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Abstract

Hard X-ray-emitting (δ-type) symbiotic binaries, which exhibit a strong hard X-ray excess, have posed a challenge
to our understanding of accretion physics in degenerate dwarfs. RT Cru, which is a member of the δ-type
symbiotics, shows stochastic X-ray variability. Timing analyses of X-ray observations from XMM-Newton and
NuSTAR, which we consider here, indicate hourly fluctuations, in addition to a spectral transition from 2007 to a
harder state in 2012 seen with Suzaku observations. To trace the nature of X-ray variability, we analyze the
multimission X-ray data using principal component analysis (PCA), which determines the spectral components that
contribute most to the flickering behavior and the hardness transition. The Chandra HRC-S/LETG and XMM-
Newton EPIC-pn data provide the primary PCA components, which may contain some variable emission features,
especially in the soft excess. Additionally, the absorbing column (first order with 50%), along with the source
continuum (20%), and a third component (9%)—which likely accounts for thermal emission in the soft band—are
the three principal components found in the Suzaku XIS1 observations. The PCA components of the NuSTAR data
also correspond to the continuum and possibly emission features. Our findings suggest that the spectral hardness
transition between the two Suzaku observations is mainly due to changes in the absorbing material and X-ray
continuum, while some changes in the thermal plasma emission may result in flickering-type variations.

Unified Astronomy Thesaurus concepts: Symbiotic binary stars (1674); Stellar accretion (1578); X-ray sources
(1822); Time series analysis (1916); Principal component analysis (1944)

1. Introduction

Symbiotic systems refer to binary stars that are characterized
by the presence of a hot degenerate core accreting matter from
a cool red giant star (Paczynski & Rudak 1980; Kenyon &
Webbink 1984; Belczyński et al. 2000). They exhibit soft or
supersoft thermal X-ray emission (Muerset et al. 1997; Luna
et al. 2013) dominated by blackbody-like or bremsstrahlung
radiation (Imamura & Durisen 1983). However, a small group
of them have been observed to emit an extreme hard X-ray
excess above 2.4 keV (Tueller et al. 2005a; Bird et al. 2007;
Kennea et al. 2009; Eze 2014). These are the hard X-ray-
emitting symbiotics or δ-type sources according to the
classification scheme by Luna et al. (2013). They could be
progenitors of type Ia supernovae owing to the possible
presence of massive white dwarfs (Kennea et al. 2009). Among
this group, notable systems can be mentioned: RT Cru (Luna &
Sokoloski 2007; Ducci et al. 2016; Luna et al. 2018; Danehkar
et al. 2021), CH Cyg (Wheatley & Kallman 2006; Mukai et al.
2007; Toalá et al. 2023), T CrB (Luna et al. 2008; Zhekov &
Tomov 2019), SS73 17 (CD–57 3057; Smith et al. 2008; Eze
et al. 2010), and MWC 560 (Stute & Sahai 2009; Lucy et al.
2020). The discovery of this particular group presents a
challenge to our knowledge about accretion physics in white
dwarfs due to the strong hard X-ray emission (Luna &
Sokoloski 2007; Kennea et al. 2009). Recently, Toalá (2024)
proposed a disk-like model to explain the X-ray properties of
symbiotics, where δ-type sources have an accretion disk near
the edge. In addition, radiative transfer simulations of X-ray

photons by Toalá (2024) implied that the δ-type group is likely
related to low-accreting degenerate cores with high-temper-
ature plasma (>1 keV) within the boundary layer between the
inner edge of the accretion disk and the white dwarf surface.
Some hard X-ray-emitting symbiotics seem to produce

distinctive soft and hard thermal plasma emissions: CH Cyg
with plasma temperatures of 0.2, 0.7, and 7.3 keV (Ezuka et al.
1998), SS73 17 with temperatures of 1.12 and 9.9 keV (Eze
et al. 2010), and MWC 560 showing thermal emissions with
temperatures of 0.18 and 11.26 keV (Stute & Sahai 2009).
Symbiotic stars with distinctive soft and hard X-ray thermal
components are referred to as the β/δ-type group (Luna et al.
2013). Previous studies have also identified the presence of jets
in some of them, namely CH Cyg (Galloway & Sokoloski 2004;
Karovska et al. 2007, 2010) and MWC 560 (Tomov et al. 1992;
Schmid et al. 2001; Lucy et al. 2018). The soft thermal
emission found in these systems might have a potential link to
the shock region created by either a jet or the interaction of a
wind colliding with the surrounding material (Stute &
Sahai 2009). According to Toalá (2024), the soft X-ray
emission of a two-temperature plasma model can be obscured
by the disk, so extended emission from jets, colliding winds,
and/or hot bubbles is likely responsible for the soft component
in β/δ sources. The soft X-ray component could originate from
colliding stellar winds (CSWs), though a different mechanism
such as accretion may also be responsible for the X-ray
emission seen in some epochs in the β-class symbiotic star AG
Peg (Zhekov & Tomov 2016).
Although the previous X-ray data of RT Cru revealed only

highly absorbed, hard thermal plasma emission of 8.6 keV
(Luna & Sokoloski 2007), a recent Bayesian statistical analysis
of the latest Chandra observations also suggested the possible
existence of heavily obscured, soft plasma emission with a
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temperature of ∼1.3 keV in addition to a hard thermal
component with a temperature of 9.6 keV (Danehkar et al.
2021). However, a recent statistical method based on
differences between the backgrounds from the smooth and
likelihood-ratio tests could not robustly put constraints on low-
energy emission lines of the soft thermal emission, but yielded
an upper confidence limit of 1 keV on the soft plasma
temperature (Zhang et al. 2023). A dramatic decline in optical
emission lines and hard X-ray emission in RT Cru observed to
have occurred in 2019 was attributed to a strong decline in
accretion activity (Pujol et al. 2023). Nevertheless, high X-ray
variability of RT Cru indicates that some dense materials along
the line of sight could potentially block a large portion of the
thermal emission (Danehkar et al. 2021). Accordingly, the soft
thermal emission component (∼1 keV) might be heavily
obscured by such material, making it difficult to detect with
significant statistics.

The X-ray variability of RT Cru recorded with the Chandra
telescope has been recently investigated using hardness ratio
analysis and spectral modeling (Danehkar et al. 2021). To
further evaluate the nature of the X-ray variability in this δ-type
symbiotic star and the soft thermal plasma emission suggested
by Danehkar et al. (2021), we conduct further timing analyses
on the archival data taken with XMM-Newton, Suzaku, and
NuSTAR, in addition to comprehensive eigenvector-based
multivariate analyses of the historical X-ray data of the
Chandra and other telescopes. Section 2 describes our
reduction of time-sliced data required for implementing
principal component analysis (PCA). In Section 3, we
investigate the X-ray light curves and hardness ratios.
Section 4 presents our principal components determined with
PCA, as well as simulated PCA spectra, and is followed by
discussions in Section 5 and a conclusion in Section 6.

2. Data Reduction for PCA

RT Cru was observed using the X-ray Imaging Spectrometer
(XIS; Koyama et al. 2007) and the Hard X-ray Detector (HXD;
Takahashi et al. 2007) on board Suzaku (Mitsuda et al. 2007) in
2007 and 2012, the EPIC-pn instrument (Strüder et al. 2001)
aboard the XMM-Newton telescope (Jansen et al. 2001) in
2019, the “A” and “B” focal plane modules (FPMs) on the
Nuclear Spectroscopic Telescope Array (NuSTAR) satellite
(Harrison et al. 2013) in 2016, and the Low Energy
Transmission Grating (LETG; Brinkman et al. 2000) on the
High Resolution Camera Spectrometer (HRC-S; Murray et al.
2000) of the Chandra X-ray Observatory (Weisskopf et al.

2000, 2002) in 2015. The observations are summarized in
Table 1, which includes the instrument and its configuration,
observation identification number, start and end times (UTC),
exposure time (ks), and total counts and count rate (counts s−1)
of each observation. To implement eigenvector-based multi-
variate statistical analysis such as PCA of a variable X-ray
source, it is necessary to split each data set into a time series of
spectral data at fixed intervals of 10 ks.
We downloaded the Chandra HRC-S/LETG event data from

the Chandra data archive and reprocessed them using the
chandra_repro tool from the CIAO package (version 4.15;
Fruscione et al. 2006) together with the Chandra CALDB data
(version 4.10.2).4 The time-segmented event files were
produced by applying the CIAO operations dmcopy and
dmappend on the second-level events. The low-energy grating
(LEG) spectra, together with their respective redistribution and
response data, were generated by applying the CIAO programs
tgextract and mktgresp to the time-sliced event files. The
dmtype2split tool, part of the CIAO software, was utilized to
segregate distinct positive and negative orders, while the
application tg_bkg was used to create the background spectra.
The XMM-Newton EPIC-pn data were obtained from XMM

Science Archive and reduced with the science analysis software
(SAS v20.0.0; Gabriel et al. 2004) and the calibration files
(XMM-CCF-REL-391). The use of the SAS tool epproc led to
the generation of processed event files. These events were
subsequently employed to produce new event files, which were
stacked at intervals of 10 ks with the SAS program evselect.
We removed the events of flaring particle background, which
were identified using count rates of >0.4 counts s−1 in the
single-pixel (PATTERN= 0) light curves binned at 100 s
within the 10–12 keV energy range. Furthermore, the time-
filtered event files exclusively included single and double
patterned events (PATTERN� 4) within the relevant pulse-
invariant channel range (200< PI< 15,000), disregarding
defective pixels (FLAG= 0). The procedure especget was
utilized to generate a set of source spectra by applying it to the
time-sliced event data. The spectra of the source were taken
from a circular region with a radius of 36″ centered on the
brightest peak of the source. The background spectra were
created using a circle of the same size on the same chip, but
without any sources included.
The Suzaku data acquired using the XIS and HXD-PIN were

retrieved and processed using the FTOOL program aepipeline
from the HEAsoft software (v6.31.1) and the calibration data

Table 1
Observation Log of RT Cru

Observatory Instrument Config. Obs. ID Obs. Start (UTC) Obs. End (UTC) Exp. (ks)a Counta Count Ratea

Suzaku XIS1 Pointing 402040010 2007 Jul 2, 12:38 2007 Jul 3, 05:50 50.88 35,043 0.689
Suzaku HXD-PIN Pointing 402040010 2007 Jul 2, 12:38 2007 Jul 3, 05:50 40.17 30,126 0.750
Suzaku XIS1 Pointing 906007010 2012 Feb 6, 18:17 2012 Feb 7, 20:00 39.43 25,291 0.641
Suzaku HXD-PIN Pointing 906007010 2012 Feb 6, 18:17 2012 Feb 7, 20:00 32.55 20,196 0.620
Chandra HRC-S/LETG L 16688 2015 Nov 23, 02:01 2015 Nov 23, 09:38 25.15 3859 0.153
Chandra HRC-S/LETG L 18710 2015 Nov 23, 22:42 2015 Nov 24, 14:13 53.73 8313 0.155
NuSTAR FPMs A + B L 30201023002 2016 Nov 20, 00:41 2016 Nov 21, 02:46 58.21 117,066 2.012
XMM EPIC-pn Imaging 0831790801 2019 Mar 3, 05:39 2019 Mar 3, 21:05 47.91 [40.75] 2415 [1997] 0.049

Note.
a Source counts and count rates over 0.4–10 keV for Suzaku (XIS1), XMM-Newton (EPIC-pn), and Chandra (HRC-S/LETG: LEG m = ±1), 10–70 keV for Suzaku
(HXD-PIN), and 3–79 keV for NuSTAR (FPMs A + B). The data in the square brackets correspond to the XMM-Newton events without flaring background.

4 The Chandra data set is contained in doi:10.25574/cdc.201.
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(XIS: 2018 October 10 and HXD: 2011 September 13). The
XIS provided energy coverage ranging from 0.2 to 12 keV,
while the HXD supplied a bandpass of 10–70 keV using PIN
diodes. Various Good Time Interval (GTI) files at our chosen
time interval were created using the FTOOL application
maketime. The GTI files were employed in the multipurpose
tool XSELECT to generate a set of time-segmented source
spectra. The source spectrum was acquired by extracting data
from a circular region with a radius of 216″ centered on the
emission peak of the source, whereas the background was
chosen from a nearby circular region of the same radius
excluding any sources. We should specify that XIS1 was the
only back-illuminated (BI) detector aboard Suzaku, whereas
the other XIS devices were front-illuminated (FI). Typically, BI
detectors are expected to offer superior quantum efficiency to
FI detectors for an identical depletion depth (Lesser &
Iyer 1998). The program hxdpinxbpi was employed to
generate the time-sliced spectra of HXD-PIN data using the
GTI files and the “tuned” non-X-ray PIN background released
by the Suzaku team.5

The NuSTAR data taken with the FPMs “A” and “B” were
downloaded from the HEASARC archive and reduced using
the tool nupipeline from NuSTARDAS (v2.1.2) and the
relevant calibration files (2023 February 8). The FTOOL
program maketime was used to create the GTI tables at
intervals of 10 ks, which were then applied to the calibrated
event files via the application nuproducts, resulting in the
time-stacked spectra. The source was extracted from a circular
aperture with a radius of 75″, whereas the background was
from a location on the same chip that was devoid of any
sources.

3. Time Series Analysis

To conduct timing analysis, we produced light curves in a
variety of energy bands for the Suzaku (XIS1, PIN), XMM-
Newton (pn), and NuSTAR data, which helped us identify the
spectral transitions in the X-ray observations of RT Cru. We
chose the soft (S: 0.4–1.1 keV), medium (M: 1.1–2.6 keV), hard
(H: 2.6–10 keV), and extreme hard (HE: 10–50 keV) bands,
apart from the hard band of 3–10 keV for NuSTAR data. To
enhance signal-to-noise ratios, we discretized the time series
into 600 s binning intervals, which have enough temporal
resolution to distinguish any spectral variations happening on
hourly timescales. The XMM-Newton light curves were
generated in the desired time bins and energy ranges with the
SAS program evselect, while the time-binned light curves of
the Suzaku XIS1 data were generated using the typical filtering
techniques in XSELECT. The NuSTAR light curves were also
created using the application nuproducts. In the program
XSELECT, we also created the time-filtered HXD/PIN events,
which were then used by the FTOOL task hxdpinxblc to build
the light curves of the Suzaku PIN data. To correct for the
decline in the instrument sensitivities with time, the Suzaku
light curves in 2012 were scaled up in relation to the 2007
observation. This scaling was decided based on the integration
of the effective areas over the given energy range,

A E dE
E E

E
eff

min

max ( )ò =
, where Aeff(E) is the effective function from

the auxiliary response file (ARF), and Emin and Emax are the
lower and upper limits of the band, respectively.

The time series produced in different energy bands allow us
to investigate spectral evolution over time. To distinguish
different spectral states similar to what was done for the
Chandra data (Danehkar et al. 2021), the following hardness
ratios are computed using the time-binned light curves from the
four energy bands:
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The first two equations are identical to those employed by
Prestwich et al. (2003) for the classification of X-ray sources in
the Local Group galaxies. The hardness ratio diagrams are
created by plotting the hardness ratios against the entire bands,
and assist in the detection of spectral transitions associated with
accretion or obscuration caused by absorbing material. Hard-
ness ratio analysis has been employed to characterize various
astronomical objects, including extragalactic X-ray sources
(e.g., Hong et al. 2004; Plucinsky et al. 2008), quasars
(Danehkar et al. 2018; Boissay-Malaquin et al. 2019), and
X-ray binaries (Sreehari & Nandi 2021).
In Figure 1, we present the background-subtracted light

curves of RT Cru made with the XMM-Newton, Suzaku, and
NuSTAR observations binned at intervals of 600 s in the broad
(S+M+H; 0.4–10 keV), hard (H), and extreme hard (HE)
bands. The figure also shows the corresponding hardness ratios,
namely HR1 and HR2 for XMM-Newton (pn) and Suzaku
(XIS1), HR3 and HR4 for NuSTAR and Suzaku (XIS1+PIN).
The uncertainties in the light curves and hardness ratios were
determined using the Bayesian Estimator for Hardness Ratios
(BEHR; Park et al. 2006). Hour-scale variations are evident in
all the time series. In particular, the source got harder in 2012
February compared to 2007 July according to the HR2 time
series of the Suzaku XIS1 data, whereas the source brightness
(S+M+H) in 2012 is lower than that in 2007. Moreover, the
HR3 and HR4 hardness ratios involving the extreme hard band
(HE) were stronger in 2012 February.
Figure 2 shows hardness ratio diagrams that illustrate the

relationship between the hardness ratios and the broad bands
(S+M+H and H+HE). The hardness diagrams of the XMM-
Newton observation do not depict a hardness transition similar
to what was seen with the Chandra data (Danehkar et al. 2021).
However, the HR1 and HR2 diagrams of the two Suzaku
observations indicate that the source experienced a transition
from the high/soft to low/hard spectral states between 2007
and 2012. Moreover, the Suzaku diagrams also revealed that
the source was stronger in the soft (0.4–1.1 keV) and hard
(2.6–10 keV) bands—lower HR1 and higher HR2 at the same
time—in 2012 February by comparison with those in 2007
July. Although we do not see any special pattern in the
hardness ratio diagrams of NuSTAR, the HR3 and HR4

diagrams of the Suzaku light curves imply a higher average of
the extreme hardness (HE) in 2012 February.

3.1. Statistical Tests of X-Ray Variability

To characterize variability, we performed different statistical
tests on the data. First, we consider the coefficient of variation,
defined as the ratio of the standard deviation to the mean, as5 https://heasarc.gsfc.nasa.gov/FTP/suzaku/data/background/
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Figure 1. The background-subtracted light curves of RT Cru in the energy bands S + M + H, H, and HE (in counts) binned at 600 s, along with the corresponding
hardness ratios HR1 = (M − S)/(S + M + H), HR2 = (H − M)/(S + M + H), HR3 = HE/H and HR4 = (HE − H)/(H + HE) computed with the BEHR using the
source and background time series of the XMM-Newton (EPIC-pn), Suzaku (XIS1), NuSTAR, and Suzaku (XIS1+PIN) observations. The second Suzaku light
curves were amplified according to the instrument sensitivities with respect to the first one.
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Figure 2. The hardness ratio diagrams of RT Cru: HR1 = (M − S)/(S + M + H) and HR2 = (H − M)/(S + M + H) plotted against S + M + H (in counts),
HR3 = HE/H and HR4 = (HE − H)/(H + HE) plotted against H + HE (in counts) computed with the BEHR using the 600 s binned source and background light
curves of the XMM-Newton (EPIC-pn), Suzaku (XIS1), NuSTAR, and Suzaku (XIS1+PIN) observations. The second Suzaku counts were magnified based on the
instrument sensitivities relative to the first one.
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follows:
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where σ and μ are the standard deviation and the mean of data
points, respectively, i is the index of each data point xi in the
time series, and n is the total number of data points. This
coefficient describes the extent of variations with respect to the
mean, so its higher values are associated with stronger
variability if we compare the same parameter. However, this
coefficient is not suitable for comparison between dissimilar
parameters and cannot evaluate the intrinsic nature of
variations. The ratio of the standard deviation of errors to that
of data points (σe/σ) may help us see whether the variability is
intrinsic to the observation. Again, this ratio is suitable for
evaluating values for the identical parameter. Both σ/μ and
σe/σ are unable to characterize detailed features of consecutive
series. The normalized consecutive number, so-called Con,
which was first used by Wozniak (2000), may be used to
quantify the changes at a number of consecutive points. To
evaluate continuity in light curves, we define Con as the
number of three consecutive points greater or lower than σ

normalized by n− 4. For random fluctuations, Con has a value
of 0.045 and is equal to 0 for constant consecutive series.

The von Neumann ratio (von Neumann 1941), which is the
mean squared successive difference (δ2) with respect to the
variance (σ2), can also quantify the autocorrelation in
successive series:

x x n 1
. 4i

n
i i

2

2
1
1

1
2

2

( ) ( )
( )h

d
s s

= =
å - -=

-
+

For a normal distribution, the mean von Neumann ratio is
expected to be n n2 1 2norm¯ ( )h = - ~ (Young 1941). To
assess the presence of autocorrelation, we estimated the
confidence intervals of normh̄ with the significance level of
α= 0.05 for a normal probability distribution. A von Neumann
ratio within the confidence levels of 2normh̄ ~ implies no
autocorrelation, whereas values outside the aforementioned
confidence levels toward 0 and 4 correspond to positive and
negative autocorrelation in successive data points, respectively.

To examine the randomness of data points, we employ three
nonparametric statistical tests of normality, namely the
Lilliefors test, the Anderson–Darling test (hereafter referred
to as the A–D test), and the Shapiro–Wilk test (hereafter
referred to as the S–W test). The Lilliefors method (Lilliefors
1967) is a modification of the Kolmogorov–Smirnov (K-S) test,
which utilizes estimated μ and σ2 of the data for the assessment
of normality. The K-S test is appropriate for the standard
normal distribution  , 2( )m s with μ= 0 and σ2= 1. The
parameters for the Lilliefors method are based on the mean and
variance of the specified data. The Lilliefors statistic determines
the maximum difference (D) between the empirical distribution
function (EDF) of the sample and the cumulative distribution
function (CDF) of the normal distribution defined by the
estimated mean and variance of the sample. The A–D test
(Anderson & Darling 1952) is an extension of the Cramér–von
Mises statistic, which is based on the squared difference (A2)
between the EDF and the CDF with more weight to the tails of
the distribution. The S–W test (Shapiro & Wilk 1965) utilizes a

statistical method (W) based on the order statistics, the expected
values of the order statistics of independent and random
variables from the normal distribution, and the covariance of
the aforementioned order statistics. For the Lilliefors and A–D
tests, we used the corresponding procedures from the
Statsmodels package (Seabold & Perktold 2010), whereas
the S–W test was performed with the relevant statistical
function from the SciPy package (Virtanen et al. 2020). For all
three tests, p-values less than or equal to the statistically
significant level of α= 0.05 lead to the rejection of the
hypothesis of normality, i.e., nonrandom variations. The S–W
test is the most powerful, followed closely by the A–D test and
then the Lilliefors statistic, whereas the K-S method is less
powerful than others (Stephens 1974; Razali & Wah 2011).
However, the A–D test is more compelling than the S–W test in
a population distribution with a very sharp peak and abruptly
ended tails.
Table 2 summarizes the results of our statistical analysis of

the X-ray variability in RT Cru obtained with different
methods. It can be seen that σ/μ and σe/σ of S+M+H,
HR1, and HR2, are higher in the XMM-Newton data than those
in the Suzaku observations. This implies that variations are
higher in the XMM-Newton light curves, but with larger
uncertainties. We also notice a higher σ/μ in the HR4 ratio of
the NuSTAR data, which may be an indication of scattered
fluctuations in this ratio. However, σ/μ is not a suitable tool for
quantifying the variability in a time sequence of data. The Con
number may be able to better distinguish variations in a
consecutive sequence. The values of Con indicate consecutive
changes in S+M+H in the XMM-Newton and combined
Suzaku/XIS1 observations, HR2 in the first Suzaku/XIS1
observation and two combined Suzaku/XIS1 observations,
while others with Con  0.045 may have random variations.
Nevertheless, our Con statistical method is based only on three
consecutive data points, so it is unable to obtain a broader
picture of variability in the entire sequence of data points.
The von Neumann ratio (η) can effectively quantize the

systematic structure of time series. Furthermore, the A–D and
S–W tests of normality can properly determine whether or not a
normal (random) distribution describes the variables. For the
XMM-Newton data, η is not within the confidence range of

2normh̄ ~ in the S+M+H broad band, while the p-values of
the A–D and S–W tests are below the significant level of
α= 0.05, resulting in the rejection of the hypothesis of
normality. However, the von Neumann ratios of HR1 and
HR2 are within the range of normh̄ , along with p-values of a
normal distribution. Although the broad band light curve of the
XMM-Newton data exhibits abnormal variability, there are no
changes in the hardness conditions.
In the case of Suzaku/XIS1, the von Neumann ratio

demonstrates positive autocorrelation in the time series of the
broad band (S+M+H) and hardness ratios of the first,
second, and combined observations, apart from HR1 in the
second observation. However, the p-values of the normality
tests suggest that there are not normal distributions in HR1 of
the first XIS1 observation with marginally significant statistics
and the second XIS1 observation with significant statistics.
Furthermore, the A–D and S–W tests of S+M+H, HR1, and
HR2 in the two mixed Suzaku/XIS1 observations definitely
reject the hypothesis of normality, which is obvious in the
movement pattern seen in the hardness diagrams in Figure 2.
Nevertheless, we see a non-normal distribution only in the HR3
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ratio of the Suzaku/PIN observations, but not H+HE and
HR4. The von Neumann statistical analysis of the Suzaku/PIN
data also depicts positive autocorrelation on the H+HE broad
band of the first and combined observations, and on HR3 and
HR4 of the mixed multiepoch data, which are consistent with
the spectral transition occurring between 2007 and 2012.

The broad band (H+HE) and the hardness ratios (HR3 and
HR4) of the NuSTAR data exhibit nonrandom distributions
according to the p-values obtained from A–D and S–W tests.
However, von Neumann’s mean squared successive difference
depicts a positive autocorrelation only in the broad band. The
hardness diagrams in Figure 2 seem to not depict any obvious
hardness transition in the NuSTAR data, though our A–D and
S–W normality tests apparently suggest it, which is not
supported by the von Neumann statistics. However, all of the
normality tests and the von Neumann ratio indicate that there
are statistically significant fluctuations in the NuSTAR
broad band.

In summary, our statistical analysis of the variability shows
that RT Cru underwent flux variations over the broad band of
the XMM-Newton data based on η and the A–D/S–W test, the
first and second Suzaku/XIS1 data, the first and combined

Suzaku/PIN data, the NuSTAR data according to the von
Neumann results, and the mixed first–second Suzaku/XIS1
data and the NuSTAR data based on the A–D/S–W test.
Moreover, our results suggest that the X-ray source experi-
enced a long-term spectral transition between the first and
second Suzaku observations based on the normality tests of
HR1, HR2, and HR3, as well as some short-term hardness
fluctuations in HR1 of the second Suzaku/XIS1 data and HR3

of the NuSTAR data.

4. Principal Component Analysis

4.1. Computational Approach

PCA, which is a highly effective technique for deconstruct-
ing temporally variable data, has frequently been used in the
field of multivariate statistical research in astronomy, such as
gaining insights into the spectral types of stars (Deeming 1964;
Whitney 1983), statistical analysis of galaxies (Bujarrabal et al.
1981; Efstathiou & Fall 1984), multiple-epoch UV data of
active galaxies (Mittaz et al. 1990), distinct emission
components in optical observations of quasars (Francis et al.
1992; Boroson & Green 1992), and imaging analysis of

Table 2
Statistical Results of Timing Analysis

No. Param. σ/μ σe/σ η normh̄ Lilliefors test A–D test S–W test Con
D p-value A2 p-value W p-value

XMM-Newton (EPIC-pn)

S + M + H 0.382 0.159 1.138 2.023 ± 0.420 0.083 0.188 0.827 0.032 0.968 0.030 0.106
HR1 1.234 0.318 2.242 2.023 ± 0.420 0.054 0.797 0.251 0.734 0.993 0.908 0.059
HR2 −2.621 0.247 2.206 2.023 ± 0.420 0.091 0.098 0.542 0.159 0.984 0.348 0.024

Suzaku (XIS1)

1 S + M + H 0.153 0.066 0.881 2.021 ± 0.400 0.068 0.355 0.501 0.202 0.982 0.221 0.064
HR1 0.223 0.086 1.159 2.021 ± 0.400 0.095 0.037 0.731 0.055 0.979 0.119 0.043
HR2 0.306 0.062 0.591 2.021 ± 0.400 0.079 0.176 0.539 0.163 0.984 0.282 0.128

2 S + M + H 0.206 0.054 1.257 2.025 ± 0.433 0.077 0.337 0.265 0.687 0.991 0.835 0.050
HR1 0.497 0.132 1.621 2.025 ± 0.433 0.104 0.043 0.897 0.021 0.964 0.021 0.000
HR2 0.118 0.115 1.398 2.025 ± 0.433 0.075 0.380 0.321 0.525 0.987 0.578 0.013

Mix S + M + H 0.277 0.038 0.470 2.011 ± 0.294 0.067 0.062 1.075 0.008 0.982 0.018 0.142
HR1 0.539 0.057 0.385 2.011 ± 0.294 0.109 0.001 2.724 0.000 0.966 0.000 0.068
HR2 0.313 0.051 0.337 2.011 ± 0.294 0.090 0.002 1.532 0.001 0.973 0.002 0.193

Suzaku (HXD-PIN)

1 H + HE 0.132 0.094 1.140 2.038 ± 0.533 0.072 0.707 0.163 0.941 0.987 0.814 0.038
HR3 0.180 0.210 1.775 2.038 ± 0.533 0.082 0.503 0.259 0.703 0.983 0.617 0.000
HR4 −0.272 0.197 1.898 2.038 ± 0.533 0.082 0.494 0.249 0.737 0.985 0.741 0.000

2 H + HE 0.090 0.161 2.250 2.067 ± 0.704 0.090 0.746 0.304 0.551 0.964 0.378 0.034
HR3 0.184 0.154 1.579 2.067 ± 0.704 0.078 0.902 0.198 0.878 0.975 0.675 0.034
HR4 −0.707 0.179 1.542 2.067 ± 0.704 0.097 0.636 0.294 0.576 0.970 0.520 0.034

Mix H + HE 0.133 0.099 1.149 2.024 ± 0.425 0.056 0.776 0.366 0.427 0.986 0.483 0.072
HR3 0.259 0.129 0.866 2.024 ± 0.425 0.111 0.018 1.017 0.011 0.961 0.011 0.036
HR4 −0.504 0.135 0.910 2.024 ± 0.425 0.093 0.091 0.511 0.190 0.984 0.392 0.048

NuSTAR (FPMs A + B)

H + HE 0.145 0.053 1.046 2.017 ± 0.356 0.096 0.012 2.196 0.000 0.908 0.000 0.050
HR3 0.108 0.135 1.898 2.017 ± 0.356 0.089 0.030 1.706 0.000 0.845 0.000 0.042
HR4 5.704 0.155 1.932 2.017 ± 0.356 0.059 0.431 0.747 0.050 0.930 0.000 0.025

Note. σ/μ is the ratio of the standard deviation to the mean, σe/σ is the ratio of the standard deviation of errors to that of data, η is the von Neumann ratio, normh̄ is the
mean von Neumann ratio for no autocorrelation in the time series, and Con is the normalized consecutive number. The hypothesis of normality can be evaluated using
p-values from the Lilliefors, Anderson–Darling, and Shapiro–Wilk statistical tests. The Suzaku data labels 1, 2, and mix correspond to Obs. IDs 402040010,
906007010, and the combined observations, respectively.
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molecular clouds (Heyer & Schloerb 1997; Brunt &
Heyer 2002). This eigenvector-based multivariate method
was later employed to analyze the X-ray spectral variability
of Seyfert galaxies (Vaughan & Fabian 2004; Miller et al.
2007; Parker et al. 2014a; Gallo et al. 2015) and X-ray binaries
(Malzac et al. 2006; Koljonen et al. 2013; Koljonen 2015). The
PCA mathematical framework for spectral analysis is similar to
that adopted in the flux–flux correlation method as shown by
Vaughan & Fabian (2004), which results in multiple spectrally
invariant components whose amplitudes exhibit temporal
variation. The observed variable spectra can be regenerated
by linearly combining all these PCA components. In theory,
this approach should enable us to identify all the variable
components of any given multidimensional data set. However,
the assumption of spectrally invariant components may not
hold true in real observational data, where noise in the
background is likely to cause some variations. As demonstrated
by Parker et al. (2015), one of the key benefits of employing
multivariate analysis is the ability to determine the minimum
number of PCA components required for building the observed
variations, which may not be created by noise fluctuations. A
clear result of PCA would be time-dependent emission or
absorption components with little variability but enough
statistical significance to not be distinguished as background
noise (see, e.g., Koljonen et al. 2013; Parker et al. 2015, 2017).

To conduct our principal component analysis of RTCru, we
used a customized implementation of the Python program PCA
originally written by Parker et al. (2018). This program leveraged
the singular value decomposition (SVD) function (Press et al.
1997) from the linear algebra (linalg) submodule of the Python
library NumPy. It also utilizes the effective area column read
from the ARF data to convert the count spectrum C(E) to the
photon-flux one Fph(E), i.e., F E C E A E tph eff exp( ) ( ) ( ( ) )= ,
where Aeff(E) is the effective function and texp the exposure time.
The time-sliced spectrum of the background is also used to
eliminate background contamination from the source. Moreover, a
mean spectrum, Fph,m(E), calculated with the time-sliced spectra
of each data set was used to derive the normalized time-sliced
spectra as follows: Fn,k(E)= (Fph,k(E)−Fph,m(E))/Fph,m(E). The
purpose of this program is to transfer a set of nt time-sliced spectra
binned at nE energy intervals into a 2D array (nE× nt). The
resulting array is then subjected to a decomposition process using
the SVD function, resulting in a matrix (nE× nE) including the
principal components f EnE

( ) sorted with their eigenvalues, in
addition to an nt-array of eigenvalues yielding the fractional
variability, as well as a matrix (nt× nt) containing the eigenvectors
representing the time series A tnt ( ). The PCA spectra and their
corresponding light curves describe the spectral characteristics and
their temporal variations present in a complex variable source,
respectively. The fractional variability of each component is
estimated using the normalized eigenvalues. The uncertainty
calculation in the PCA program is implemented according to the
procedure outlined in Miller et al. (2007), where the spectra are
subjected to random perturbations and subsequent recalculations
with the SVD function.

4.2. PCA Results

Figure 3 shows the spectrum and its time series of the first
components produced from the Chandra HRC-S/LETG (top
panels) and XMM-Newton EPIC-pn data (middle panels),
along with the corresponding log-eigenvalue (LEV) diagrams
(right). We should note that the number of nonzero eigenvalues

provided by the SVD function corresponds to the number (nt) of
time-segmented pulse-height amplitude (PHA) spectra in each
LEV diagram. The black line in each LEV diagram
corresponds to a linear correlation found between logarithmic
normalized eigenvalues and eigenvector orders of the compo-
nents with orders higher than 3, which should be associated
with noise rather than real spectral variations. The LEV
diagrams help us determine those components that are
statistically significant as described by Parker et al. (2018). It
can be seen that the first component in each data set, whose
spectrum and time series are plotted, is slightly above the high-
order correlation line. The peak and valley features that appear
in the PCA spectra could be indicators of emission and/or
absorption lines (see, e.g., Parker et al. 2017, 2018). We see
some spectral features in the soft band, which might suggest the
presence of emission lines from H-like and He-like ions, N VII
Lyα 0.5 keV, N VI Heα 0.43 keV, O VIII Lyα 0.65 keV, and
O VII Heα 0.57 keV. However, it is difficult to detect these
thermal emission features in the soft excess, even if they do
exist, because they are mixed up with high background noise.
A recent investigation by Zhang et al. (2023) could not
constrain these emission lines but put an upper confidence level
of 1 keV on the temperature of a soft thermal plasma
component. The time series A1(t) of the first components
suggest that these emission lines, even if they are real, appear
temporarily during brightening events that occur every
20–25 ks and last for 10 ks, which makes it difficult to
constrain them. Although the effectiveness of the Chandra
HRC-S/LETG in the hard band is low, the XMM-Newton
EPIC-pn instrument seems to capture some weak features in the
energies associated with Ar XVIII Lyα 3.3 keV, Ca Kβ 4 keV,
and Fe Kα 6.4 keV. Nevertheless, the emission lines look to be
more predominant in the soft band (<1 keV) than the hard band
in the f1(E) spectrum of the XMM-Newton data.
In Figure 3, we also present the spectra fi(E) and the

corresponding light curves Ai(t) of the first three PCA
components generated from the Suzaku XIS1 data. These
three components are statistically significant according to their
noticeable deviations from the high-order eigenvalue regression
in the LEV diagram. As seen in Figure 2, the source exhibited
increases in both the softness (lower HR1) and the hardness
(higher HR2) in 2012 compared to 2007, while the brightness
in the total band (S+M+H) was lower in 2012 than in 2007.
The first component in the Suzaku XIS1 data is akin to the

spectral features of an absorbing column component. The
second component shows a blackbody-like emission below
2 keV followed by an absorbed hard continuum above 2 keV,
but with a peak at ∼6.4 keV, corresponding to the iron Kα line.
The first two components depict a highly absorbed continuum
source, which is similar to the model used by Danehkar et al.
(2021). Additionally, our multivariate analysis suggests a
(multi-)blackbody-like thermal component in the soft excess in
the Suzaku observations. The normalized eigenvalues yield
variability fractions of ∼50% and 20% for the spectra f1(E) and
f2(E), respectively. This implies that the variabilities in the
absorbing material and the source continuum are mainly
responsible for the changes in the hardness ratios HR1 and HR2

between 2007 and 2012. This phenomenon might be related to
the almost total disappearance of the hard X-rays identified in
2019, which was argued to be associated with a substantial
reduction in the falling material (Pujol et al. 2023). In addition,
the absorbing column f1(E) contributes about twice the

8

The Astrophysical Journal, 972:109 (16pp), 2024 September 1 Danehkar, Drake, & Luna



Figure 3. The normalized spectrum fi(E) (left) and the corresponding time series Ai(t) (middle) of the ith-order principal component determined from the Chandra
HRC-S/LETG (top panels), XMM-Newton EPIC-pn data (middle panels), and Suzaku XIS1 data (bottom panels) of RT Cru, along with the LEV diagram (right)
showing the linear correlation between logarithmic normalized eigenvalues and eigenvector orders among the higher-order (>3) components. The energy levels,
where thermal emission lines may be present, are marked in the spectra. The number of nonzero eigenvalues in each LEV diagram is associated with the number of
time-segmented spectra.
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dramatic changes in the hardness ratios of the source
continuum f2(E) over the two epochs. The light curves A1(t)
and A2(t) depict that as the source got fainter and harder in the
last epoch than in the previous epoch, it had higher obscuration
in 2012 than in 2007.

The third-order PCA component derived from the Suzaku
XIS1, which has a small variability fraction of ∼9%, has some
spectral features similar to those in the first-order PCA
spectrum deduced from the XMM-Newton EPIC-pn data.
Once again, the emission features in the soft excess (<1 keV)
are stronger than those in the hard excess. The time series A3(t)
also indicates that these emission lines, while potentially of
physical origin, are likely related to the flickering nature. They
apparently originate from a brightening event that started 15 ks
after the beginning of the second observation and lasted
for ∼20 ks.

The spectrum and its light curve of the first PCA component
extracted from the Suzaku HXD-PIN data are shown in
Figure 4, along with the log-eigenvalue diagram. The
comparison between the time series of the XIS1 and PIN data
indicates that both of them have similar changes over time, so
the PCA spectrum f1(E) derived from the PIN observations
corresponds to the extreme hard excess of the continuum seen
in f2(E) of the XIS1 data. However, there is no indication of the
absorbing column in the eigenvector-based multivariate

analysis of the PIN data. This could mean that the absorbing
material mostly blocks the energy range below 5 keV, as seen
in f1(E) of the XIS1 in Figure 3. In addition, there is no PCA
component containing the thermal emission lines similar to the
spectrum f3(E) of the XIS1, so they could be the features
predominately present in the soft excess. We should also note
that the PIN has an energy resolution of around 3 keV in the
10–30 keV range, which is lower than the Suzaku XIS (120 eV
at 6 keV), so the PIN cannot resolve any emission line features.
Figure 4 also presents the spectra fi(E) and the associated

time series Ai(t) of the first two PCA components deduced from
the NuSTAR observation. The first-order PCA spectrum f1(E)
shows a power-law-like continuum similar to that seen in f1(E)
of the Suzaku HXD-PIN observations. Additionally, the second
PCA component may contain some emission features at
energies typically associated with Ar XVIII Lyα 3.3 keV, Ca
Kα 3.7 keV, and Ca Kβ 4 keV, which are possibly present in
f1(E) of the XMM-Newton EPIC-pn data and f3(E) of the
Suzaku XIS1 observations. The light curve A2(t) of the
NuSTAR PCA suggests that the second component, which
likely contains some line features, appears during brightening
events occurring at intervals between 30 and 40 ks. However,
we caution that NuSTARʼs energy resolution of 400 eV is
lower than those of the XMM-Newton EPIC-pn (80 eV) and
Suzaku XIS (50 eV at 1 keV). In addition, there is no evidence

Figure 4. The same as Figure 3, but for the Suzaku HXD-PIN (top panels) and NuSTAR data (bottom panels) of RT Cru.
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for the obscuring material in the multivariate statistical analysis
of the NuSTAR data, implying the absorbing material is not
largely variable during the course of the NuSTAR observation
similar to that seen in the Suzaku observations.

4.3. Constructing Spectra from PCA

To better evaluate the nature of the PCA components
from Suzaku/XIS1, we used their corresponding photon-flux
data to create the XSPEC-compatible spectra and the
response files using the FTOOL program ftflx2xsp. The
photon-flux spectra were reconstructed according to Fph,i(E)=
λi(Fn,i(E)Fph,m(E)+ Fph,m(E)), where Fn,i(E) is the normalized
spectrum of the ith-order principal component produced by the
SVD function, Fph,m(E) is the mean spectrum derived from the
time-sliced spectra, and λi is the normalized eigenvalue of the
ith-order principal component created via SVD, representing the
variability fractions. We analyzed the reconstructed spectra in
the Interactive Spectral Interpretation System (ISIS v1.6.2-51;
Houck & Denicola 2000) that has access to the XSPEC models
(Arnaud 1996).

Figure 5 shows the reconstructed spectra of the first and second
principal components of the Suzaku XIS1 data, which were

modeled using a phenomenological model, pcfabs×(diskbb +
apec) + pcfabs×(compTT + ∑ zgauss), consisting of an
accretion disk model (diskbb), a collisionally ionized diffuse
model of the Astrophysical Plasma Emission Code (APEC; Smith
et al. 2001), a Comptonization model (compTT), partial covering
fraction absorption components (pcfabs), and Gaussian compo-
nents (zgauss). The soft excess was well reproduced using a
diskbb model made of multiple blackbody components (see, e.g.,
Mitsuda et al. 1984; Makishima et al. 1986) and an emission
spectrum produced by the collisional plasma APEC model; both of
them are partially covered by an absorbing column. To create
phenomenologically the curvature in the hard excess, we
employed a partially covered, absorbed Comptonization model
(compTT) of the soft radiation in a hot plasma cloud analytically
obtained by Titarchuk (1994) and Titarchuk & Lyubarskij (1995).
To improve the model fit, three Gaussian components were also
included, namely Fe Kα (6.379 keV), Fe Heα (6.693 keV), and
Fe Lyα (6.946 keV). We caution that the PCA components are
built from the Suzaku data according to the temporal evolution
over the two epochs, so not all the derived spectral features are
physically real.
Table 3 lists the best-fitting values of the parameters,

obtained using the Levenberg–Marquardt minimization algo-
rithm (Moré 1978) and the chi-square statistic (χ2; see
Bevington & Robinson 2003), with the uncertainties at 90%
confidence derived using the ISIS standard function for
confidence limits (conf_loop). It can be seen that the soft
excess is partially covered by an absorbing column of
∼6× 1022 cm−2. However, the covering fraction in the first
PCA spectrum (Cf,dsk= 0.95) is higher than that in the second
PCA spectrum (Cf,dsk= 0.67). Moreover, the hard excess is
partially absorbed by columns of ∼1.7× 1022 and
0.2× 1022 cm−2 in the first and second PCA components,
respectively; both of them with a covering fraction of
Cf,cmp= 0.95. This implies that there is more absorbing
material in the first principal component. Interestingly, Luna
et al. (2018) also found that the absorbing column in 2012 is
about 3.4× 1022 cm−2 higher than that in 2007 based on the
XIS1 data.
In addition, the curvature in the soft excess was phenom-

enologically reproduced using a multiple-blackbody accretion
disk with a temperature of ∼1.8 keV at the inner radius, along
with a collisionally ionized soft thermal plasma emission with
temperatures of 1.1 and 1.2 keV in the first and second PCA
components, respectively. We should note that the inclusion of

Figure 5. The spectra of the first (top) and second (bottom) PCA components
derived from the Suzaku XIS1 data of RT Cru (in black), along with the fitted
phenomenological model pcfabs ×(diskbb+ apec) + pcfabs ×(compTT+
∑ zgauss) (in red).

Table 3
Best-fitting Parameters for the Phenomenological Model of the First and

Second PCA Components of the Suzaku XIS1 Data

XSPEC Parameter PCA1 PCA2

pcfabs NH,dsk (10
22cm−2) 6.65 0.10

0.10
-
+ 6.40 1.08

1.26
-
+

Cf,dsk 0.95 0.001
0.001

-
+ 0.67 0.03

0.03
-
+

diskbb Tin (keV) 1.76 0.01
0.01

-
+ 1.80 0.07

0.07
-
+

Kdsk (10
−5) 91.82 32.94

apec kT (keV) 1.05 0.01
0.01

-
+ 1.22 0.11

0.14
-
+

Kapc (10
−5) 1.85 0.17

pcfabs NH,cmp (10
22cm−2) 1.68 0.03

0.02
-
+ 0.18 0.05

0.05
-
+

Cf,cmp 0.95 0.001
0.001

-
+ 0.95 0.03

0.001
-
+

compTT T0 (keV) 0.03 0.001
0.001

-
+ 0.06 0.001

0.001
-
+

kT (keV) 94.24 36.86
1.65

-
+ 2.00 4.87+

τ 0.01 0.01
Kcmp (10

−5) 6.16 11.66
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the apec collisional plasma model helps to recreate the PCA
spectra, while it could not be done using only a diskbb model.
In particular, Danehkar et al. (2021) previously deduced a
heavily obscured, soft thermal plasma emission with a
temperature of 1.3 keV using low-count Bayesian statistics.
Moreover, the third PCA component of the Suzaku XIS1 data,
along with the principal component of the XMM-Newton
EPIC-pn data, suggests the possible presence of some emission
features mostly at the soft excess, which could be associated
with thermal features of a collisionally ionized plasma. So, the
soft thermal apec component of ∼1.1–1.2 keV that appears in
the spectral analysis of the PCA components might be
physically related to that phenomenon.

The soft component with a temperature of ∼1.2 keV, if it
exists, could be produced by the expanding winds or jets,
similar to what was proposed for CH Cyg (Ezuka et al. 1998).
The predicted X-ray temperature of the shock-ionized plasma
created by the collision of the winds with the interstellar
medium is kT= (3/16)μmHv

2, where v is the wind velocity,
μ= 0.615 is the mean molecular weight, and mH is the
hydrogen mass (e.g., Güdel & Nazé 2009). To produce an
X-ray thermal spectrum of 1.2 keV, a wind velocity of 1000
km s−1 is necessary. This is in the range of those estimated for
CH Cyg (Karovska et al. 2007, 2010), which is another δ-type
symbiotic star containing soft thermal spectra of 0.2 and
0.7 keV (Ezuka et al. 1998).

4.4. Simulating Variability

To trace the origin of the X-ray variability, we simulated X-ray
spectra using the ISIS function fakeit with the corresponding
response data of the XMM-Newton/EPIC-pn and Suzaku/XIS1
observations. We implemented our simulations in a manner
similar to Koljonen et al. (2013) and Parker et al. (2014b), but
instead of using random changes between the confidence limits as
they did, we reproduced the X-ray variability using the PCA time
series extracted from the observations. Sets of the simulated time-
sliced spectra with an exposure interval of 10 ks were created and
stored into PHA files with the aid of the Remeis ISIS functions
(ISISscripts). We loaded and explored them with the same PCA
program used for our analysis.

To reproduce the XMM-Newton PCA component, we
assumed the spectral model constant× tbnew× (apec +
powerlaw). The energy-independent factor in the XSPEC
component constant was adjusted to obtain total counts
similar to the EPIC-pn observation for the same exposure (see
Table 1). To better create the absorption curvature in the soft
X-ray excess, we employed the tbnew component (Wilms
et al. 2000). Variability in the simulated 10 ks segmented
spectra was made via multiplying the normalization factor of
the XSPEC component apec by 1+ A1(t), where A1(t) is the
time series of the PCA component obtained from the XMM-
Newton observation (see Figure 3). The default values of the
model parameters were determined from spectral analysis of
the XMM-Newton observation in ISIS using the aforemen-
tioned spectral model without the constant component. The
best-fitting values of the model parameters are given in Table 4,
along with the confidence limits (90%) obtained using the ISIS
function conf_loop. The best-fit spectral model of the XMM-
Newton data is shown in Figure 6.

To simulate the Suzaku/XIS1 spectra, we adopted the
phenomenological model, constant× pcfabs× (diskbb +
apec)+ pcfabs× compTT, which is based on what was derived

in Section 4.3. The default values of the model parameters were set
to those derived for PCA1 from spectral modeling listed in
Table 3. Similarly, the constant component was used to reproduce
the total counts akin to those seen in Table 1 for the same total
exposures. Variations in the simulated 10 ks segmented spectra
were then emulated by varying the column densities of the pcfabs
components and the normalization factors of compTT and apec.
Accordingly, we multiplied NH,dsk and NH,cmp of the pcfabs
components by 1+ k1A1(t), and set the normalization factors of the
XSPEC functions compTT and apec to [1+ k2A2(t)]×Kapc and
[1+ k3A3(t)]×Kcmp, respectively, where ki are arbitrary constants
for adjusting the variability fractions and Ai(t) are the time series of
the three PCA components derived from the Suzaku/XIS1
observations plotted in Figure 3. The best-matched simulations
were made with k1= 0.9, k2= 2.4, and k3= 0.5.
Figure 7 presents the PCA components deduced from the

simulated XMM-Newton/EPIC-pn and Suzaku/XIS1 spectra. It
can be seen that variable normalization of the apec component
leads to the formation of a series of peaks in the PCA spectrum of
the EPIC-pn simulation, which is comparable to f1(E) in Figure 3
derived from the XMM-Newton observation. Moreover, the three
statistically significant PCA components were obtained from the
simulated XIS1 spectra made with variations in absorbing
columns, Comptonization continua (compTT), and thermal
emission (apec) scales. We see that the normalized PCA spectra
fi(E) are roughly similar to those from the Suzaku/XIS1
observations.
Hence, our simulations suggest that the hardness spectral

transition seen in the Suzaku/XIS1 observations could be

Figure 6. The XMM-Newton EPIC-pn observation of RT Cru fitted to the
spectral model tbnew × (apec + powerlaw) plotted as a red line.

Table 4
Best-fitting Model Parameters for the XMM-Newton Observation

XSPEC Parameter Value

tbnew NH (1021 cm−2) 5.98 1.93
2.61

-
+

apec kT (keV) 0.92 0.68
0.48

-
+

Kapc (10
−6) 6.70 4.68

0.62
-
+

powerlaw Γ (keV) 1.88 0.50
0.66

-
+

Kpl (10
−5) 2.56 0.96

1.77
-
+
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mostly due to varying absorbing columns and partially caused
by some variations in the continuum. Furthermore, our results
indicate that some changes in the thermal plasma emission
could contribute to the PCA component of the XMM-Newton
data and the third PCA component obtained from the Suzaku/
XIS1 observations.

5. Discussions

5.1. Transient Nature

The hard X-ray source IGR J12349-6434 was first detected
with the IBIS instrument aboard INTEGRAL in 2003–2004
(Chernyakova et al. 2005). Its association with RT Cru was
suggested by Masetti et al. (2005) and confirmed by Swift

observations (Tueller et al. 2005b). Although the source was at
a level of ∼3 mCrab in the 20–60 keV energy band during the
first detection (Chernyakova et al. 2005), it was seen 3.4 times
brighter at 13 mCrab in the 18–40 keV energy band in 2012
(Sguera et al. 2012), followed by a flux level of ∼6 mCrab in
2015 (Sguera et al. 2015). The ASAS and AAVSO optical light
curves also indicated that RT Cru became brighter from 13.5 to
11.3 mag between 1998 and 2001; there was then a gradual
decrease in the brightness to 12.1 mag in 2006, and later an
increase to 11.8 mag in 2009 and 11.5 mag in 2012, followed
by a decrease to 12.6 mag in 2017 (Luna et al. 2018). The
Swift/BAT survey revealed that the source reached its highest
X-ray brightness between 2011 and 2012 coincident with the
optical peak in 2012 (Luna et al. 2018). As seen in Figure 1, the

Figure 7. The simulated PCA spectra fi(E) (left), the corresponding time series Ai(t) (middle), and LEV diagram (right) of the spectra produced at intervals of 10 ks
with the XMM-Newton/EPIC-pn and Suzaku/XIS1 response data using the model parameters from Tables 4 and 3, respectively, incorporating variations in the apec
normalization factor into the XMM-Newton and Suzaku simulations, as well as alterations in the columns of the pcfabs components and in the normalization factors
of compTT and apec in the Suzaku simulations, as described in the text.
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Suzaku hardness ratios exhibited harder X-rays in 2012 than in
2007. According to the spectral fitting results by Luna et al.
(2018), this transition could be related to a later increase in the
column density of the absorbing material, as well as a rise in
the X-ray brightness owing to higher accretion rates.

The most conspicuous finding of our PCA is the appearance
of the absorbing column and the continuum in the first and
second principal components of the Suzaku XIS1 data. The
spectral analysis of the Suzaku data by Luna et al. (2018)
provided an absorbing column of 1.4× 1022 and
12× 1022 cm−2 for the XIS1 and PIN observations in 2007,
much lower than 4.8× 1022 and 28× 1022 cm−2 in 2012,
respectively. In particular, as seen in Figure 3, this absorption
has the strongest effect at energies between 1 and 4 keV.

5.2. Flickering Behavior

Binary systems hosting degenerate cores usually manifest
flickering, which is associated with accretion physics (see, e.g.,
Luna et al. 2013; Merc et al. 2024). RT Cru is characterized by
flickering, referring to the stochastic variability in the light
curve characterized by less than tenths of a magnitude,
occurring on scales from seconds to minutes. The flickering
behavior in this object has been recorded from the optical band
(Cieslinski et al. 1994) to UV (Luna et al. 2018) and X-rays
(Ducci et al. 2016; Danehkar et al. 2021). This behavior was
further seen in the B, V, and R bands from the ground-based
observations and photometry made with the NASA TESS
mission (Pujol et al. 2023). Its TESS light curves show
accumulation-induced flickering variability on timescales of
minutes, with substantial variation in flickering (Merc et al.
2024). Our variability simulations suggest that changes in the
column density or/and covering fraction of the absorbing
material, along with the X-ray brightness from accretion
processes, could potentially lead to long-term variations in the
soft excess below 4 keV, which aligns with the spectral fitting
results of Luna et al. (2018). Moreover, simulated X-ray spectra
indicate that rapid flickering-type variations might be caused by
some changes in the thermal plasma emission, which Luna &
Sokoloski (2007) found likely originates from a boundary layer
of the accretion disk around a massive white dwarf rather than a
magnetically channeled flow.

The disappearance of optical Balmer emission lines and
decreases in U, B, and V flickering amplitudes were also
recorded in RT Cru in 2019, attributed to a decline in the
accretion process, followed by its reappearance in the later
years associated with restoring the accretion flow (Pujol et al.
2023). In particular, flickering in the δ-type symbiotic star
T CrB is predominantly detected in hard X-rays during two
active phases with periods of ∼1000 days and ∼5000 days, and
seems to be produced in the boundary layer due to variable
mass transfer (Iłkiewicz et al. 2016). Moreover, flickering in
the β-class symbiotic star AG Peg, whose soft emission may be
a result of CSWs, resembles those produced by accretion
processes in the X-ray spectra over 2013–2015 (Zhekov &
Tomov 2016). Rapid, low-amplitude UV flickering has been
seen in δ and β/δ sources, which seem to originate from
accretion processes rather than quasi-steady thermonuclear
burning on the white dwarf surface, or CSWs (Luna et al.
2013).

6. Conclusion

We have used hardness ratio and principal component
analysis to assess the spectral variability of the δ-type
symbiotic binary RT Cru seen in the archival multimission
data collected with various X-ray telescopes. Our key results
are as follows.
(i) Our hardness ratio analysis revealed that both the soft

(0.4–1.1 keV) and hard (2.6–10 keV) excesses of the source in
2012 are stronger than those in 2007, according to the Suzaku
observations over the two epochs. Moreover, hourly flickering
variations are seen in the XMM-Newton and NuSTAR light
curves in Figure 1, which contribute to the stochastic
variability. As seen in Figure 2, the long-term spectral
transition between the two Suzaku data sets is much more
predominant than those made by hourly variations.
(ii) Our statistical analysis reveals that the source experi-

enced statistically significant variations over the full band of
the XMM-Newton data, albeit with homogeneous hardness
states, as indicated by the von Neumann ratios (η) and the
normality tests. Some variations were also observed in both the
Suzaku/XIS1 observations, the first Suzaku/PIN data, and the
NuSTAR data, as confirmed by the von Neumann statistics.
Furthermore, the A–D and S–W normality tests confirm that
the X-ray source underwent a prolonged transition in its
spectral characteristics between the 2007 and 2012 observa-
tions with Suzaku. This finding is supported by the results of
normality tests conducted on HR1, HR2, and HR3, in addition
to the presence of some stochastic variations in HR1 of the
second Suzaku/XIS1 data set and HR3 of the NuSTAR
observation.
(iii) The primary PCA components derived from the time-

stacked Chandra HRC-S/LETG and XMM-Newton EPIC-pn
data likely suggest the presence of some thermal emission lines
from H-like and He-like ions, with strong features in the soft
excess, such as N VII Lyα, N VI Heα, O VIII Lyα, and O VII
Heα (see Figure 3). Our simulated XMM-Newton spectra
imply that changes in the amplitudes of the thermal emission
lines could lead to the similar PCA spectrum.
(iv) PCA of the two Suzaku XIS1 observations provides us

with the three spectral components. The first PCA spectrum
f1(E) likely corresponds to the line-of-sight absorbing material
since the corresponding light curve A1(t) rises with decreases in
the brightness S+M+H as seen in Figure 3. The second
component f2(E) is probably associated with an absorbed
continuum, consisting of a soft blackbody-like spectrum and a
hard spectrum. Based on our simulations of Suzaku spectra, the
X-ray variations are mostly caused by changes in the absorbing
columns, with some effects also owing to alterations in the
continuum. The last PCA spectrum f3(E) contains some spectral
features akin to those seen in f1(E) of the XMM-Newton data,
so it may be related to the heavily obscured, soft plasma
emission with ∼1.3 keV suggested by Danehkar et al. (2021)
using low-count Bayesian statistics. Additionally, a similar
collisional plasma temperature is derived from a phenomen-
ological model fitted to the reconstructed spectra of the first and
second PCA components of the Suzaku XIS1 data, as well as a
simple model matched to the XMM-Newton observation. Such
a thermal emission feature can be created with a wind velocity
of 1000 km s−1, similar to jets found in CH Cyg (Karovska
et al. 2007, 2010). Our simulations of the XIS1 spectra also
illustrate that some changes in the thermal plasma emission
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could lead to the third PCA component of Suzaku, resulting in
flickering-type variations.

(v) The Suzaku HXD-PIN and NuSTAR observations show
a power-law-like continuum, but there is no separate comp-
onent for the absorbing column in the hard excesses. This may
imply that the absorbing material mainly obscures the spectrum
below 4 keV, as evidenced by f1(E) of the Suzaku XIS1 data in
Figure 3. Moreover, PCA of the NuSTAR data also offers a
second component that may contain some emission features
similar to those seen in f1(E) of the XMM-Newton data and
f3(E) of the Suzaku XIS, with the energies corresponding to Ar
XVIII Lyα 3.3 keV, Ca Kα 3.7 keV, and Ca Kβ 4 keV.
However, we should caution that NuSTAR has a spectral
resolution much lower than those of XMM-Newton and
Suzaku XIS, which reduces the reliability of those line features
seen in the NuSTAR PCA spectrum.

(vi) Finally, our PCA study implies that the primary factor
contributing to the significant hardness transition observed
across the two Suzaku data sets (Figure 2) is mainly made by
changes in the absorbing material and partially because of the
source continuum. This might be associated with the fact that
hard X-ray flux significantly decreased in 2019, which could
have been because less material was accreting into the
degenerate white dwarf as proposed by Pujol et al. (2023).
Moreover, we found no resolved PCA component for the
obscuring material in other telescopes since it was not largely
variable over the course of those observations. Additionally, it
seems that the absorbing column may primarily affect the soft
excess (<3 keV), which is not covered by the energy ranges of
the Suzaku PIN and NuSTAR.

In summary, our eigenvector-based multivariate analysis of
the Suzaku data of RT Cru suggests that the hardness transition
seen over two epochs is related primarily to changes in the
absorbing material and partially to the X-ray brightness caused
by accretion processes. In addition, our analysis of the
multimission X-ray data taken with different telescopes
supports the likelihood of a soft thermal plasma emission
component, as previously proposed by Danehkar et al. (2021)
with Bayesian analysis, which may be heavily obscured by the
line-of-sight absorbing material as well as high levels of
background noise. A recent statistical approach by Zhang et al.
(2023) could not robustly constrain any soft-band emission
lines, but it did provide an upper confidence level of 1 keV for
the plasma temperature. Furthermore, changes in thermal
plasma emission from an accretion disk boundary layer likely
cause the flickering-type variations observed in this object.
Some future X-ray telescopes, such as the proposed Arcus
(Smith et al. 2016), with a much higher sensitivity below
1 keV, will be able to capture the emission features in the soft
band. Moreover, future high-spectral-resolution observations
with the recently launched telescope XRISM (Tashiro et al.
2020) will certainly help us disclose further details of the X-ray
spectral features of RT Cru.
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