these models include: Tiao and Tsay (1994) and Potter (1995) to US GNP; Rothman (1998),

Caner and Hansen (1998) and Koop and Potter (1999) to unemployment rates; Obstfeld and Taylor (1997) to real

exchange rates; Enders and Granger (1998) to the term structure of interest rates; Pesaran and Potter (1997) to

business cycle relationships. For excellent surveys of STAR models, see Teräsvirta (1998), Potter (1999) and van

Dijk et al. (2002).
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assess whether the model is a valid representation of the data based on testing a linear
AR against the C-STAR alternative. We also propose a method for obtaining
(analytically) multi-step out-of-sample forecasts for the C-STAR that computes the
whole tree of the possible future values and evaluates the probability of the alter-
native future paths. A Monte Carlo study of its forecasting performance is presented.
Finally we carry out an empirical application (using short-term U.S. interest rates) to
assess the in- and out-of-sample performance of the C-STAR relative to alternative
switching models.

The paper is organized as follows. Section 2 introduces the C-STAR model and discusses
its properties. The finite-sample performance of the ML estimator and of the related
statistics are evaluated by simulation in Section 3. Section 4 proposes a procedure to
determine the number of regimes of the C-STAR model. Section 5 evaluates the
forecasting performance of the C-STAR model. Section 6 presents the empirical
application. Section 7 summarizes and concludes.

2. A contemporaneous threshold autoregressive model

The C-STAR model proposed in this paper is a special case of the STAR model. In a
STAR model, the dependent variable, yt, is a function of two (or more) autoregressive
processes that are averaged according to a weighting function, 0pGðzt�1Þp1, where the
argument, zt�1, is a predetermined variable

yt ¼ Gðzt�1Þy0t þ ð1� Gðzt�1ÞÞy1t,

where

yit ¼ mi þ ai
1yt�1 þ � � � þ ai

pyt�p þ si�t; i ¼ 0; 1, (1)

where f�tg are independent, identically distributed (i:i:d:) random variables, independent of
yt�1; yt�2; . . . ; with E½�t� ¼ 0 and E½�2t � ¼ 1; p is a positive integer; s0 and s1 are positive
constants; m0, m1, a

0
j and a1j ðj ¼ 1; . . . ; pÞ are real constants.

STAR models have been extensively used in the analysis of both economic and
financial data. In this literature, the main feature that differentiates alternative
STAR models is the choice of the transition function. For the specific model that we
propose, let

zt ¼ ðyt; yt�1; . . . ; yt�pþ1Þ
0; d ¼ ð1; 0; . . . ; 0Þ (2)

and

Ai ¼

ai
1 ai

2 ai
3 � � � ai

p�1 ai
p

1 0 0 � � � 0 0

0 1 0 � � � 0 0

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 � � � 1 0

266666664

377777775; i ¼ 0; 1. (3)

The weighting function we use is

Gðzt�1Þ ¼
Fððy� � m0 � dA0zt�1Þ=s0Þ

Fððy� � m0 � dA0zt�1Þ=s0Þ þ ½1� Fððy� � m1 � dA1zt�1Þ=s1Þ�
, (4)
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where y� is the threshold parameter and Fð�Þ is the standard normal distribution function.
The key interpretation of this STAR model is that

Fððy� � m0 � dA0zt�1Þ=s0Þ ¼ Pðy0toy�jzt�1;Y0Þ (5)

and

½1� Fððy� � m1 � dA1zt�1Þ=s1Þ� ¼ Pðy1tXy�jzt�1;Y1Þ,

where Yi denotes the parameters corresponding with regime i, i.e., ðmi;Ai;siÞ.
Notice that we can rewrite Eq. (1) as

yt ¼
Pðy0toy�jzt�1;Y0Þy0t þ Pðy1tXy�jzt�1;Y1Þy1t

Pðy0toy�jzt�1;Y0Þ þ Pðy1tXy�jzt�1;Y1Þ
. (6)

Because the weighting function depends on the probability that the contemporaneous
value of yit will exceed the threshold level, we call this a contemporaneous threshold model.
The likelihood function of the C-STAR model is straightforward and easy to compute

lt ¼
Pðy0toy�jzt�1;Y0Þf ðy0tjzt�1;Y0Þ þ Pðy1tXy�jzt�1;Y1Þf ðy1tjzt�1;Y1Þ

Pðy0toy�jzt�1;Y0Þ þ Pðy1tXy�jzt�1;Y1Þ
. (7)

The likelihood function of the C-STAR model is continuous with respect to the threshold
parameter so this parameter can be estimated jointly with the full parameter vector. In the
following section we will further characterize the model using the simplest version of the
model where yit�ARð1Þ for i ¼ 0; 1.

2.1. Properties of the C-STAR model

In this section we use the following C-STAR(1) to illustrate the key properties of the
model:

yt ¼ Gðyt�1Þy0t þ ð1� Gðyt�1ÞÞy1t, (8)

where

yit ¼ mi þ ai
1yt�1 þ si�t; i ¼ 0; 1

and

Gðyt�1Þ ¼
Fððy� � m0 � a01yt�1Þ=s0Þ

Fððy� � m0 � a01yt�1Þ=s0Þ þ ½1� Fððy� � m1 � a11yt�1Þ=s1Þ�
.

When generating the data we use the following identifying restriction:
m0

1�a0
1

o m1
1�a1

1

: Notice
that this restriction is sufficient to ensure that Fððy� � m0 � a01yt�1Þ=s0Þ and ½1� Fððyn �

m1 � a11yt�1Þ=s1Þ� cannot both tend to zero at the same time.2

Since the model is capable of generating a wide variety of empirical distributions, in this
section we analyze: (i) the response of the mixing function to changes in the parameters of
the model; (ii) the empirical distribution of the data generated by the model; and (iii) the
stability properties of the deterministic part of the model.
2The identifying restriction has been chosen to ensure that we do not introduce any inconsistencies when

generating the data. Nevertheless, this restriction is sufficient but not necessary to ensure that the numerator and

the denominator would not both tend to zero at the same time. As explained in footnote 6 using DGP 4 (one of

the DGPs considered in the paper), this can happen only as the result of an inconsistency in designing the DGP.
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Table 1

Properties of the mixing function

signð
qGðyt�1Þ

qai
1

Þ ¼ �signðyt�1Þ; for i ¼ 0; 1 qGðyt�1Þ

qy�
40

signð
qGðyt�1Þ

qs0
Þ ¼ �signðy� � m0 � a01yt�1Þ signð

qGðyt�1Þ

qs1
Þ ¼ signðy� � m1 � a11yt�1Þ

qGðyt�1Þ

qm0
o0

qGðyt�1Þ

qm1
o0

qGðyt�1Þ

qyt�1
o0, if a01; a

1
140

qðyt�1Þ

q�t�1
o0 if a01; a

1
140
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2.1.1. Properties of the mixing function

A key feature of the C-STAR model is that its mixing function, G, depends on all the
parameters of the model as well as on yt�1.

3 In Table 1 we show the response of G to
changes in the different parameters.

The first two rows of Table 1 show that the effect, on the mixing function, of a change in
either the slope or the standard deviation is undetermined. The first row shows that

signð
qGðyt�1Þ

qa0
1

Þ ¼ �signðyt�1Þ: An increase in a01 raises the conditional mean of y0t, m0 þ

a01yt�1; and reduces the probability Pðy0toy�jyt�1Þ (and therefore Gðyt�1Þ) for positive

values of yt�1 (and thus increases the probability when yt�1o0). A similar argument

applies for a change in a11 where signð
qGðyt�1Þ

qa1
1

Þ ¼ �signðyt�1Þ: The change in the slope raises

the conditional mean of y1t, m1 þ a11yt�1; increases the probability Pðy1t4y�jyt�1Þ; thus
reducing Gðyt�1Þ for positive values of yt�1:

The second row shows that the sign of
qGðyt�1Þ

qsi
depends on the sign of y� � mi � ai

1yt�1;

that is, the distance between the threshold and the conditional mean of yit: In particular the

sign of qFð:Þ
qs0

is inversely related to the sign of yn � m0 � a01yt�1: Notice that for y� � m0 �

a01yt�140; an increase in the volatility, s0; reduces the value of Fððy� � m0 � a01yt�1Þ=s0Þ
since, for a given conditional mean, a higher volatility reduces the area where the

distribution of y0t is smaller than the threshold. The opposite holds when y� � m0 �
a01yt�1o0: A similar argument applies for qð1�Fð:ÞÞ

qs1
; which has the same sign as y� � m1 �

a11yt�1:

The sign of
qGðyt�1Þ

qy�
is always positive since the higher is the threshold, the bigger is the

area of the conditional density of y0t (which is smaller than the threshold) and the smaller
is the area of the conditional density of y1t (which is greater than the threshold). In other

words an increase in y� increases Fððy� � m0 � a01yt�1Þ=s0Þ and reduces ½1� Fððy� � m1 �

a11yt�1Þ=s1Þ�: The sign of
qGðyt�1Þ

qm1
; is always negative, since the larger is m1, the larger is

½1� Fððy� � m1 � a11yt�1Þ=s1Þ�: Analogously the sign of
qGðyt�1Þ

qm0
is always negative. Note

also that the sign of
qGðyt�1Þ

qyt�1
is negative (provided that a01 and a11 are both positive).
3As we explain above, in C-STAR(p) models, G is a function of zt�1 ¼ ðyt�1; . . . ; yt�pþ1Þ. Contrary to other

STAR models, for the C-STAR there is no need to use any selection criteria to choose the appropriate threshold

variable since, by construction, all the variables that enter in the information set also enter in the transition

function.
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Table 2

DGPs

m0 a01 s0 m1 a11 s1 y�

DGP 1 �0.5 0.9 3 0.5 0.9 2 1

DGP 2 �1 0.9 3 1 0.9 2 1

DGP 3 �1 0.9 3 1 0.9 3 0

DGP 4 �10 0.7 5 10 0.7 4 0

M.J. Dueker et al. / Journal of Econometrics 141 (2007) 517–547522
In Table 2 we present a selection of alternative DGPs used to illustrate the properties of
the model.4 In Fig. 1 we present the conditional distributions of yit; along with the
threshold and the values taken by the mixing function Gðyt�1Þ once we condition on three
arbitrary values, yt�1 ¼ f�5; 0; 5g: The first row shows that, when most of the area of the
two conditional distributions lies to the left of the threshold, Gðyt�1Þ tends to 1 and
whenever they lie to the right, then Gðyt�1Þ tends to 0. The mixing function for DGP 1
takes values fGðyt�1 ¼ �5Þ ¼ 0:99;Gðyt�1 ¼ 0Þ ¼ 0:63;Gðyt�1 ¼ 5Þ ¼ 0:14g, which de-

crease with yt since
qGðyt�1Þ

qyt�1
o0: DGP 2 has higher absolute values of mi and we find that

fGðyt�1 ¼ �5Þ ¼ 0:98;Gðyt�1 ¼ 0Þ ¼ 0:59;Gðyt�1 ¼ 5Þ ¼ 0:17g. Comparing with the DGP
1 we find that these results come as the combination of a positive effect of a negative

change in m0 and the negative effect of a positive change in m1.
5 In DGP 3 we increase s1

and reduce y� (relative to DGP 2) and we find that fGðyt�1 ¼ �5Þ ¼
0:89;Gðyt�1 ¼ 0Þ ¼ 0:5;Gðyt�1 ¼ 5Þ ¼ 0:11g. Even though a reduction in y� always reduces

Gðyt�1Þ and
qGðyt�1Þ

qs1
depends on the sign of y� � m1 � a11yt�1; the total effect is to reduce the

value of Gðyt�1Þ for the conditioning values under consideration. Finally we look at DGP 4
for which, for the chosen range, changes in the conditioning value do not affect
substantially Gðyt�1Þ. In the next section we analyze the empirical distribution of the data
generated by the model and the behavior of the mixing function over time.
2.1.2. The empirical distribution of the data generated by the model

There is a large variety of empirical distributions and time series that can be generated
using the C-STAR(1) model. In Fig. 2 we show, using the alternative DGPs presented in
Table 2, the long-run state-dependent distributions alongside the threshold, the histogram
of yt generated by the C-STAR(1) model and the time series of yt and Gðyt�1Þ. We used the
same 500,000 realizations of the shocks to draw the histograms, and the last 1000
realizations for the time series evolution of yt and Gðyt�1Þ.
DGP 1 and DGP 2 differ in the absolute value of mi; which is higher for DGP 2. This

implies that for DGP 1 the long-run state-dependent distributions overlap for a larger part
of their range than for DGP 2. This in turn implies, given that they share the same
autoregressive parameters, that Gðyt�1Þ is more persistent for DGP 2 than for DGP 1.
4The DGPs have been arbitrarily chosen to highlight some relevant features of the model with respect to: the

response of the mixing function to changes in the parameters of the model; the empirical distribution of the data

generated by the model; and the stability properties of the deterministic part of the model.
5Even though it seems that this minor change from DGP 1 to DGP 2 does not greatly affect the model, we will

see below that it has substantial effects on its stability.
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Fig. 1. Conditional distributions for the data generating processes presented in Table 2.
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The plot shows, when considering DGP 2, that high values of yt will most likely come from
the distribution of y1t since for those values Gðyt�1Þ is close to zero; the converse holds true
for very low values of yt: Turning our attention to the second column of Fig. 1, we can see
that the histogram for DGP 1 is unimodal while that for DGP 2 is bimodal. This has
implications for the stability properties of the model that are discussed in the next section.

DGP 3 is a mixture of the two distributions, which enter symmetrically in the sense that
they have the same mean and standard deviation and that their means are equally apart



ARTICLE IN PRESS

Fig. 2. Generated C-STAR data.

M.J. Dueker et al. / Journal of Econometrics 141 (2007) 517–547524
from the threshold. Then, even though Gðyt�1Þ takes values close to either 0 or 1 most of
the time, the histogram of the generated data is unimodal and symmetric.
Finally using DGP 4 , we find that the histogram has 3 modes and the model chooses

most of the time a mixture of both distributions with probabilities, Gðyt�1Þ; equal to one
half.6 In the next section we derive the stability properties of the C-STAR based on the
skeleton of the model, which will complement the characterization of the model.
6Consider DGP 4 (a very extreme case) and assume that you have inadvertently labeled the regimes incorrectly

(swapped the regimes) in the data-generating process. Then, under this scenario, the long-run mean of y0t would
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2.2. Stability properties of the skeleton of the C-STAR

As Chan and Tong (1985) pointed out, we can analyze the properties of a nonlinear time
series by considering the deterministic part of the model alone. This part is usually called
the skeleton of the model and is defined as yt ¼ F ðyt�1;YÞ, where

F ðyt�1;YÞ ¼ Gðyt�1Þðm0 þ a01yt�1Þ þ ð1� Gðyt�1ÞÞðm1 þ a11yt�1Þ, (9)

and Y ¼ fY0;Y1; y�g.
7

Then a fixed point of the skeleton of the model is any value, yL; that satisfies

yL ¼ F ðyL;YÞ ¼ GðyLÞðm0 þ a01yLÞ þ ð1� GðyLÞÞðm1 þ a11yLÞ. (10)

Since the C-STAR(1) is a nonlinear model, there may be one, several or no equilibrium
values that satisfy Eq. (10). Then, assessing which of the equilibria of the nonlinear first-
order difference equation are stable is crucial for learning about the stability properties of
the C-STAR model. It is relatively straightforward to assess the local stability of each of
the equilibrium points, whenever the skeleton is only a function of the first lag.

We use each of the DGPs presented in Table 2 to assess: (i) the number of equilibria and
(ii) the stability of the equilibria. We find the number of equilibria for the different DGPs
presented in Table 1, using a grid of starting values to solve Eq. (10) numerically.8 For each
equilibrium, we analyze whether it is locally stable by considering the following expansion
around the fix point:

yt � yL ¼ F ðyt�1;YÞ � F ðyL;YÞ

’
qF ðyt�1;YÞ

qyt�1

ðyt�1 � yLÞ. ð11Þ

Whenever j
qF ðyt�1;YÞ

qyt�1
jo1; the equilibrium is locally stable and F ðyt�1;YÞ is a contraction

in the neighborhood of y ¼ yL, where

qF ðyL;YÞ
qyt�1

¼ a11 þ ða
0
1 � a11ÞGðyLÞ þ ½ðm0 � m1Þ þ ða

0
1 � a11ÞyL�

qGðyLÞ

qyt�1

(12)

and

qGðyLÞ

qyt�1

¼
�ðða0=s0ÞfðwL

0 ÞFðw
L
1 Þ þ ða

1=s1ÞfðwL
1 ÞFðw

L
0 ÞÞ

ðFðwL
0 Þ þ ½1� FðwL

1 Þ�Þ
2

where f ¼ F0,

wL
0 ¼ ðy

� � m0 � a01yLÞ=s0 and wL
1 ¼ ðy

� � m1 � a11yLÞ=s1. (13)
(footnote continued)

be associated with the high-mean regime and the long-run mean of y1t with the low-mean regime. When

attempting to generate the data, both the numerator and the denominator of Gðyt�1Þ will tend to zero. Notice that

this simply happens because of an inconsistency introduced when generating the data. The inconsistency is to label

regime 0 as the low regime, which is identified by Pðy0toy�jyt�1;Y0Þ; when all the mass of the distribution of y0t is

higher than the threshold and, at the same time, to label regime 1 as the high regime, which is identified by

Pðy1tXy�jyt�1;Y1Þ; when all the mass of the distribution of y1t is lower than the threshold.
7Instead of introducing new notation, in this section we denote yt as the skeleton of the model. This is

equivalent to setting the shock equal to zero.
8This is usually labeled ‘‘deterministic simulation’’, see Teräsvirta and Anderson (1992) and Peel and Speight

(1996).
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Fig. 3. Lung-run properties of the C-STAR model for the data generating processes presented in Table 2.
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Fig. 3 shows the skeleton and scatter plots using the C-STAR model and the generated
data (the last 1000 observations) from the DGPs presented in Table 1. The intersection of
the skeleton and the 45� line in the plot between yt and yt�1 shows the points where
Eq. (10) is satisfied.
We found for DGP 1 a unique stable equilibrium for yL ¼ f�4:7g with the associated

qF ðyL;YÞ
qyt�1

¼ f0:93g: There is little that is known about stationarity conditions for STAR

models in general and this is also the case with the C-STAR model. Nevertheless, in
general, a way of checking the stationarity of nonlinear models is to determine whether the
skeleton is stable using deterministic simulation. If the series generated from the skeleton
explodes in this simulation exercise then the time series is not stationary.
For DGP 2 we increase (relative to DGP 1) the absolute value of the intercepts. The

effect on the nonlinear model of increasing the absolute value of the intercepts is to
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increase the number of fixed points to three.9 The fixed points for DGP 2 take the values
yL ¼ f�9:99; 1:81; 9:77g, with the associated

qF ðyL;YÞ
qyt�1

¼ f0:9; 1:08; 0:91g: This implies that the
first and the last fixed points are locally stable while the intermediate fixed point is locally
unstable. We can see in Fig. 3 that whenever yt lies near any of the stable equilibria, then it
will take a large shock to cause a transition of the series from the one equilibrium to the
other. Notice that in the absence of shocks, �9:99 and 9:77 are both attractors and 1:81 is
the boundary between the domains of attraction, which implies that once we introduce
shocks, we can expect the time series to switch occasionally between attractors, but we do
not expect the time series to be explosive.

The figure for DGP 3 is qualitatively similar to that of DGP 2 since we also find three

fixed points yL ¼ f�9:91; 0; 9:92g with associated
qF ðyL;YÞ
qyt�1

¼ f0:91; 1:08; 0:90g The points are

evenly distributed since the distributions are symmetric and so is the domain of attraction.
Finally for DGP 4 we further increase the absolute value of the intercepts along with the

variances and obtain the fixed points yL ¼ f�33:3;�16:8; 0:34; 18:12; 33:05g with the

associated
qF ðyL;YÞ
qyt�1

¼ f0:71; 1:41; 0:76; 1:28; 0:74g.10 Given that the smallest and highest

equilibria are stable we expect yt to revert to values which are in the range f�33:3; 33:05g.
We can also study the effect of changes in y� on the fixed point yL: The results are

rather complex since they not only depend on the equilibrium under consideration but
they also affect the number of fixed points. In general is easy to show that for very

low values of y� such that GðyLÞ ’ 0 , yL ’
m1
ð1�a1

1
Þ
and , for high values of y� where

GðyLÞ ’ 1; yL ’
m0
ð1�a0

1
Þ
.

In the following section, Monte Carlo methods are used to examine the quality of
asymptotic approximations to the finite-sample distribution of the ML estimator and other
related statistics using, among others, the DGPs analyzed above.

3. Finite-sample properties of C-STAR models

We begin by discussing the experimental design and Monte Carlo simulation of the
statistics of interest. The numerical results follow.

3.1. Experimental design and simulation

The following C-STAR(1) model is used as the data-generating process (DGP) in the
experiments carried out in this section

yt ¼
Pðy0toy�jzt�1;Y0Þy0t þ Pðy1tXy�jzt�1;Y1Þy1t

Pðy0toy�jzt�1;Y0Þ þ Pðy1tXy�jzt�1;Y1Þ
, (14)

y0t ¼ m0 þ a01yt�1 þ s0�t,

y1t ¼ m1 þ a11yt�1 þ s1�t.
9Franses and van Dijk (2000) find the same result using L-STAR models.
10We use this DGP to show the rather complex dynamic patterns that can be generated by the model even

though we do not expect that financial or macro data will be generated by this configuration of parameters.
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where �t are i:i:d: N(0,1). The experiments are a full factorial design of

ðm0;m1Þ 2 fð�0:5; 0:5Þ; ð�1; 1Þ; ð�10; 10Þg,

ðs0;s1Þ 2 fð3; 2Þ; ð3; 3Þ; ð3; 2Þg,

ða01; a
1
1Þ 2 fð0:7; 0:7Þ; ð0:9; 0:9Þg,

y� 2 f0; 1; 2; 3; 4g,

T 2 f100; 200; 400; 800g. (15)

The sample sizes selected are representative of the data sets that are typically used in
empirical work (samples of 800 or more observations are not uncommon in studies using
weekly or daily data). In all experiments, we generate 50þ T data points for yt, starting
with y0 ¼ y�: However, in order to attenuate the effect of the initial values, only the last T

of these observations are used in each Monte Carlo replication.
The ML estimates bY � fbm0;bm1;ba01;ba11;bs0;bs1; by�g; are obtained by means of a quasi-

Newton algorithm that approximates the Hessian according to the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) update computed from numerical derivatives (see, e.g.,
Fletcher, 1987). In each case, a grid of seven initial values for each parameter (including
the true parameter) are used as starting values for the BFGS iterations. The replication
that achieves the higher likelihood value will then be selected.11 Finally, since the
computation of ML estimates for switching models is particularly time-consuming (given
the large number of simulations and the grid for the initial values), the number of Monte
Carlo replications per experiment is 2000.
In order to save space only a selection of simulation results are reported.12 In particular,

we consider several versions of DGP 2, where the threshold, y�; is allowed to vary.

DGPðiÞ ¼ fðm0;m1Þ ¼ ð�1; 1Þ; ða
0
1; a

1
1Þ ¼ ð0:9; 0:9Þ; ðs0; s1Þ ¼ ð2; 3Þ; y

� ¼ ig

for i ¼ 0; 1; 2; 3. ð16Þ

We analyze how this affects the estimation results since, for DGP(0) (where y� ¼ 0), the
series spends on average 33% of the time below the threshold value. For DGP(1), on
average it spends equal time above and below the threshold, while for DGP(2) and DGP(3)
the time spent below the threshold is on average 66% and 80%, respectively.

3.1.1. Distribution of the ML estimator: biases, estimated standard errors and normality

tests

We report some of the characteristics of the finite-sample distribution of the ML
estimator of bY. These include: (i) the deviation of the mean from the true parameter (bias),
(ii) a measure of the accuracy of estimated large-sample standard errors as approximations
to the correct sampling standard deviation of the ML estimator and (iii) tests for
normality.
The top panel of Table 3 shows that for most of the design points the biases are only

significantly different from zero when Tp200. The size of the bias in the ML estimator
vary for the alternative DGPs under scrutiny. For example, while very large samples are
11Notice that the estimation results appear to be robust to the choices of initial values.
12The full set of results is available on request.
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Table 3

Characteristics of the empirical distribution of the MLE: mean bias and ratios of sampling SDs to estimated SEs

DGP Maximum likelihood estimates

y� T bm0 bm1 ba01 ba11 bs0 bs1 by�
Mean bias

0 100 �0.063 0.035 �0.047 �0.053 �0.031 �0.069 0.059

200 0.040 �0.027 �0.015 �0.027 �0.034 �0.090 0.016

400 0.016 �0.008 �0.011 0.006 �0.022 �0.015 �0.013

800 0.009 0.002 0.001 0.000 �0.011 �0.009 �0.010

1 100 �0.068 0.008 �0.059 �0.014 �0.001 �0.014 �0.096

200 �0.025 �0.006 �0.037 �0.022 �0.048 �0.020 �0.034

400 0.017 �0.009 �0.011 0.005 �0.025 �0.019 �0.012

800 0.001 �0.004 0.000 0.019 �0.006 �0.010 0.011

2 100 �0.075 0.095 �0.052 �0.074 �0.080 �0.093 �0.086

200 �0.061 �0.040 �0.027 �0.045 �0.039 �0.085 �0.049

400 �0.014 �0.054 �0.009 �0.016 �0.012 �0.018 �0.015

800 0.002 �0.007 �0.002 0.004 �0.009 �0.015 �0.004

3 100 �0.096 �0.071 �0.073 �0.089 �0.065 �0.015 �0.070

200 �0.091 �0.046 �0.026 �0.085 �0.042 �0.019 �0.058

400 0.055 �0.033 �0.011 �0.032 �0.020 �0.007 �0.049

800 �0.047 �0.020 �0.003 0.018 �0.012 �0.006 �0.021

Ratios of sampling SDs to estimated SEs

0 100 1.120* 1.019 1.041 1.037 0.985 1.004 1.068*

200 1.098* 1.012 0.971 1.025 0.991 1.002 1.029

400 1.018 0.991 1.015 1.012 1.005 1.002 1.017

800 1.014 1.006 1.010 1.010 0.994 1.000 1.016

1 100 1.061* 1.072* 1.020 1.011 0.971* 1.022 1.096*

200 1.011 1.042* 1.025 1.021 0.981 1.016 1.080*

400 1.011 1.009 1.019 1.006 0.997 1.006 1.046

800 1.005 1.004 1.005 0.999 1.000 1.002 1.005

2 100 1.131* 1.047* 1.017 1.020 1.042* 0.951* 1.049*

200 1.081* 1.014 1.010 1.023 1.026 0.987 1.008

400 1.052 1.002 1.010 0.993 1.010 0.989 1.005

800 1.041 1.002 1.000 1.002 0.998 0.994 1.002

3 100 1.113* 1.104* 1.244* 1.023 1.143* 0.964 1.100*

200 1.082* 1.033 1.024 1.011 1.051 0.987 1.094*

400 1.055 1.006 1.015 1.005 0.958 0.995 1.025

800 1.012 1.000 1.009 0.999 0.983 0.999 1.011

Note: * indicates that the Kolmogorov–Smirnov statistic is significant at the 5% level.
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needed to reduce the biases of bm0, bm1 and by� using DGP(3), for DGP(0) we find that the

biases associated with the slopes (ba01;ba11) approach zero for relatively small sample sizes.

Overall the results show that the ML estimator is slightly biased only for the smallest
sample under consideration. The bias clearly decreases as the sample increases and
becomes negligible when T ¼ 400.
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Turning to the accuracy of the estimated standard errors, we show in the bottom panel
of Table 3 the ratio of the exact standard deviation of the ML estimates to the estimated
standard errors averaged across replications for each design point. The standard errors are

calculated as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T�1ðbO�1T Þii

q
; ii 2 ð1; . . . ; 7Þ, where ðbO�1T Þii is the ith diagonal element of bO�1T ,

where bOT ¼ �
1
T
ð
q2LðYÞ
qYqY0 jY¼bYÞ and LðYÞ is the logarithmic conditional likelihood function.

For the vast majority of cases, the estimated asymptotic standard errors are downward
biased. These biases however are not substantial (at least for samples larger than 200) and
therefore should not affect inference significantly.
The Gaussianity of the finite-sample distributions of the ML estimates is also assessed by

means of a Kolmogorov–Smirnov test that compares the empirical distribution function of
the ML estimates (relocated and scaled so that the linearly transformed estimates have zero
mean and unit variance) with the standard normal distribution function (see Lilliefors,
1967). The test statistic is calculated as max1pjprjj=r� Fðzr:jÞj; where zr:j denotes the order
statistic of rank j associated with the transformed estimates. The cases in which the
Kolmogorov–Smirnov statistic is significant, at the 5% level, are indicated in the bottom
panel of Table 3. We find, for the configurations under consideration, that the hypothesis
of normality of all the estimators other than bm0, bm1, and by� is never rejected for sample sizes
larger than 100. Furthermore, the value of the Kolmogorov–Smirnov statistic decreases as
T increases, suggesting that the quality of the normal approximation is likely to improve in
larger samples. In fact, while for T ¼ 400 the hypothesis of normality can be rejected only
once, when T ¼ 800 it can never be rejected.
3.1.2. Hypothesis tests

We now turn to hypothesis testing by examining the empirical distributions of

conventional t-type statistics associated with the elements of bY. These are calculated as

½ðiÞ
bY�ðiÞY0�=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T�1ðbO�1T Þii

q
, i 2 ð1; . . . ; 7Þ, where ðiÞ bY and ðiÞY0 denote the ith element of bY

and Y0, respectively. According to standard asymptotic theory, the t-statistics should be
approximately distributed as N(0, 1). The mean and standard deviation of the empirical
distributions of the t-statistics are reported in Table 4. For some estimates, the mean and
standard deviation differ substantially from the values associated with the approximating

normal distribution. We find that the distributions of t-statistics based on ba01, ba11, bs0 and bs1
are mostly close to the true values, but the t-statistics based on bm0, bm1 and by� have means
significantly different from zero. However, the deviations from zero decrease (in absolute
value) as T increases. More specifically, the distributions of the t-statistics based on the
majority of the parameters in all DGPs are close to the theoretical values for sample sizes
as small as 200. In addition, in some cases the standard deviation is larger than 1 (for the
intercepts and the threshold) but approaches the theoretical value as the sample size
increases (in particular the standard deviation of the slopes approaches one also for very
small samples).
The outcome of Kolmogorov–Smirnov tests for the normality of the distribution of the

t-statistics is indicated in the bottom panel of Table 4. The hypothesis of normality is
rejected for only a few design points. The Gaussian approximation is generally adequate
for t-statistics based on ba01, ba11, bs0 and bs1, and for statistics based on bm1, bm2 and by�, provided
that the sample size is not too small.
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Table 4

Empirical moments of t-statistics

DGP t-statistic

y� T bm0 bm1 ba01 ba11 bs0 bs1 by�
Mean

0 100 0.187 �0.185 0.083 0.044 �0.051 �0.074 �0.063

200 0.093 �0.101 0.007 0.004 �0.045 �0.012 �0.042

400 0.012 0.018 0.049 0.001 �0.025 0.008 0.026

800 0.011 0.012 0.003 0.000 �0.008 0.004 0.012

1 100 0.126 �0.164 0.095 0.076 �0.038 �0.049 �0.097

200 0.014 �0.156 0.061 0.022 �0.020 �0.004 �0.053

400 �0.003 �0.098 0.038 0.006 �0.005 �0.003 �0.028

800 �0.001 �0.012 �0.008 0.003 0.002 0.001 �0.002

2 100 0.159 �0.136 0.166 0.034 �0.064 �0.065 �0.043

200 0.009 �0.123 0.097 0.021 �0.023 �0.011 �0.048

400 0.012 �0.101 0.056 0.007 �0.009 �0.061 0.002

800 0.001 �0.014 0.008 �0.002 �0.003 �0.002 0.001

3 100 �0.234 0.154 �0.095 0.054 �0.198 �0.073 �0.149

200 �0.189 0.081 0.037 0.006 �0.032 �0.015 �0.123

400 �0.131 �0.052 �0.023 �0.007 �0.018 0.004 �0.085

800 �0.066 0.025 0.001 0.000 �0.005 0.002 0.021

Standard deviation

0 100 1.271* 1.096* 1.071* 0.989 0.981 0.994 1.110*

200 1.086* 1.021 1.044 0.993 1.052 1.005 1.088*

400 1.035 1.006 1.029 1.004 1.031 1.003 1.072

800 1.007 1.002 1.008 1.000 0.998 1.000 1.008

1 100 1.104* 1.077* 1.030 1.000 0.970 0.998 1.075*

200 1.066 1.032 0.983 1.009 0.986 0.999 1.022

400 1.023 1.008 1.014 0.997 1.007 0.997 0.999

800 1.019 1.012 1.002 1.001 0.999 1.000 1.000

2 100 1.080* 1.113* 1.002 0.937 1.032 1.039 1.137*

200 1.053 1.046 0.997 0.952 1.051 1.011 1.059

400 1.022 1.040 1.000 0.969 1.009 1.005 1.071

800 1.002 1.009 1.000 0.999 1.005 1.000 1.003

3 100 1.286* 1.075* 1.004 1.016 0.975 1.044 1.118*

200 1.163* 1.044 1.002 1.003 0.964 1.006 1.052

400 1.098* 1.032 0.998 1.000 0.987 1.003 1.028

800 1.045 1.008 1.000 1.000 0.999 1.001 1.007

Note: * indicates that the Kolmogorov–Smirnov statistic is significant at the 5% level.
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Finally, to examine the direct consequences of these results for hypothesis testing,
Table 5 reports the empirical size of t-type tests of the null hypothesis H0:ðiÞY¼ðiÞY0 against
the alternative H0:ðiÞYaðiÞY0: The entries are relative rejection frequencies based on
standard normal critical regions of nominal size 0.05 and 0.10. It is clear that in some cases
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Table 5

Empirical size of two-tailed tests based on t-statistics

DGP t-statistic

y� T bm0 bm1 ba01 ba11 bs0 bs1 by�
Nominal size ¼ 0:05
0 100 0.077 0.054 0.071 0.056 0.066 0.053 0.060

200 0.065 0.052 0.066 0.052 0.062 0.054 0.061

400 0.058 0.051 0.058 0.050 0.058 0.052 0.054

800 0.053 0.050 0.049 0.050 0.054 0.051 0.050

1 100 0.067 0.079 0.066 0.076 0.063 0.071 0.081

200 0.058 0.056 0.061 0.058 0.057 0.065 0.058

400 0.045 0.053 0.058 0.052 0.055 0.052 0.053

800 0.047 0.050 0.053 0.049 0.052 0.050 0.047

2 100 0.060 0.087 0.059 0.061 0.063 0.077 0.091

200 0.058 0.062 0.054 0.057 0.061 0.068 0.067

400 0.054 0.059 0.048 0.056 0.051 0.059 0.054

800 0.051 0.056 0.050 0.052 0.050 0.054 0.052

3 100 0.130 0.054 0.128 0.053 0.111 0.052 0.071

200 0.098 0.052 0.085 0.052 0.090 0.049 0.064

400 0.078 0.050 0.072 0.050 0.084 0.051 0.060

800 0.070 0.050 0.064 0.050 0.059 0.050 0.054

Nominal size ¼ 0:10
0 100 0.145 0.110 0.121 0.108 0.141 0.091 0.132

200 0.132 0.108 0.117 0.103 0.114 0.107 0.117

400 0.110 0.103 0.108 0.101 0.109 0.106 0.109

800 0.106 0.100 0.103 0.100 0.103 0.105 0.102

1 100 0.121 0.109 0.116 0.129 0.136 0.120 0.133

200 0.111 0.110 0.093 0.117 0.120 0.118 0.120

400 0.102 0.103 0.106 0.109 0.117 0.106 0.108

800 0.100 0.101 0.102 0.100 0.104 0.102 0.102

2 100 0.121 0.134 0.115 0.108 0.112 0.116 0.122

200 0.115 0.126 0.091 0.108 0.110 0.108 0.110

400 0.103 0.112 0.106 0.102 0.108 0.092 0.106

800 0.100 0.104 0.102 0.100 0.103 0.100 0.105

3 100 0.120 0.112 0.131 0.102 0.128 0.110 0.144

200 0.113 0.096 0.124 0.100 0.120 0.107 0.131

400 0.096 0.092 0.108 0.102 0.118 0.104 0.129

800 0.101 0.104 0.100 0.097 0.109 0.100 0.110
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the tests suffer from size distortions (see in particular the empirical sizes associated to bm0
and ba01 in DGP(3), with small sample size), having values well in excess of the nominal
levels. However, these distortions do attenuate as the sample size increases; in fact, for
T ¼ 200 most of the tests have empirical rejection frequencies that are insignificantly
different from the nominal values of 0.05 and 0.10. In summary, our results seem to
suggest that samples of more than 200 observations are typically needed before asymptotic
theory is a good guide for inference.



ARTICLE IN PRESS
M.J. Dueker et al. / Journal of Econometrics 141 (2007) 517–547 533
4. Forecasting with contemporaneous threshold autoregressive models

Parametric models that allow for nonlinear dynamics and changes in regime have
attracted considerable interest in the literature. While such models have been shown to
describe well the behavior of many time series, including economic and financial ones, the
evidence concerning their ability to produce accurate out-of-sample forecasts is far from
conclusive (see van Dijk et al., 2002 for a survey). Different authors have compared
various methods for obtaining multi-step-ahead forecasts with threshold models and
evaluated their empirical performance (e.g., Lin and Granger, 1994; Clements and Smith,
1999).13

In this section we discuss a method for obtaining multi-step, out-of-sample, forecasts for
the C-STAR(p) model that computes the full tree of possible future values and evaluates
the probability that the regimes would follow different paths in the future. We also
undertake a systematic study to analyze the forecasting performance of the contempora-
neous threshold autoregressive model.14 Even though our preferred forecasting procedure
can be regarded as an approximation (as will be made clear below), our simulations results
suggest that the cost of using this approximation is negligible.

4.1. One-step-ahead forecasts

Consider the C-STAR(p) model

yt ¼
Pðy0toy�jzt�1;Y0Þy0t þ Pðy1tXy�jzt�1;Y1Þy1t

Pðy0toy�jzt�1;Y0Þ þ Pðy1tXy�jzt�1;Y1Þ
,

y0t ¼ m0 þ a01yt�1 þ � � � þ a0pyt�p þ s0�t,

y1t ¼ m1 þ a11yt�1 þ � � � þ a1pyt�p þ s1�t. (17)

The C-STAR model produces forecasts that involve a weighted average of the two linear
relationships. The one-step-ahead forecast for the C-STAR model is straightforward to
compute. Specifically, the minimum mean square error, one-step-ahead forecast (at the
forecast origin t) bytð1Þ is obtained as

bytð1Þ ¼ Eðytþ1jFtÞ ¼ Eðy0tþ1jY0;FtÞ
Pðy0tþ1oy�jY0;FtÞ

Pðy0tþ1oy�jY0;FtÞ þ Pðy1tþ1Xy�jY1;FtÞ

þ Eðy1tþ1jY1;FtÞ
Pðy1tþ1Xy�jY1FtÞ

Pðy0tþ1oy�jY0;FtÞ þ Pðy1tþ1Xy�jY1;FtÞ
.

ð18Þ
13For example, Tiao and Tsay (1994) and Clements and Smith (1997, 1999), using GDP data, find that

threshold models can outperform their linear alternative when the economy is in a recession. By contrast, using

US GNP data Clements and Krolzig (1998) suggest that a linear autoregressive model is a relatively robust

forecasting device, even when such nonlinearities are a feature of the data. Also, Lundbergh and Teräsvirta (2002)

use unemployment series and find that a threshold model outperforms the linear one over long horizons.
14Our approach is related to the approximation method for first-order exponential autoregressive threshold

models first suggested by Al-Qassam and Lane (1989), and then extended by De Gooijer and Bruin (1998).
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4.2. An approximate method for multi-step-ahead forecasts

Next we propose an approximate method to obtain multi-step-ahead forecasts
for the C-STAR model. The approximation is that we do not evaluate all possible
combinations of expected values of the future error terms, conditional on the paths
the regimes might take through the tree of possible outcomes. The accuracy of
our approach is then evaluated by comparing these values with those obtained by using
a naive forecasting method, a Monte Carlo simulation approach, and a simple linear
specification.

4.2.1. Approximate forecasts from the full tree of future states

To obtain the h-step-ahead forecast bytðhÞ, hX2, we propose the following approximate
formulae: let

Htþh ¼
0 if Ytþh ¼ Y0;

1 otherwise;

(
W tþh ¼

0 if ytþhoy�;

1 otherwise;

(
(19)

and define mtþh ¼ m0 � ðm0 � m1ÞHtþh, Htþh ¼ A0 � ðA0 � A1ÞHtþh, and stþh ¼ ðs0�
ðs0 � s1ÞÞI Htþh. Then

EðytþhjFtÞ ¼ d0
mtþh þHtþhmtþh�1 þHtþhHtþh�1mtþh�2 þ � � � þHtþhHtþh�1

	 � � � 	Htþ2mtþ1 þHtþhHtþh�1 	 � � � 	Htþ2Htþ1zt

 !
,

	P�ðW tþh;W tþh�1;W tþh�2; . . . ;W tþ1jFtÞ, ð20Þ

where

P�ðW tþh;W tþh�1; . . . ;W tþ1jFtÞ ¼
PðW tþh;W tþh�1;W tþh�2; . . . ;W tþ1jFtÞP2h

i PðW tþh;W tþh�1;W tþh�2; . . . ;W tþ1jFtÞ
.

(21)

Much algebra goes into the calculation of these probabilities and it is available in Dueker
et al. (2003). This forecast method evaluates the full tree of future state probabilities for the
forecast horizon.

4.2.2. Naive forecasts

Finally, consider the naive method to obtain multi-step-ahead forecasts for the C-STAR
model. The naive h-step-ahead forecast bytðhÞ, hX2 is obtained as

bytðhÞ ¼ Eðytþhjbytðh� 1Þ;FtÞ

¼ Eðy0tþhjbytðh� 1Þ;Y0;FtÞ

	
Pðy0tþhoy�jbytðh� 1Þ;Y0;FtÞ

Pðy0tþhoy�jbytðh� 1Þ;Y0;FtÞ þ Pðy1tþhXy�jbytðh� 1Þ;Y1;FtÞ

þ Eðy1tþhjbytðh� 1Þ;Y1;FtÞ

	
Pðy1tþhXy�jbytðh� 1Þ;Y1;FtÞ

Pðy0tþhoy�jbytðh� 1Þ;Y0;FtÞ þ Pðy1tþhXy�jbytðh� 1Þ;Y1;FtÞ
. ð22Þ
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4.3. Forecast evaluation

We perform several Monte Carlo experiments to investigate the forecasting performance
of the three different approaches described above (the approximation method, AC-
STAR(1), the naive approach, N-STAR(1), and the Monte Carlo method, MC-STAR(1)).
We also investigate the effect of using a linear autoregressive process when the true DGP is
a C-STAR by analyzing their relative forecasting performance.15

Eqs. (14) and (16) are used as the DGP for the simulations. In all the experiments, the
sample size is T ¼ 200, the forecast horizon is h 2 f1; 2; . . . ; 7g and f�tg are i:i:d: Gaussian
random variates such that E½�t� ¼ 0 and E½�2t � ¼ 1. In each Monte Carlo replication, 50þ
T þ h data points for yt are generated setting y0 ¼ 0: In order to attenuate the effect of the
initial values, only the last T þ h data points are used for estimation and forecasting
purposes. The forecasting comparisons are made in the following way: in each Monte
Carlo replication, the first T observations are used to estimate the linear and the C-STAR
model and then calculate the one- to seven-step-ahead forecasts.16 The procedure is
repeated to generate 2500 forecast errors, for each forecasting horizon h. The forecast
evaluation is based on the mean squared percent error, MSPE(h) defined on the forecast
errors etþh ¼ ytþh � bytðhÞ, hX1 (where bytðhÞ denotes the h-step-ahead forecast at the
forecast origin t).17

The simulation results are reported in Table 6. Overall, the results show that the cost of
using the approximate method over the Monte Carlo approach, which should produce exact
forecasts in the limit, is negligible. More specifically, the MSPE criterion shows an average
gain of (i) 1% for the MC-STAR relative to the AC-STAR when using DGP(0) and
DGP(3), and (ii) 2% for DGP(1) and DGP(2). The forecasting results obtained using the
naive NC-STAR method are outperformed by those obtained using either the AC-STAR or
MC-STAR approach. Finally, while we find that the MC-STAR and AC-STAR methods
always outperform the linear specification, the results using the NC-STAR(1) are mixed.
5. Testing for the number of regimes

5.1. A modified Hansen test

Testing the hypothesis that the stochastic process under analysis can be characterized as
an AR model against the C-STAR nonlinear alternative is subject to the usual difficulties
that arise from the fact that the threshold parameter y� is not identified under the null
hypothesis of linearity, thus violating conventional regularity conditions for likelihood-
based inference (see for example Davies, 1977, 1987). In recent years, several methods for
hypothesis testing under nonstandard conditions have been developed.18
15The order of the linear autoregressive process is chosen by means of a complexity-penalized likelihood

criterion (e.g., the AIC).
16The MC-STAR multi-step forecasts are obtained by averaging over 2500 Monte Carlo replications.
17In addition we considered other measures of forecast evaluation such as forecast-encompassing tests,

evaluation criteria based on correctly predicting the sign of the change of a variable and tests that evaluate the

adequacy of density forecasts. However, since results are qualitatively similar, they are not reported and are

available upon request.
18In the context of a threshold model, for example, Tsay (1989) suggests a graphical approach (based on the use

of standardized t-ratios of an AR coefficient versus the threshold variable) to detect the number of regimes;
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Table 6

Out-of-sample forecasts: MSPE(h)

y� h AC-STAR NC-STAR MC-STAR Linear AR

0 1 0.0021 0.0021 0.0021 0.0043

2 0.0050 0.0064 0.0053 0.0075

3 0.0115 0.0136 0.0113 0.0188

4 0.0325 0.0369 0.0319 0.0405

5 0.0522 0.0612 0.0519 0.0738

6 0.0651 0.0698 0.0628 0.0932

7 0.0730 0.0755 0.0722 0.1240

1 1 0.0124 0.0124 0.0124 0.0184

2 0.0258 0.0267 0.0249 0.0302

3 0.0297 0.0328 0.0298 0.0458

4 0.0375 0.0389 0.0371 0.0533

5 0.0510 0.0565 0.0496 0.0758

6 0.0780 0.0812 0.0765 0.0976

7 0.0983 0.1032 0.0956 0.1255

2 1 0.0179 0.0179 0.0179 0.0258

2 0.0220 0.0263 0.0213 0.0369

3 0.0277 0.0313 0.0255 0.0507

4 0.0428 0.0540 0.0424 0.0651

5 0.0512 0.0661 0.0508 0.0771

6 0.0690 0.0811 0.0659 0.0860

7 0.0782 0.0918 0.0758 0.0892

3 1 0.0216 0.0216 0.0216 0.0322

2 0.0389 0.0412 0.0377 0.0398

3 0.0501 0.0533 0.0492 0.0541

4 0.0633 0.0681 0.0633 0.0712

5 0.0718 0.0755 0.0716 0.0879

6 0.0810 0.0853 0.0803 0.1002

7 0.0828 0.0893 0.0812 0.1120

Note: MSPE(h) is the out-of-sample mean-squared percent error where h is the forecast horizon from the origin t.
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Hansen (1992, 1996a) proposes a general theory for testing under such nonstandard
conditions and applies it to the class of Markov switching models. He derives a bound for
the asymptotic distribution of a suitably standardized likelihood ratio (LR) statistic by
viewing the likelihood function as an empirical process of the unknown parameters. This
asymptotic distribution is generally nonstandard, but an approximation may be obtained
via simulation. In this paper we modify the Hansen procedure and apply it to the C-STAR
model.
Let us consider the C-STAR(1) model (14) presented in Section 2. The C-STAR(1)

reduces to a standard linear autoregressive process, AR(1), under the null hypotheses that
(footnote continued)

Hansen (1996b) proposes weighted average and supremum LM tests; Gonzalo and Pitarakis (2002) use a model

selection criteria while van Dijk et al. (2003) consider using smooth transition probabilities for choosing between

m and mþ 1 thresholds.
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Table 7

Modified Hansen test

y� T ¼ 100 T ¼ 200 T ¼ 400 T ¼ 800

0 M ¼ 0 42.80 59.80 71.12 91.04

M ¼ 1 42.20 58.00 70.05 91.04

M ¼ 2 41.40 57.80 69.52 91.04

M ¼ 3 40.60 57.60 70.59 91.04

M ¼ 4 38.80 57.60 70.59 91.04

1 M ¼ 0 44.50 71.17 91.00 99.50

M ¼ 1 42.50 72.39 91.00 99.50

M ¼ 2 41.50 71.78 90.50 99.00

M ¼ 3 40.50 71.78 90.00 99.00

M ¼ 4 41.00 71.17 89.50 99.00

2 M ¼ 0 52.20 80.81 98.00 100.0

M ¼ 1 50.80 78.86 97.50 100.0

M ¼ 2 49.40 79.19 97.50 100.0

M ¼ 3 48.40 77.18 97.50 100.0

M ¼ 4 48.40 74.83 97.00 100.0

3 M ¼ 0 59.60 74.36 92.00 100.0

M ¼ 1 59.40 74.31 91.50 100.0

M ¼ 2 57.25 73.54 91.50 99.50

M ¼ 3 57.43 72.69 91.00 99.50

M ¼ 4 57.20 72.21 89.50 99.50

Note: We report the empirical rejection of the test (calculated as the fraction of the 1000 Monte Carlo trials in

which the test p-value was less than or equal to 0.05).

M is a bandwidth number. Following Hansen’s (1996a) suggestion, the test is carried using several choices of M.
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m0 ¼ m1; a
0
1 ¼ a11; and s0 ¼ s1.

19 However, even though C-STAR(1) and AR(1) are nested,
conventional statistics used to test the null hypothesis (i.e., the LR statistic and the
t-statistic) do not have standard null distributions. The reason for this nonstandard
asymptotic behavior is that the threshold parameter y� is unidentified under the single-
state null hypothesis.

Using Hansen’s notation let b ¼ fm0 � m1; a
0
1 � a11;s0 � s1g, g ¼ fy�g and y ¼ fm0; a

0
1;s0g.

By viewing the likelihood as a function of the unknown parameters and eliminating the
nuisance parameter vector h by concentration, the likelihood function can be obtained as

bLnðaÞ ¼ Lnða;byðaÞÞ ¼Xn

i¼1

liða;byðaÞÞ, (23)

where a ¼ ðb; gÞ and byðaÞ ¼ argmaxy Lnða; yÞ. Accordingly, the LR function is defined as

cLRnðaÞ ¼ bLnðaÞ � bLnð0; gÞ, (24)
19Note that this test procedure can be easily extended to accommodate multiple regimes and lags.
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while the standardized LR function is

cLR
�

nðaÞ ¼
cLRnðaÞ

VnðaÞ
1=2

, (25)

where V nða;byðaÞÞ ¼Pn
1 qiða;byðaÞÞ2 and qiða;byðaÞÞ ¼ liða;byðaÞÞ � lið0; g;byð0; gÞÞ � ð1=nÞcLRnðaÞ. Then, the standardized LR statistic is given by

cLR
�

n ¼ sup
a

cLR
�

nðaÞ. (26)

(See Appendix A for the derivation of the bound for the above standardized LR statistics.)
We conduct Monte Carlo experiments to assess the finite-sample properties of our

proposed test procedure. The DGP for the simulations are those used in the previous two
sections, defined in Eqs. (14) and (16). For each design point, we test the linear AR(1)
model against the C-STAR(1) alternative using the modified Hansen standardized LR
statistic. We use seven grid-points for both the state-dependent coefficients and the
threshold parameter and the asymptotic p-values of the tests are calculated according to
the method described above. Table 7 reports the empirical rejection probabilities of the
tests (calculated as the fraction of 1000 Monte Carlo trials in which the test p-value was less
than or equal to 0.05). The LR test seems to be powerful enough to detect C-STAR
behavior, despite the fact that our test procedure uses asymptotic p-values, which are only
an upper bound for the true p-values.
6. An empirical application: the short-term interest rate

Short-term interest rates have been widely modeled as processes subject to regime
switching, using either Markov switching or threshold models. Both approaches attempt to
capture the empirical regularity that the U.S. interest rates seem to display different
dynamics across time and are used to prevent periods such as the Volcker era from
affecting the estimation results. In this section we enquire whether the C-STAR model
proposed in the previous sections can describe adequately the U.S. short-term interest
rates. We compare the in-sample and out-of-sample performance of our C-STAR with the
Markov switching and other threshold models.
We start the empirical analysis by inquiring whether the driving process under scrutiny

(for the three-month U.S. T-bill on a quarterly basis from 1955:1 to 2005:2) can be
characterized as a C-STAR model, using the method outlined in Section 4 to compare the
linear model against the C-STAR alternative. The results of the modified Hansen test
statistic for an AR(4) against a C-STAR(4) are reported in Table 8 and show that under
the null hypothesis, the standardized LR statistic has, for all the choices of the band width
parameter M ; a p-value smaller than 0.05.20 We interpret this result as strong evidence in
favor of C-STAR since this test is conservative by construction.
20As explained in Section 5, this procedure requires evaluation of the likelihood function across a grid of

different values for the threshold parameter and for each set of regime-specific coefficients. For all cases, seven

gridpoints are used. Furthermore, the p-values are calculated using 2500 random draws from the relevant limiting

Gaussian processes and bandwidth parameter M ¼ 0; 1; . . . ; 4 (see Appendix A).

The lag order of the linear and nonlinear models is chosen using complexity-penalized likelihood criteria (e.g.,

the Akaike Information Criterion). In a related paper Dueker et al. (2006) propose the use of Bayesian procedures
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Table 8

Modified Hansen test

M ¼ 0 (0.039)

M ¼ 1 (0.041)

M ¼ 2 (0.047)

M ¼ 3 (0.050)

M ¼ 4 (0.046)

LR statistic 3.186

Notes: P-values are in brackets, M is a bandwidth number and LR is the standardized likelihood ratio statistic.

Following Hansen’s (1996a) suggestion, the test is carried using several choices of M.
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Table 9, first column, reports the maximized log-likelihood values for the C-STAR(4)
model. The estimated parameters show evidence of nonlinearity, with the estimated
volatility being almost four times larger in regime 1 than in regime 0. Furthermore, the ML
estimates suggest that the roots of the autoregressive regime-dependent processes are
higher for regime 0 than for regime 1 (0.985 vs 0.962). The portmanteau Q statistics for the
standardized residuals indicate that the fitted C-STAR model is well specified, having
standardized residuals that exhibit no signs of either linear or nonlinear dependence.

We assess the stability of the model by numerical simulation. We calculate the skeleton
of the model and find that there is only one stable fixed point, yL ¼ 3:651: In the top panel
of Fig. 4 we plot the values taken by the skeleton and Gðyskeleton

t�1 Þ along with the values of
the estimated threshold, y� ¼ 9:767 and fixed point. The bottom panels show the three-
month short-term interest rates and the evolution of the mixing function, Gðyt�1Þ, which
suggest that the regimes are highly persistent and that the separation is mostly associated
with the Volcker period when the Federal Reserve operating instrument, between 1979 and
1982, was nonborrowed reserves.

We compare the C-STAR(4) with three other nonlinear models that have been proposed
in the literature to characterize the short-term interest rate. Table 9 presents estimates of
the logistic (L-STAR(4)), the exponential (E-STAR(4)) smooth transition model, along
with estimates of the Markov switching (MS-AR(4)) model.21 Starting with the
L-STAR(4), we find that the estimated threshold is close in magnitude to that obtained
using the C-STAR(4) (respectively, 9.278 vs 9.767) and that the standardized residuals
exhibit no signs of serial correlation. The estimated threshold value (11.995) for the E-
STAR(4) is comparatively higher with residuals showing clear signs of nonlinear
dependence. The plots of the estimated transition functions versus time, presented in
Fig. 5 show that the separation of the regimes for the L-STAR(4) is very similar to the
separation obtained using the C-STAR(4). On the other hand the transition function for
the E-STAR(4) is comparatively less persistent. Turning to the MS-AR(4) model, the
(footnote continued)

to choose both the number of regimes and the number of lags for the C-STAR(p) model. Based on the same data

used here, that procedure selects four lags and two regimes.
21For the L-STAR and E-STAR models, the appropriate lag order (p ¼ 4) and the delay parameter (d ¼ 1) in

the threshold variable yt�d are selected as suggested in Tong (1990). For the MS-AR model the lag order (p ¼ 4) is

selected on the basis of AIC and SBC criteria and by assessing whether the residuals of the selected model are

uncorrelated. ML estimation is used on all the models.
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Table 9

Maximum-likelihood estimates of STAR and Markov models

C-STAR L-STAR E-STAR MS-AR

m0 0.0526 m0 2.3689 m0 3.0550 m0 5.2505

(0.9559) (3.5148) (3.5146) (0.9401)

m1 0.1191 m1 0.1522 m1 0.2110 m1 8.1877

(0.1155) (0.1245) (0.1127) (0.4051)

a01 1.1196 a01 1.0976 a01 1.0608 a1 1.1002

(0.0680) (0.0741) (0.0645) (0.0706)

a02 �0.2062 a02 �0.1696 a02 �0.1476 a2 �0.2658

(0.1010) (0.1062) (0.0944) (0.1045)

a03 0.2199 a03 0.2069 a03 0.2238 a3 0.4069

(0.0951) (0.1034) (0.0767) (0.0948)

a04 �0.1477 a04 �0.1581 a04 �0.1745 a4 �0.2884

(0.0607) (0.0688) (0.0548) (0.0620)

a11 0.5137 a11 0.3842 a11 0.2298 – –

(0.2370) (0.3389) (0.3436)

a12 0.0213 a12 �0.0438 a12 �0.0900 – –

(0.2629) (0.2415) (0.2591)

a13 0.6502 a13 0.6183 a13 1.1044 – –

(0.2439) (0.2572) (0.3831)

a14 �0.2227 a14 �0.1820 a14 �0.5591 – –

(0.2730) (0.2764) (0.3934)

s0 0.5714 s0 0.5807 s0 0.5834 s0 0.5823

(0.0340) (0.0379) (0.0341) (0.0309)

s1 2.0474 s1 2.0513 s1 1.9177 s1 2.6048

(0.2923) (0.3770) (0.3732) (0.5488)

y� 9.7666 c 9.2784 c 11.9947 p 0.8417

(0.4427) (0.7528) (0.5283) (0.1015)

– – g 1.4256 g 0.1249 q 0.9895

(0.5783) (0.0474) (0.0074)

Qð10Þ 0.8701 Qð10Þ 0.8558 Qð10Þ 0.7917 Qð10Þ 0.9457

Qð20Þ 0.6353 Qð20Þ 0.6144 Qð20Þ 0.2364 Qð20Þ 0.6021

Q2ð10Þ 0.2520 Q2ð10Þ 0.8442 Q2ð10Þ 0.0000 Q2ð10Þ 0.7647

Q2ð20Þ 0.5163 Q2ð20Þ 0.9520 Q2ð20Þ 0.0001 Q2ð20Þ 0.2947

log L �201.209 log L �202.252 log L �200.675 log L �209.022

AIC 428.418 AIC 432.504 AIC 429.350 AIC 438.044

SBC 432.387 SBC 436.779 SBC 433.625 SBC 441.097

Note: The STAR models are defined as yt ¼ Gð:Þy0t þ ð1� Gð:ÞÞy1t, with yjt ¼ mj þ
P4

i¼1 a
j
iyt�i þ sj�t, j ¼ 0; 1

with the different functions Gð:Þ characterizing the three following models: C-STAR: Gð:Þ ¼

Fððy��m0�
P4

i¼1
a0

i
yt�i Þ=s0Þ

Fððy��m0�
P4

i¼1
a0

i
yt�i Þ=s0Þþð1�Fððy��m1�

P4

i¼1
a1

i
yt�i Þ=s1ÞÞ

; L-STAR: Gð:Þ ¼ ð1þ expf�gðyt�1 � cÞgÞ�1; E-STAR:

Gð:Þ ¼ 1� expf�gðyt�1 � cÞ2g. The Markov switching model is defined as: MS-AR: yt � mst
¼
P4

i¼1 aiðyt�i �

mst�i
Þ þ sst �t; with Pðst ¼ 0jst�1 ¼ 0Þ ¼ p and Pðst ¼ 1jst�1 ¼ 1Þ ¼ q: The figures in parentheses are autocorrela-

tion- and heteroskedasticity-consistent standard errors. QðkÞ ½Q2ðkÞ� is the p-value of the residual [squared-

residual] Ljung–Box statistic at lag k.
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Fig. 4. Estimated short term interest rates using a C-STAR model.
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estimated filtered probabilities single out the Volcker period as a different regime.22 We
find, using the Akaike Information Criterion (AIC) and the Schwarz Bayesian Criterion
(SBC), that the C-STAR(4) is the preferred model.23

We finally compare the out-of-sample forecasting performance of the proposed
C-STAR(4) model with that of alternative linear and nonlinear models. For the C-STAR(4)
22We have chosen to use the Markov switching model of Hamilton (1988), which does not allow the

autoregressive parameters to switch, as it is the most popular univariate Markov switching parameterization.
23See Kapetanios (2001), Psaradakis and Spagnolo (2003, 2006) for the use of selection criteria for nonlinear

models.
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model, we based the forecasts on the approximation method, AC-STAR(4), described in
Section 4 and on the Monte Carlo method, MC-STAR(4).24 For the MS-AR(4) and linear
AR(4) we calculated multi-step-ahead forecasts analytically, while for the E-STAR(4) and
24Given the poor results obtained using N-STAR(4) approach in the simulation experiment carried out in

Section 4, we exclude this method from the empirical investigation.
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Table 10

Out-of-sample forecasts: MSPE(h)

h AC-STAR MC-STAR L-STAR E-STAR MS-AR Linear AR

1 0.0190 0.0190 0.0359 0.0426 0.0344 0.0315

2 0.0580 0.0602 0.1361 0.1780 0.0686 0.0991

3 0.1145 0.1162 0.2213 0.3810 0.1190 0.1809

4 0.2076 0.2119 0.4569 0.7708 0.1929 0.3455

5 0.3122 0.3169 0.7165 1.2297 0.2911 0.5238

6 0.4261 0.4306 1.0382 1.8349 0.5757 0.7087

7 0.5530 0.5625 1.4311 2.4816 1.9564 0.9494

Note: MSPE(h) is the out-of-sample mean squared percent error where h is the forecast horizon from the origin t.

M.J. Dueker et al. / Journal of Econometrics 141 (2007) 517–547 543
the L-STAR(4) they are obtained via Monte Carlo simulation techniques.25 The
comparisons are based on series of recursive forecasts computed in the following way:
for the interest rate time series fwtg

T
t¼1, the linear and nonlinear models are fitted to the sub-

series fwtg
T�h̄�n
t¼1 , where h̄ ð¼ 7Þ is the longest forecasting horizon under consideration, n

ð¼ 80Þ is the number of forecasts and T ð¼ 201Þ is the sample size.26 Using t ¼ T � h̄� n

as the forecast origin, a sequence of h-step-ahead forecasts are generated from the fitted
models for h 2 f1; . . . ; h̄g. The forecast origin is then rolled forward one period to
t ¼ T � h̄� nþ 1, the parameters of the forecast models are re-estimated and another
sequence of one-step-ahead to h̄-step-ahead forecasts is generated. The procedure is
repeated until n forecasts are obtained for each h 2 f1; . . . ; h̄g, which are then used to
compute measures of forecast performance for each forecast horizon. All the results favor
the C-STAR(4) in particular when using the AC-STAR(4) forecasting approach.
A possible explanation of this result is that the mixing function of the C-STAR gives a
probability forecast of the latent regime-specific variable at tþ h while the other STAR
forecasting approaches would evaluate the mixing function at tþ h� 1. This difference
may be considerable in relatively nonpersistent regimes.

Table 10 shows that, based on the MSPE criterion, there is an average gain of almost
70% over the linear model when using the approximate AC-STAR(4). The gain decreases
to almost 65% when the MC-STAR(4) is used. Turning to the other smooth transition
models, the E-STAR(4) is always outperformed by the linear model, with the largest loss
(over 250%) at the 7-step-ahead horizon.27 The results are qualitatively similar for the
L-STAR(4), with an average loss over the linear model of almost 20%. On the other hand,
the results for the forecasts using the MS-AR(4) are better than those obtained using the
linear model except for the 1- and 7-step-ahead forecasting horizons.

In summary, the results presented in this section are encouraging since they suggest that,
for the data under scrutiny, the C-STAR model seems to not only successfully characterize
the data but also, and perhaps more importantly, to have a good forecasting performance.
25See Granger and Teräsvirta (1993).
26Using quarterly data, the value of h̄ ¼ 7 is associated with a two-year forecasting horizon and n ¼ 80 is

associated with a 20-year forecast evaluation period.
27One possible reason for the poor empirical forecasting performance of the E-STAR model is (despite the fact

that the fit of the model measured by the AIC and SBC criteria is similar to that of the C-STAR) that the

estimated threshold for the E-STAR model is quite different from those obtained using the other STAR models.

This might affect the regime-specific weights in the forecast.
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The forecasting results are particularly noteworthy because one of the major weaknesses of
many existing nonlinear models is their relatively poor out-of-sample performance.

7. Conclusions

In this paper we propose a new class of contemporaneous smooth transition threshold
autoregressive (C-STAR) model, in which the probability that a latent variable (the current
value of the regime-specific autoregressive process) exceeds a threshold value determines
the regime weights. We argue that for this reason, the contemporaneous model seems to be
well suited to rational expectations applications (and pricing exercises) in that it allows the
regimes not to be predetermined. We discuss the properties of the model and evaluate its
finite-sample ML performance. Furthermore, we propose a procedure to determine the
number of regimes and evaluate the multiple-step-ahead forecasting performance of the
model. Finally, an empirical application to the short-term interest rate shows that the
proposed model is capable of outperforming some competing alternative nonlinear
models, especially in terms of relative out-of-sample forecasting performance.

Appendix A. Modified Hansen test

For completeness we present the derivation of the bound for the standardized LR

statistics. This relies on a few fairly weak regularity conditions:

Condition 1. supa
ffiffiffi
n
p
kDðaÞk ¼ Opð1Þ; where DðaÞ ¼ byðaÞ � yðaÞ.

Condition 2. supa;y
ffiffiffi
n
p
kMnða; yÞk ¼ OpðnÞ; where Mnða; yÞ ¼ q2

qyqy0 Lnða; yÞ.

Condition 3. Q�nðaÞ ) Q�ðaÞ, where Q�nðaÞ ¼
Q�nðaÞ

VnðaÞ�1=2
and bQ�nðaÞ ¼ bQ�nðaÞ

VnðaÞ�1=2
are centered

stochastic process with bQ�nðaÞ ¼ V nðaÞ
�1=2
fcLRnðaÞ � E½LnðaÞ � Lnð0; gÞ�g; and Q�ðaÞ ¼

QðaÞ
V ðaÞ�1=2

is a Gaussian process with covariance function K�ða1; a2Þ ¼
Kða1;a2Þ

V ða1Þ
1=2V ða2Þ

1=2, where

Kða1; a2Þ ¼ lim
n!1

1

n
E½Qnða1ÞQnða2Þ� and

QnðaÞ ¼ ½LnðaÞ � Lnð0; gÞ� � E½LnðaÞ � Lnð0; gÞ�.

Condition 1 states that byðaÞ is consistent for yðaÞ at rate ffiffiffi
n
p

, uniformly in a; condition 2
states that the matrix of second derivatives with respect to y is well behaved, while
condition 3 states that Q�nðaÞ satisfies an empirical process law.

Theorem. Under conditions 1–3

PrfcLR
�

nXxgpPr sup
a

bQ�nðaÞXx

� �
�!
n!1

Prfsup Q�Xxg, (27)

Proof. See Hansen (1992).

This result provides a bound for the standardized LR statistics in terms of the
distribution of the random variable supQ�, which is generally nonstandard. The
covariance function K�ða1; a2Þ (which completely characterizes Q�ðaÞ) can be consistently
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estimated by

K�ða1; a2Þ ¼
bKnða1; a2Þ

V ða1Þ
1=2V ða2Þ

1=2
, (28)

where bKnða1; a2Þ is equal toXn

i¼1

qiða1;byða1ÞÞqiða2;byða2ÞÞ þXM
k¼1

wkM

X
1pipn�k

qiða1;byða1ÞÞqiþkða2;byða2ÞÞ
"

þ
X

1þkpipn

qiða1;byða1ÞÞqi�kða2;byða2ÞÞ
#
, ð29Þ

wkM ¼ 1� jkj=ðM þ 1Þ is the Bartlett kernel, and M is a bandwidth number.28 It follows
that by repeated i:i:d: draws of Gaussian processes with covariance function bK�nða1; a2Þ, it is
possible to obtain (approximately) the distribution supa Q� (and hence critical values and/or
p-values for a test based on cLR

�

nðaÞ). To obtain draws from the required family of Gaussian
processes, Hansen (1992, 1996a) suggests to generate a random sample fuig

nþM
i¼1 of Nð0; 1Þ

variables and then construct

fLR
�
ðaÞ ¼

PM
k¼0

Pn
i¼0qiða;byðaÞÞuiþkffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þM
p

V nðaÞ
1=2

. (30)

Then, conditional on the data, fLR
�
ðaÞ is a mean zero Gaussian process with exact

covariance function K�nða1; a2Þ, and the latter is an asymptotic approximation to K�ða1; a2Þ.
Since we need to concentrate out the identified nuisance parameter y; the constrained

likelihood needs to be optimized for each value of a ¼ ðb; gÞ: A practical way to evaluate
the maximal statistics is to form a grid search over a relatively small number of values of a.
For every value of a at which the constrained likelihood is optimized, the sequence
fqiða;byðaÞÞg is obtained, and from these numbers both the modified LR statistics and its
asymptotic distribution are calculated.
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Teräsvirta, T., 1994. Specification, estimation, and evaluation of smooth transition autoregressive models. Journal

of the American Statistical Association 89, 208–218.



ARTICLE IN PRESS
M.J. Dueker et al. / Journal of Econometrics 141 (2007) 517–547 547
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