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Skyrmions in the presence of isospin chemical potential
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Abstract

We analyze the existence of localized finite energy topological excitations on top of the perturbative pion vacuum within the Skyrme model at
finite isospin chemical potential and finite pion mass. We show that there is a critical isospin chemical potential μc

I
above which such solutions

cease to exist. We find that μc
I

is closely related to the value of the pion mass. In particular for vanishing pion mass we obtain μc
I

= 0 in
contradiction with some results recently reported in the literature. We also find that below μc

I
the skyrmion mass and baryon radius show, at least

for the case of the hedgehog ansatz, only a mild dependence on the isospin chemical potential.
© 2007 Elsevier B.V. All rights reserved.

PACS: 2.39.Dc; 25.75.Nq
Hadronic systems with vanishing baryon chemical poten-
tial μB and finite isospin chemical potential μI are unstable
with respect to weak decays. However, if we are interested in
the dynamics of the strong interaction alone, we can disregard
the relative slow electroweak effects and consider them as sta-
ble. Moreover, although there are not yet precise lattice QCD
calculations at finite baryon density due to the Fermion sign
problem, it is in principle possible to perform lattice simulations
at finite isospin density [1]. These remarks have led several
groups to study the behavior of strongly interacting matter at
μB = 0 and finite μI . Effective Lagrangian analysis showed
that there is a phase transition from normal phase to pion su-
perfluidity at a critical isospin chemical potential which turns
out to be equal to the pion mass in the vacuum [2]. This has
been confirmed by lattice QCD calculations [3], random ma-
trix method analysis [4], etc. Studies at finite temperature have
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been also performed [5]. Given these results it is of consider-
able interest to investigate on the behavior of baryon properties
at finite isospin chemical potential. One model which is well
suited to perform these studies is the Skyrme model. In the
Skyrme model [6] and its generalizations, baryons arise as topo-
logical excitations of a non-linear chiral Lagrangian written in
terms of meson fields. These type of models have been quite
successful in describing the properties of octet and decouplet
baryons (see e.g. Ref. [7]). In a series of recent articles [8]
the skyrmion properties in the presence of the isospin chemi-
cal potential have been analyzed. It has been found that, in the
case of vanishing pion mass, there is a critical chemical poten-
tial μc

I ≈ 223 MeV above which stable soliton solutions on top
of the perturbative pion vacuum cease to exist. Moreover, ac-
cording to Ref. [8] the skyrmion mass vanishes at μ = μc

I . In
this Letter we re-examine the issue of the skyrmion stability
for finite isospin chemical potential considering the possibility
of having a finite pion mass. We show that although there is in-
deed a critical isospin chemical potential μc

I , its value is closely
related to the value of the pion mass, and for vanishing pion
mass one has μc = 0. Moreover we find that, at least within
I
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the spherically symmetric hedgehog ansatz, the skyrmion mass
and baryon radius remain rather stable up to the critical isospin
chemical potential.

We start by considering the Lagrangian of the SU(2) Skyrme
model with quartic term stabilization and finite pion mass. It is
given by

L= −f 2
π

4
Tr

{
LαLα

} + 1

32e2
Tr

{[Lα,Lβ ]2}
(1)+ m2

πf 2
π

4
Tr

{
U + U† − 2

}
.

Here, fπ is the pion decay constant whose empirical value
is f

emp
π = 93 MeV, e is the so-called Skyrme parameter and

mπ is the pion mass which we will take at its empirical value
m

emp
π = 139 MeV. In our numerical calculations below we will

use the standard set of values fπ = 54 MeV and e = 4.84 which
leads to the empirical value of the nucleon and Δ masses within
the rigid rotor approximation [9]. It should be stressed, how-
ever, that our main conclusions are expected to be independent
of this particular choice of parameters. In Eq. (1), as usual, U

represents the SU(2) chiral field and the Maurier–Cartan oper-
ator Lα is defined by Lα = U†∂αU .

The isospin chemical potential μI is introduced by perform-
ing the replacement

(2)∂αU −→ ∂αU − i
μI

2
[τ3,U ]gα0,

where gαβ is the metric tensor in Minkowski space and τ3 is the
third Pauli matrix. This leads to a modified Lagrangian which
reads

L(μI ) = L+ μ2
I f

2
π

16
Tr

{
ω2} − μ2

I

64e2
Tr

{[ω,Lα]2}
(3)+ iμI f

2
π

4
Tr{ωL0} − iμI

8e2
Tr

{
ωLα[L0,Lα]}

where ω = U†τ3U − τ3.
In what follows we will be interested in static soliton config-

urations. The corresponding soliton mass reads

M(μI ) = −
∫

d3x

[
f 2

π

4
Tr{LiLi} + 1

32e2
Tr

{[Li,Lj ]2}

+ m2
πf 2

π

4
Tr

{
U + U† − 2

}
(4)+ μ2

I f
2
π

16
Tr

{
ω2} + μ2

I

64e2
Tr

{[ω,Li]2}].

It is not hard to see that the terms proportional to μ2
I are not

invariant under isospin rotations. Namely, the isospin chemical
potential introduces a preferred direction in isospin space which
is expected to lead to an axially deformed soliton configuration.
For the time being we will assume that such deformations are
small for the range of values of μI considered here. Therefore
we introduce the usual spherically symmetric hedgehog ansatz
for the baryon number B = 1 configuration

(5)UH = exp
[
i �τ · r̂F (r)

]
.

In this case we obtain1

MH (μI ) = f 2
π

2

∫
d3x

[
F ′2 + 2

s2

r2

(
1 + F ′2

e2f 2
π

)

+ 1

e2f 2
π

s4

r4
+ 2m2

π (1 − c)

(6)− 2

3
μ2

I s
2
(

1 + F ′2

e2f 2
π

)
− 2

3
μ2

I

s4

e2f 2
π r2

]
,

where s = sinF and c = cosF . The minimization of MH (μI )

leads to the following Euler–Lagrange equation for the soliton
profile F ,

F ′′
[

1 + 2s2

e2f 2
π r2

(
1 − μ2

I r
2

3

)]
+ 2

F ′

r

(
1 − 2μ2

I s
2

3e2f 2
π

)

− 2sc

r2

(
1 − F ′2

e2f 2
π

)(
1 − μ2

I r
2

3

)

(7)− 2s3c

e2f 2
π r4

(
1 − 2

3
μ2

I r
2
)

− m2
πs = 0.

As usual this differential equation is supplemented by the
boundary conditions corresponding to B = 1 topological ex-
citations on top of the perturbative pion vacuum, F(0) = π and
F(∞) = 0. The associated baryon radius is given by

(8)rB(μI ) =
(

− 2

π

∞∫
0

dr r2s2F ′
)1/2

.

Before presenting the numerical soliton solutions we will an-
alyze the behavior of the profile F(r) for large distances. Given
the boundary conditions we can linearize Eq. (7) in that limit.
We obtain

(9)F ′′ + 2F ′

r
−

(
m2

π − 2

3
μ2

I + 2

r2

)
F = 0.

This equation implies that localized finite energy topological
excitations on top of the perturbative pion vacuum exist only for
μI � μc

I , where μc
I = √

3/2mπ . As it can be shown by solving
Eq. (9), when μI > μc

I the profile F(r) behaves as a spherical
Bessel function at large distances, implying that the usual cri-
teria for having localized finite energy solutions [10] fail to be
satisfied. In fact, we find that at large distances the correspond-
ing energy density ε(r) defined by MH (μI ) = ∫ ∞

0 dr r2ε(r) is
given by

(10)ε(r) ∼ sin
(√

2/3μ2
I − m2

πr
)
/r2

which is clearly non-integrable. The situation is quite similar to
the one found long time ago in the study of the stability of the
skyrmion under spin–isospin rotations [11].

In Fig. 1 we plot the numerical solutions of Eq. (7) for some
chosen values of μI . There we can clearly note the oscilla-
tory behavior of F(r) for μI > μc

I . For μI < μc
I , the skyrmion

1 We have noticed the existence of some misprints in Eqs. (8)–(14) of sec-
ond reference in [8]. The correct corresponding expressions can be obtained by
taking the chiral limit of our Eqs. (6), (7).
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Fig. 1. (Color online.) Hedgehog profiles F(r) for various values of the chem-
ical potential μI . Note that localized solutions only exist for μI /μc

I
� 1.

Although always oscillatory at large distances, the detailed form of F(r) for
μI /μc

I
> 1 depends on the maximum integration radius Rmax. Here we use

Rmax = 100 fm. Of course, for μI /μc
I

� 1 the profile function as well as the
soliton properties are independent of Rmax, provided it is sufficiently large.

Fig. 2. (Color online.) Soliton mass (full line) and baryon radius (dashed line)
as a function of the isospin chemical potential μI for the spherically sym-
metric hedgehog ansatz and taken with respect to their corresponding values
at μI = 0. For our parameter choice such values are MH (0) = 864 MeV and
rB(0) = 0.68 fm [9].

is exponentially localized. Finally, when μI = μc
I the solution

displays a 1/r2 large distance behavior which is typical of the
localized pion massless case.

In the region where localized solutions exist we can study
the behavior of the soliton mass and baryon radius as a function
of the isospin chemical potential. This is shown in Fig. 2. We
observe that as μI increases, the soliton mass decreases while
the radius increases. However, these effects are not too large
(around 15% or less at μI = μc

I ), and MH (μI ) never vanishes
in such region.
As mentioned at the beginning of this Letter, general argu-
ments indicate that in the meson sector there is a phase tran-
sition from the normal phase (perturbative pion vacuum) to a
pion condensed phase at μc

I = mπ . Comparing with the result
obtained above we note that in the soliton sector it appears an
extra factor

√
3/2 in the corresponding critical value. A similar

factor has been found in the study of the stability of the hedge-
hog skyrmion under spin–isospin rotation [12]. As in that case,
it reflects the fact that in the hedgehog approximation possible
pion excitations are assumed to be spherical while, as already
mentioned, the presence of the isospin chemical potential is ex-
pected to induce axially symmetric deformations. In order to
account for this fact we introduce a general axial ansatz which,
in cylindrical polar coordinates (ρ,φ, z), is given by [12,13]

(11)Uax = ψ3 + iτ3ψ2 + iψ1(τ1 cosφ + τ2 sinφ).

Here, ψa are the components of a unit vector �ψ(ρ, z) that is
independent of the angular variable φ. The boundary condi-
tions for finite energy solutions are that �ψ → (0,0,1) as ρ2 +
z2 → ∞ and that on the symmetry axis ρ = 0 the equations
ψ1 = 0 and ∂ρψ2 = ∂ρψ3 = 0 must be satisfied. Using this
ansatz, the mass for the static soliton configuration reads

Max(μI ) = πf 2
π

∫ [
∂i

�ψ · ∂i
�ψ
(

1 + 1

e2f 2
π

ψ2
1

ρ2

)

+ 1

e2f 2
π

|∂ρ
�ψ × ∂z

�ψ |2 + ψ2
1

ρ2
+ 2m2

π (1 − ψ3)

(12)− μ2
Iψ

2
1

(
1 + 1

e2f 2
π

∂i
�ψ · ∂i

�ψ
)]

ρ dρ dz,

where i = ρ, z. Minimizing this expression we obtain a set of
coupled equations for the two independent functions that we
take to be ψ1(ρ, z) and ψ2(ρ, z). Unfortunately the resolution
of these equations implies a rather time-consuming numerical
task. From the results obtained in the case of spin–isospin ro-
tations [12], soliton properties are not expected to be too much
affected by the axial deformations provided μI � μc

I . Thus we
postpone this numerical analysis for a future work. It is impor-
tant, however, to consider the linearized form of the equations
for ψ1 and ψ2, which are valid at large distances. They read

∂i∂iψ1 −
(

m2
π − μ2

I + 1

ρ2

)
ψ1 = 0,

(13)∂i∂iψ2 − m2
πψ2 = 0.

Thus, once axially symmetric configurations are considered, we
have indeed μc

I = mπ . Namely, for μI � μc
I the behavior of the

deformed skyrmion mass and radius as a function of the isospin
chemical potential is expected to be very similar to that shown
in Fig. 2, the only important difference being that the curve will
end at μI/mπ = 1 instead of μI/mπ = √

3/2.
In conclusion, we have re-examined the behavior of the

skyrmion properties as a function of the isospin chemical po-
tential μI . We have found that there is, indeed, a critical value
of μI above which localized finite energy topological excita-
tions on top of the perturbative pion vacuum cease to exist.
Such critical value is closely related to the value of the pion
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mass. For the spherically symmetric hedgehog ansatz we find
μc

I = √
3/2mπ , while when axially symmetric deformations

are allowed we obtain μc
I = mπ as expected from general ar-

guments in the meson sector. As in such sector [2], when μI

exceeds this critical value it is energetically favorable to create
pion excitations which, in turns, lead to a pion condensed phase.
This implies that for μI > μc

I one has to look for soliton excita-
tions on top of a pion condensed vacuum. These results disagree
with previous works [8] which, having overlooked the oscilla-
tory behavior reported here, quote μc

I ≈ 223 MeV in the chiral
limit (mπ = 0). Moreover, for μI � μc

I we find only a mild de-
pendence of the soliton mass and radius on μI . In particular, in
contrast to the results in Ref. [8] our values of the soliton mass
do not vanish for any value of μI � μc

I . It should be noted that
these analyses of the soliton mass and radius dependence on μI

have been performed using the spherically symmetric hedgehog
ansatz. Although for that range of values of μI the axially sym-
metric deformations are expected to have only a minor effect on
this dependence, the numerical resolution of the corresponding
equations is required in order to confirm this expectation. This
will also allow us to explore the region μI > μc

I and, in partic-
ular, analyze the nature of the transition at μI = μc

I . We hope
to report on these issues in forthcoming publications.
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