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a b s t r a c t

An important loss effect in heterogeneous poroelastic Biot media is the dissipation mechanism due to
wave-induced fluid flow caused by mesoscopic scale heterogeneities, which are larger than the pore size
but much smaller than the predominant wavelengths of the fast compressional and shear waves. These
heterogeneities can be due to local variations in lithological properties or to patches of immiscible fluids.
For example, a fast compressional wave traveling across a porous rock saturated with water and patches
of gas induces a smaller fluid-pressure in the gas patches than in the water-saturated parts of the mate-
rial. This in turn generates fluid flow and slow Biot waves which diffuse away from the gas–water inter-
faces generating significant energy losses and velocity dispersion. To perform numerical simulations
using Biot’s equations of motion, it would be necessary to employ extremely fine meshes to properly rep-
resent these mesoscopic heterogeneities and their attenuation effects on the fast waves. An alternative
approach to model wave propagation in these type of Biot media is to employ a numerical upscaling pro-
cedure to determine effective complex P-wave and shear moduli defining locally a viscoelastic medium
having in the average the same properties than the original Biot medium. In this work the complex P-
wave and shear moduli in heterogeneous fluid-saturated porous media are obtained using numerical
gedanken experiments in a Monte Carlo fashion. The experiments are defined as local boundary value
problems on a reference representative volume of bulk material containing stochastic heterogeneities
characterized by their statistical properties. These boundary value problems represent compressibility
and shear tests needed to determine these moduli for a given realization. The average and variance of
the phase velocities and quality factors associated with these moduli are obtained by averaging over real-
izations of the stochastic parameters. The Monte Carlo realizations were stopped when the variance of
the computed quantities stabilized at an almost constant value. The approximate solution of the local
boundary value problems was obtained using a Galerkin finite element procedure, and the method
was validated by reproducing known solutions in the case of periodic layered media. For the spatial dis-
cretization, standard bilinear finite element spaces are employed for the solid phase, while for the fluid
phase the vector part of the Raviart–Thomas–Nedelec mixed finite element space of order zero was used.
Results on the uniqueness of the continuous and discrete problems as well as optimal a priori error esti-
mates for the Galerkin finite element procedure are derived. Numerical experiments showing the imple-
mentation of the procedure to estimate the average and variance of the fast compressional and shear
phase velocities and inverse quality factors in these kind of highly heterogeneous fluid-saturated porous
media are presented.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

A major cause of the attenuation levels observed in seismic data
from sedimentary regions is the mesoscopic loss mechanism,
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caused by heterogeneities in the rock and fluid properties greater
than the pore size but much smaller than the wavelengths of the
fast compressional and shear waves. When a compressional wave
travels through an heterogeneous fluid-saturated porous material,
the different regions may undergo different strains and fluid pres-
sures. This in turn generates fluid flow and diffusive Biot slow
waves inducing energy losses and velocity dispersion. The study
of this attenuation mechanism has motivated the interest and re-
search of many authors in this field, such as [22,23,8,17,14,5],
among others.
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Mesoscopic effects have been analyzed by using numerical sim-
ulation of wave propagation employing Biot’s equations of motion
[12,19]. One major problem of this approach is that even in the
hypothetical case in which the exact spatial distribution of the dif-
ferent constituents were known, extremely fine meshes would be
needed in order to properly define the mesoscopic scale heteroge-
neities, which makes this procedure computationally very expen-
sive or even not feasible.

In this paper we present an alternative approach to overcome
this difficulty. We propose to employ a finite element procedure
combined with a Monte Carlo approach to obtain the effective com-
plex P-wave and shear moduli in heterogeneous fluid-saturated
porous solids with heterogeneities in the fluid and petrophysical
properties described by stochastic fractals, allowing us to define
an effective viscoelastic medium behaving in the average like the
original medium.

The procedure consists in applying time-harmonic compress-
ibility and shear stresses to numerical rock samples associated
with a given realization of the stochastic parameters at a finite
number of oscillatory frequencies. The complex moduli are calcu-
lated by defining locally an equivalent viscoelastic solid having
the same attenuation and velocity dispersion than the original
fluid-saturated porous rock. Biot’s theory [3] is used to model the
response of the heterogeneous material to the applied stresses.
The procedure is a generalization of the ideas presented in
[22,23] to explain the attenuation effects suffered by compres-
sional waves travelling in partially saturated rocks for the idealized
cases of alternating layers saturated either with gas or water or for
a water-saturated rock containing spherical gas pockets.

For each realization of the stochastic parameters, the complex
moduli are obtained by solving numerically Biot’s equations of mo-
tion in the space-frequency domain employing a finite element
procedure, with appropriate boundary conditions representing
compressibility and shear gedanken laboratory experiments. These
complex moduli in turn allow us to obtain the corresponding
equivalent compressional and shear phase velocities and quality
factors for each frequency and realization.

The statistical properties of the computed equivalent phase
velocities and inverse quality factors were obtained by averaging
over the realizations of the stochastic parameters. The Monte Carlo
realizations were stopped when the variance of the computed
quantities stabilized at an almost constant value, allowing us to
determine effective phase velocities and quality factors of the fast
compressional and shear waves associated with an effective visco-
elastic medium behaving in the average as our original highly het-
erogeneous fluid filled porous medium.

The numerical procedure presented can be regarded as an
upscaling method to obtain the effect of the mesoscopic scale het-
erogeneities on the macroscale. For the compressional case the
algorithm was validated comparing the results with those obtained
using a White’s model which is valid for alternating layers of two
fluid-saturated porous sandstones [23]. For the shear case, the
algorithm was checked to yield the real shear modulus for the case
of uniform either gas or water saturation at the zero frequency
limit.

The organization of the paper is as follows. In Section 2, a re-
view of Biot’s theory of wave propagation in fluid-saturated poro-
elastic media is presented and the local boundary value problems
associated with the numerical gedanken experiments are formu-
lated. Section 3, presents a variational formulation of the boundary
value problems as well as uniqueness results. In Section 4, the fi-
nite element procedures to be employed are formulated. Section
5, is devoted to the derivation of a priori error estimates for the
numerical procedure, and Section 6 presents the Monte Carlo ap-
proach to determine the effective moduli for the heterogeneous
poroelastic fluid filled material with heterogeneities described by
fractal spectral density distributions. Section 7, presents numerical
experiments showing the validation of the procedure and its appli-
cation to determine the effective compressional and shear phase
velocities and inverse quality factors in the cases of a sandstone
with patchy gas–water saturation and a partially saturated
shale–sandstone mixture. Finally, the conclusions are drawn in
Section 8.

2. Review of Biot’s theory

We consider a porous solid saturated by a single phase, com-
pressible viscous fluid and assume that the whole aggregate is iso-
tropic. Let us ¼ ðus

i Þ and ~uf ¼ ð~uf
i Þ; i ¼ 1; . . . ; E denote the averaged

displacement vectors of the solid and fluid phases, respectively,
where E denotes the Euclidean dimension. Also let

uf ¼ /ð~uf � usÞ;

be the average relative fluid displacement per unit volume of bulk
material, with / denoting the effective porosity. Set u ¼ ðus; uf Þ
and note that

n ¼ �r � uf ;

represents the change in fluid content.
Let eijðusÞ be the strain tensor of the solid. Also, let

rij; i; j ¼ 1; . . . ; E, and pf denote the stress tensor of the bulk mate-
rial and the fluid pressure respectively. Following [3], the stress–
strain relations can be written in the form:

rijðuÞ ¼ 2leijðusÞ þ dijðkcr � us � aKavnÞ; ð1aÞ

pf ðuÞ ¼ �aKavr � us þ Kavn: ð1bÞ

The coefficient l is the shear modulus of the bulk material, consid-
ered to be equal to the shear modulus of the dry matrix. Also

kc ¼ Kc �
2
E
l; ð2Þ

with Kc being the bulk modulus of the saturated material. Following
[20,10] the coefficients in (1) can be obtained from the relations

a ¼ 1� Km

Ks
; Kav ¼

a� /
Ks
þ /

Kf

� ��1

; Kc ¼ Km þ a2Kav ; ð3Þ

where Ks;Km and Kf denote the bulk modulus of the solid grains
composing the solid matrix, the dry matrix and the saturant fluid,
respectively. The coefficient a is known as the effective stress coef-
ficient of the bulk material.

2.1. The equations of motion

Let qs and qf denote the mass densities of the solid grains and
the fluid and let

qb ¼ ð1� /Þqs þ /qf ;

denote the mass density of the bulk material. Let the positive defi-
nite matrix P and the nonnegative matrix B be defined by

P ¼
qbI qf I

qf I mI

 !
; B ¼

0I 0I

0I bI

� �
:

Here I denotes the identity matrix in RE�E. The mass coupling coef-
ficient m represents the inertial effects associated with dynamic
interactions between the solid and fluid phases, while the coeffi-
cient b includes the viscous coupling effects between such phases.
They are given by the relations

b ¼ g
k
; m ¼

Sqf

/
; S ¼ 1

2
1þ 1

/

� �
; ð4Þ
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where g is the fluid viscosity and k the absolute permeability. S is
known as the structure or tortuosity factor. Next, let LðuÞ be the
second order differential operator defined by

LðuÞ ¼ r � rðuÞ;�rpf ðuÞ
� �

:

Then if x ¼ 2pf is the angular frequency, in the absence of body
forces Biot’s equations of motion, stated in the space-frequency do-
main are [1,2]

�x2Puðx;xÞ þ ixBuðx;xÞ �Lðuðx;xÞÞ ¼ 0: ð5Þ

It was shown by Biot [1,2] that in this type of media two compres-
sional waves, denoted here as P1 and P2, and one shear or S wave
can propagate. The P1 and S waves correspond to the classical com-
pressional and shear waves propagating in elastic or viscoelastic
isotropic solids. The additional P2 slow mode is a wave strongly
attenuated in the low-frequency range, associated with the motion
out of phase of the solid and fluid phases.

2.2. The numerical gedanken experiments

Field measurements show that permeability values in reservoir
rocks have a high degree of spatial variability and exhibit long
range correlations. It is also known that these permeability fluctu-
ations are well described by stochastic fractals [7].

It is also the case that in hydrocarbon reservoirs, regions of non-
uniform patchy saturation occur at gas–oil and gas–water contacts.
By using computerized tomography scans (CT scans) it is possible to
visualize the fluid distribution and spatial heterogeneities in real
rocks [4]. Helle et al. [12] used fractal models as the von Karman cor-
relation function [9] calibrated by the CT scans to perform numerical
wave propagation simulations using Biot’s equations of motion.

These are two examples of highly heterogeneous saturated por-
ous media where the sizes of the heterogeneities are small as com-
pared with the wavelengths of the fast compressional and shear
waves. Consequently, solving Biot’s equations of motion in these
type of media can be computationally very expensive or even not
feasible due to the extremely fine meshes that would be needed
to define the local (mesoscopic scale) heterogeneities.

Thus the objective of this work is to define a numerical upscal-
ing procedure to determine in a statistical framework the complex
plane wave and shear moduli associated with a representative
sample of our heterogenous material. This procedure will allow
in turn to define an effective viscoelastic solid where its complex
moduli carry over to the macroscale the effects due to the meso-
scopic scale heterogeneities.

For that purpose, the space-frequency formulation of Biot’s
equations of motion combined with a Monte Carlo approach is par-
ticularly convenient, since can handle complex geometries and
deal with extremely large variability in the stochastic parameters.
The proposed algorithm is described as follows.

Eq. (5) will be solved in the 2D case on a reference square
X ¼ ð0; LÞ2 with boundary C in the ðx; yÞ-plane containing a repre-
sentative set of stochastic heterogeneities with a given distribution
and size. Thus, in a Monte Carlo fashion, (5) will be solved for a fi-
nite number of frequencies in the range of interest and for a large
number of realizations of the stochastic parameters, with bound-
ary conditions representing compressibility and shear tests that
after averaging over realizations will yield the moments (average
and variance in this case) of the phase velocities and inverse of
quality factors of our heterogeneous material. To stop the Monte
Carlo procedure, a criteria based on the stabilization of the vari-
ance of the computed phase velocities and inverse quality factors
was employed. This criteria was also used in [11] to obtain the mo-
ments of the computed variables for stochastic modeling of vari-
ably saturated transient flow in fractal soils.
Set C ¼ CL [ CB [ CR [ CT , where

CL ¼ fðx; yÞ 2 C : x ¼ 0g; CR ¼ fðx; yÞ 2 C : x ¼ Lg;

CB ¼ fðx; yÞ 2 C : y ¼ 0g; CT ¼ fðx; yÞ 2 C : y ¼ Lg:

Denote by m the unit outer normal on C and let v be a unit tangent
on C so that fm;vg is an orthonormal system on C.

For obtaining the complex plane wave modulus of our fluid-sat-
urated porous medium, let us consider the solution of (5) with the
following boundary conditions

rðuÞm � m ¼ �DP; ðx; yÞ 2 CT ; ð6Þ
rðuÞm � v ¼ 0; ðx; yÞ 2 CT ; ð7Þ
rðuÞm � v ¼ 0; ðx; yÞ 2 CL [ CR; ð8Þ
us � m ¼ 0; ðx; yÞ 2 CL [ CR; ð9Þ
us ¼ 0; ðx; yÞ 2 CB; ð10Þ
uf � m ¼ 0; ðx; yÞ 2 C: ð11Þ

For this set of boundary conditions the solid is not allowed to move
on the bottom boundary CB, the fluid is not allowed to flow out of
the sample, a uniform compression is applied on the boundary CT

and no tangential external forces are applied on the boundaries
CL [ CR [ CT . These boundary conditions can be associated with a
laboratory experiment for a periodic sample obtained by a mirror
reflection with respect to the x-axis of the domain X, enclosing
the periodic sample in a thin impermeable jacket and applying a
uniform compression on the boundary CT and its corresponding im-
age boundary after the indicated reflection. In the case of periodic
layered media, this experiment mimics exactly the one described
by White et al. in [23]. In Section 3, we show that uniqueness holds
for (5) with the boundary conditions (6)–(11) for x > 0 sufficiently
small in the sense that x satisfies the condition (34).

Denoting by V the original volume of the sample, its (complex)
oscillatory volume change, DVðxÞ, allows us to define the equiva-
lent undrained complex plane wave modulus McðxÞ, by using the
relation

DVðxÞ
V

¼ � DP
McðxÞ

; ð12Þ

valid for a viscoelastic homogeneous medium in the quasistatic
case.

After solving (5) with the boundary conditions (6)–(11), the ver-
tical displacements us

yðx; L;xÞ on CT allow us to obtain an average
vertical displacement us;T

y ðxÞ suffered by the boundary CT . Then,
for each frequency x, the volume change produced by the com-
pressibility test can be approximated by DVðxÞ � Lus;T

y ðxÞ, which
enable us to compute the equivalent complex plane wave modulus
McðxÞ by using the relation (12). The corresponding complex com-
pressional velocity is

VpcðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
McðxÞ

�qb

s
; ð13Þ

where �qb is the average bulk density of the sample.
The following relations allow us to estimate the equivalent com-

pressional phase velocity VpðxÞ and quality factor Q pðxÞ in the
form [19]:

VpðxÞ ¼ Re
1

VpcðxÞ

� �� ��1

;
1

Q pðxÞ
¼ ImðVpcðxÞ2Þ

ReðVpcðxÞ2Þ
ð14Þ

For obtaining the equivalent complex shear modulus of our fluid-
saturated porous medium, let us consider the solution of (5) with
the following boundary conditions
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� rðuÞm ¼ g; ðx; yÞ 2 CT [ CL [ CR; ð15Þ
us ¼ 0; ðx; yÞ 2 CB; ð16Þ
uf � m ¼ 0; ðx; yÞ 2 C; ð17Þ

where

g ¼
ð0;DpÞ; ðx; yÞ 2 CL;

ð0;�DpÞ; ðx; yÞ 2 CR;

ð�Dp; 0Þ; ðx; yÞ 2 CT :

8><>:
Uniqueness for (5) with the boundary conditions (15)–(17) holds
for any x > 0 satisfying the condition (34) (c.f. Section 3). The
change in shape of the rock sample allows to recover its equivalent
complex shear modulus �lcðxÞ by using the relation

tgðhðxÞÞ ¼ Dp
�lcðxÞ

; ð18Þ

where hðxÞ is the departure angle between the original positions of
the lateral boundaries and those after applying the shear stresses
(see, for example, [13]). Eq. (18) holds for this experiment in a vis-
coelastic homogeneous media in the quasistatic approximation.

The horizontal displacements us
xðx; L;xÞ at the top boundary CT

allow us to obtain, for each frequency, an average horizontal dis-
placement us;T

x ðxÞ suffered by the boundary CT . This average value
allows us to approximate the change in shape suffered by the sam-
ple, given by tgðhðxÞÞ � us;T

x ðxÞ=L, which from (18) let us estimate
�lcðxÞ.

The complex shear velocity is given by

VscðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
lcðxÞ

qb

s
ð19Þ

and the equivalent shear phase velocity VsðxÞ and (inverse) quality
factor QsðxÞ are estimated using the relations

VsðxÞ ¼ Re
1

VscðxÞ

� �� ��1

;
1

Q sðxÞ
¼ ImðVscðxÞ2Þ

ReðVscðxÞ2Þ
: ð20Þ
3. A variational formulation

In order to state a variational formulation for (5) and either (6)–
(11) or (15)–(17) we need to introduce some notation. For X � Rd

with boundary oX, let ð�; �ÞX and h�; �ioX denote the complex L2ðXÞ
and L2ðoXÞ inner products for scalar, vector, or matrix valued func-
tions. Also, for s 2 R, k � ks;X and j � js;X will denote the usual norm
and seminorm for the Sobolev space HsðXÞ. In addition, if X ¼ X
or X ¼ C, the subscript X may be omitted such that ð�; �Þ ¼ ð�; �ÞX
or h�; �i ¼ h�; �iC. Also, let us introduce the spaces

H1;P
0;BðXÞ ¼ fv 2 ½H

1ðXÞ�2 : v � m ¼ 0 on CL [ CR;v ¼ 0 on CBg;

H1;T
0;BðXÞ ¼ fv 2 ½H

1ðXÞ�2 : v ¼ 0 on CBg;

H0ðdiv;XÞ ¼ fv 2 ½L2ðXÞ�2 : r � v 2 L2ðXÞ;v � m ¼ 0 on Cg;

and

H1
0ðdiv;XÞ ¼ fv 2 ½H1ðXÞ�2 : r � v 2 H1ðXÞ; v � m ¼ 0 on Cg:

The spaces H1;P
0;B and H1;T

0;B are closed subspaces of H1ðXÞ. Also, the
norm in H0ðdiv;XÞ is given by

kvkHðdiv;XÞ ¼ kvk2
0 þ kr � vk2

0

h i1=2
:

Let us introduce the spaces

VðPÞ ¼ H1;P
0;BðXÞ

h i2
� H0ðdiv;XÞ; VðTÞ ¼ H1;T

0;BðXÞ
h i2

� H0ðdiv;XÞ:
Then multiply Eq. (5) by v ¼ ðvs;v f Þ 2VðPÞ, use integration by parts
and apply the boundary conditions (6)–(8) to see that the solution
uðPÞ ¼ ðuðs;PÞ; uðf ;PÞÞ 2VðPÞ of (5) and (6)–(11) satisfies the weak
form:

KðuðPÞ; vÞ ¼ � DP;v s � mh iCT ; 8v ¼ vs;v f
� �

2VðPÞ; ð21Þ

where for u ¼ ðus;uf Þ; v ¼ ðvs;v f Þ 2 ½H1ðXÞ�2 � Hðdiv;XÞ, the bilinear
form Kðu;vÞ is defined by

Kðu; vÞ ¼ �x2 Pu; vð Þ þ ix Bu;vð Þ þ
X
l;m

slmðuÞ; elmðv sÞð Þ

� pf ðuÞ;r � v f
� �

¼ �x2 Pu; vð Þ þ ix buf
; v f

	 

þ D~�ðuÞ; ~�ðvÞð Þ: ð22Þ

In (22), the matrix D and the column vector ~eððuÞÞ are defined by

D ¼

kc þ 2l kc aKav 0
kc kc þ 2l aKav 0

aKav aKav Kav 0
0 0 0 4l

0BBB@
1CCCA; ~eðuÞ ¼

e11ðusÞ
e22ðusÞ
r � uf

e12ðusÞ

0BBB@
1CCCA:

The term ðD~�ðuÞ; ~�ðvÞÞ in (22) is associated with the strain energy of
our system, so that the matrix D must be positive definite, with en-
tries satisfying a set of conditions that can be determined as follows.
Note that

D~�ðuÞ; ~�ðvÞð Þ ¼
Z

X
ðkc þ lÞðr � usÞ2 þ lðe11 � e22Þ2 þ 4le2

12

h
þ 2aKavr � usr � uf þ Kavðr � uf Þ2

i
dx: ð23Þ

Thus the choice r � us ¼ r � uf ¼ 0; e11 ¼ e22 in (23) yields the
condition

l > 0: ð24Þ

Next, the choice e11 ¼ e22; e12 ¼ 0 reduces (23) to

D~�ðuÞ; ~�ðvÞð Þ ¼
Z

X
ðkc þ lÞðr � usÞ2 þ 2aKavr � usr � uf
h

þ Kavðr � uf Þ2
i
dx: ð25Þ

Thus we obtain the additional conditions

kc þ l� a2Kav > 0; ð26aÞ
Kav > 0: ð26bÞ

Hence (24), (26a) and (26b) are necessary and sufficient conditions
for the matrix D to be positive definite. The condition (26a) imposes
that the inverse of the jacketed compressibility be strictly positive.
The jacketed compressibility test is an experiment in which a sam-
ple of bulk material is subjected to an hydrostatic compression
while the fluid pressure is held constant, see [3].

Similarly, the solution uðTÞ ¼ ðuðs;TÞ;uðf ;TÞÞ 2VðTÞ of (5) and (15)–
(17) satisfies the weak form:

KðuðTÞ; vÞ ¼ g;v sh iCT ; 8v ¼ v s;v f
� �

2VðTÞ: ð27Þ

Existence of the solution of the boundary value problem (5) and
either (6)–(11) or (15)–(17) and its variational formulations (21)
or (27) will be assumed.

Let us analyze the uniqueness of the solution uðPÞ of (21). Set
DP ¼ 0 and choose v ¼ uðPÞ in (21) to obtain the equation

�x2 PuðPÞ; uðPÞ
� �

þ ix buðf ;PÞ; uðf ;PÞ
	 


þ D~eðuðPÞÞ; ~eðuðPÞÞ
� �

¼ 0: ð28Þ

Choose the imaginary part in (28) to see that

kuðf ;PÞk2
0 ¼ 0: ð29Þ
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Hence, (28) reduces to

�x2 qbuðs;PÞ; uðs;PÞ
� �

þ bD~~eðuðs;PÞÞ; ~~eðuðs;PÞÞ
	 


¼ 0; ð30Þ

where

bD ¼ kc þ 2l kc 0
kc kc þ 2l 0
0 0 4l

0B@
1CA; ~~eðuðs;PÞÞ ¼

e11ðuðs;PÞÞ
e22ðuðs;PÞÞ
e12ðuðs;PÞÞ

0B@
1CA:

Next, recall that for any v vanishing on a subset of positive measure
of C, (in our case CB) using Korn’s second inequality [16] it can be
shown that [6]

kjvkj ¼
X

kl

Z
X
jeklðvÞj2dX

 !1=2

ð31Þ

defines on H1;P
0;BðXÞ a norm equivalent to the H1-norm, so that for

some positive constants C1; C2,

C1kvk1 6 kjvkj 6 C2kvk1; 8v 2 H1;P
0;BðXÞ: ð32Þ

Consequently, if kminðbDÞ is the minimum eigenvalues of the matrixbD and qmax
b the maximum value of qbðx; yÞ, it follows from (30)

that

0 P �x2qmax
b kuðs;PÞk

2
o þ kminðbDÞC2

1kuðs;PÞk
2
1

P kminðbDÞC2
1kruðs;PÞk2

0 þ kminðbDÞC2
1 �x2qmax

b

	 

kuðs;PÞk2

0

P kminðbDÞC2
1kruðs;PÞk2

0; ð33Þ

provided x satisfies the condition

x < C1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kminðbDÞ
qmax

b

s
: ð34Þ

Next, recall that for any v 2 H1;P
0;BðXÞ Poincare’s inequality holds, i.e.,

kvk0 6 C3krvk0: ð35Þ

Hence combining (33) and (35) it follows that

kuðs;PÞk0 ¼ 0: ð36Þ

Thus (29) and (36) yield uniqueness for the solution of (21) for
x > 0 satisfying (34).

Uniqueness of the solution uðTÞ of (27) can be demonstrated in
analogous fashion, with identical condition as in (34) on the range
of frequencies. Hence we conclude the validity of the following
theorem.

Theorem 1. The solution of problems (21) and (27) is unique for any
x > 0 satisfying the condition (34).
4. The finite element procedures

Let ThðXÞ be a non-overlapping partition of X into rectangles Xj

of diameter bounded by h such that X ¼ [J
j¼1Xj. Different finite ele-

ment spaces, denoted Nh;P
0;B � H1;P

0;BðXÞ and Nh;T
0;B � H1;T

0;BðXÞwere used
to approximate the solid displacement vector for the compressibil-
ity and shear tests models, respectively. They are defined as
follows

Nh;P
0;B ¼ fv : vjXj

2 P1;1 � P1;1; v � m ¼ 0 on CL [ CR; v

¼ 0 on CBg \ ½C0ðXÞ�2;

Nh;T
0;B ¼ fv : vjXj

2 P1;1 � P1;1; v ¼ 0 on CBg \ ½C0ðXÞ�2;

where P1;1 denotes the polynomials of degree not greater than 1 on
each variable.
To approximate the fluid displacement a closed subspace of the
vector part of the Raviart–Thomas–Nedelec space of zero order, de-
noted Wh

0, was employed [18,15]. It is defined as

Wh
0 ¼ fv : vjXj

2 P1;0 � P0;1; v � m ¼ 0 on Cg:

Let

PðPÞh : H2ðXÞ \H1;P
0;BðXÞ

h i2
!Nh;P

0;B; PðTÞh : H2ðXÞ \H1;T
0;BðXÞ

h i2
!Nh;T

0;B

be the interpolant operators associated with the spaces Nh;P
0;B and

Nh;T
0;B , respectively. More specifically, the degress of freedom associ-

ated with PðPÞh u are the vertices of the rectangles Xj and if b is a
common node of the adjacent rectangles Xj and Xk then
ðPðPÞh uÞjðbÞ ¼ ðP

ðPÞ
h uÞkðbÞ, where ðPðPÞh uÞj denotes the restriction of

the interpolant PðPÞh u of u to Xj.
Also, let

Qh : H1
0ðdiv;XÞ !Wh

0 ð37Þ

be the projection defined by

ðQ hw� wÞ � m;1
D E

B
¼ 0; B ¼ oXj \ oXk or B ¼ oXj \ oX:

It is well known that, for all u 2 ½H2ðXÞ \ H1;P
0;BðXÞ�

2
;

w 2 ½H2ðXÞ \ H1;T
0;BðXÞ�

2 and g 2 H1
0ðdiv;XÞ [6,15,18]

ku�PðPÞh uk0 þ hku�PðPÞh uk1 6 Ch2kuk2; ð37aÞ
kw�PðTÞh wk0 þ hkw�PðTÞh wk1 6 Ch2kwk2; ð37bÞ
kg� Q hgk0 6 Chkgk1; ð37cÞ
kg� Q hgkHðdiv;XÞ 6 Ch kgk1 þ kr � gk1ð Þ: ð37dÞ

Let us define the finite element spaces

Vðh;PÞ ¼Nh;P
0;B �Wh

0; Vðh;TÞ ¼Nh;T
0;B �Wh

0:

Then the finite element procedure to compute the approximate
solution of (21) is defined as follows: find
uðh;PÞ ¼ ðuðs;h;PÞ; uðf ;h;PÞÞt 2Vh;P such that

Kðuðh;PÞ; vÞ ¼ � DP;v s � mh iCT ; v ¼ vs;v f
� �

2Vðh;PÞ: ð38Þ

Also, the finite element procedure to compute the approximate
solution of (27) is: find uðh;TÞ ¼ ðuðs;h;TÞ;uðf ;h;TÞÞt 2Vðh;TÞ such that

Kðuðh;TÞ; vÞ ¼ g;v sh iCT ; v ¼ vs;v f
� �

2Vðh;TÞ: ð39Þ

Since uðh;PÞ 2 H1;P
0;B;u

ðh;TÞ 2 H1;T
0;B , uniqueness for the discrete problems

(38) and (39) follows with the same argument than for the contin-
uous case provided the frequency x satisfies the constraint (34).
Existence follows from finite dimensionality. This result is stated
in the following theorem.

Theorem 2. There exists a unique solution of problems (38) and (39)
for any x > 0 satisfying the condition (34).
5. Error estimates for the finite element procedures

We will derive a priori error estimates for the procedure (38).
The corresponding estimates for the procedure (39) follow with
the same argument.

First, using (32) it follows that for u ¼ ðus;uf Þ 2VP , the bilinear
form K satisfies the Garding-type inequality

Re Kðu;uÞð ÞP kminðDÞ kjuskj2 þ kr � uf k2
0

	 

�x2kmaxðPÞ kusk2

0 þ kuf k2
0

	 

P C4 kusk2

1 þ kuf k2
0 þ kr � uf k2

0

	 

� C5ðxÞkuf k2

0; ð40Þ



2072 J.E. Santos et al. / Comput. Methods Appl. Mech. Engrg. 198 (2009) 2067–2077
where

C4 ¼min
1
2

kminðDÞC2
1; kminðDÞ

� �
; C5ðxÞ ¼ x2kmaxðPÞ þ kminðDÞ

provided the frequency x is small in the sense that satisfies the
condition

x <
kminðDÞC1

2kmaxðPÞ

� �1
2

: ð41Þ

In the equations above kmaxðPÞ denotes the maximum eigenvalue of
the matrix P.

Also, K is VðPÞ-continuous, i.e.,

jKðu; vÞj 6 C6ðxÞ kusk1kv sk1 þ kr � usk0kr � v f k0 þ kuf k0kv f k0

� �
8u

¼ ðus; uf Þ;v ¼ ðvs;v f Þ 2VP :

ð42Þ
Next set

e ¼ uðh;PÞ � uðPÞ ¼ ðes; ef Þ

and subtract (21) from (38) to obtain the error equation

Kðe;vÞ ¼ 0; v ¼ vs;v f
� �

2Vðh;PÞ: ð43Þ

Take v ¼ uP � uh;P þ w� uP ;w ¼ ðPðPÞh uðs;PÞ;Qhuðf ;PÞÞ 2Vðh;PÞ in (43) to
get

Kððes; ef Þ; ðes; ef ÞÞ ¼ K ðes; ef Þ; ðuðs;PÞ �PðPÞh uðs;PÞ; uðf ;PÞ � Q ðPÞh uðf ;PÞÞ
	 


:

ð44Þ
Next take imaginary part in (44) an use (42) to see that

Im Kðe; eÞð Þ ¼ xðbef
; ef Þ

6 jK ðes; ef Þ; ðuðs;PÞ �PðPÞh uðs;PÞÞ; ðuðf ;PÞ � Q ðPÞh uðf ;PÞÞ
	 


j

6 C6ðxÞ kesk1kus;P �PðPÞh uðs;PÞk1

	
þ kr � ef k0kr � uf ;P � Q huðf ;PÞ

� �
k0

þ ef k0kuf ;P � Q huðf ;PÞk0

�� �
ð45Þ

Thus, using the approximating properties (37) in (45) yields the
inequality

kef k2
0 6 C7ðxÞh kesk1kus;Pk2 þ kr � ef ;Pk0kr � uðf ;PÞk1 þ kef k0kuðf ;PÞk1

� �
:

ð46Þ

Next, take real part in (44) and use the Garding inequality (40) and
the estimates (42) and (46) to see that

C4 kesk2
1þkef k2

0þkr�ef k2
0

	 

6Re K ðes;ef Þ;ðuðs;PÞ �PðPÞh uðs;PÞÞ;ðuðf ;PÞ �Q ðPÞh uðf ;PÞÞ

	 
	 

þC5ðxÞkef k2

0

6C8ðxÞ kesk1kus;P�PðPÞh uðs;PÞk1

	
þ r�ef k0kr� uf ;P�Q ðPÞh Þu

ðf ;PÞ
	 


k0þkef k0kuf �Q ðPÞh Þu
ðf ;PÞk0

��� 

þC9ðxÞh kesk1kuðs;PÞk2þkr�ef k0kr�uðf ;PÞk1þkef k0kuðf ;PÞk1

� �
:

ð47Þ
Hence, apply the approximating properties (37) in (47) to obtain

C4 kesk2
1 þ kef k2

0 þ kr � ef k2
0

	 

6 C10ðxÞ h2 kuðs;PÞk2

2 þ kuðf ;PÞk
2
1 þ kr � uðf ;PÞk2

1

h i	
þ d kesk2

1 þ kef k2
0 þ kr � ef k2

1

h i

: ð48Þ

Finally take d small in (48) to obtain the estimate

kesk1þkef k0þkr � ef k0 6 C11ðxÞh kuðs;PÞk2þkuðf ;PÞk1þkr � uðf ;PÞk1

� �
:

ð49Þ
With identical argument, estimate (49) can be derived for the erroree ¼ uðh;TÞ � uðTÞ.
Thus we conclude the validity of the following theorem.

Theorem 3. The solutions uðh;PÞ;uðh;TÞ of problems (38) and (39)
satisfy the following a priori error estimates

kuðs;h;jÞ � uðs;jÞk1 þ kuðf ;h;jÞ � uðf ;jÞk0 þ kr � uðf ;h;jÞ � uðs;jÞ
� �

k0

6 C11ðxÞh kuðs;jÞk2 þ kuðf ;jÞk1 þ kr � uðf ;jÞk1

� �
; j ¼ P; T: ð50Þ

for any x > 0 satisfying the condition (41).
6. A Monte Carlo approach for stochastic fractal parameter
distributions

A precise knowledge of the spatial distribution of the rock heter-
ogeneities at mesoscopic scales may not be feasible. Instead, they
can be represented as stochastic functions (parameters) with given
spectral density distributions. In this sense, to obtain significant val-
ues for the effective complex moduli in highly heterogeneous fluid-
saturated porous media, we propose to apply the numerical gedan-
ken experiments in a Monte Carlo fashion. Thus, the compressibility
and shear tests are applied to representative volumes of bulk mate-
rial containing stochastic heterogeneities characterized by fractal
spectral density distributions, and the boundary value problems
are solved for each realization. The means and variances of the phase
velocities and inverse quality factors associated with the complex
moduli are obtained by averaging over realizations of the stochastic
parameters, and they represent the statistical behavior of the re-
sponse of the porous rocks under consideration.

The generation of these kind of heterogeneities involves the use
of a stochastic fractal field, based on the so-called von Karman self-
similar correlation functions. These models are widely used in the
statistical characterization of heterogeneities for different
applications.

Following [9] and more recently [21], we consider a particular
case for which the spectral density of the stochastic field is given
by:

Sdðkx; kyÞ ¼ S0ð1þ k2a2Þ�ðHþE=2Þ ð51Þ

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q
is the radial wavenumber, a the correlation

length, H is a self-similarity coefficient ð0 < H < 1Þ and S0 is a nor-
malization constant. Eq. (51) corresponds to a fractal process of
dimension D ¼ Eþ 1� H at scales smaller than a.

For a given realization of the stochastic parameters, the numer-
ical problem (5) with either (6)–(11) or (15)–(17) as boundary con-
ditions was solved for a finite number of frequencies
xm;m ¼ 1; . . . ;NF in the range of interest, from where the values
of Vn

pðxmÞ;Vn
s ðxmÞ;1=Q n

pðxmÞ and 1=Q n
s ðxmÞ were obtained. This

procedure was repeated for a large number of realizations
n ¼ 1; . . . ;NR, and the statistical behavior of the phase velocities
and inverse quality factors after NR realizations was analyzed by
computing the mean and variance of these quantities in the form:

bðxm;NRÞh i ¼ 1
NR

XNR

n¼1

bnðxmÞ; b ¼ Vp;Vs;1=Qp;1=Q s; ð52Þ

r2
bðxm;NRÞ ¼

1
ðNR � 1Þ

XNR

n¼1

bnðxmÞ � bðxm;NRÞh i½ �2: ð53Þ

To analyze the convergence of the Monte Carlo approach in terms of
the number of realizations NR, the frequency average of the vari-
ances was computed by

kr2
bðNRÞk ¼

1
NF

XNF

j¼1

r2
bðxj;NRÞ

" #1=2

; b ¼ Vp;Vs;1=Q p;1=Qs: ð54Þ



Table 1
Physical properties of the solid materials used in the numerical examples.

Sandstone 1 Sandstone 2 Shale

Ks 37 GPa 37 GPa 25 GPa
qs 2650 kg/m3 2650 kg/m3 2550 kg/m3

/ 0.3 0.2 0.3
Km 4.8 GPa 12.1 GPa 3.3 GPa
l 5.7 GPa 14.4 GPa 1.2 GPa
k 1 Darcy 0.23 Darcy 1:5� 10�5 Darcy

Table 2
Physical properties of the fluids used in the numerical examples.

Water Gas

Kf 2.25 GPa 0.012 GPa
3 3
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As indicated before, the Monte Carlo simulations were stopped
when the variance (54) of the computed quantities stabilized at
an approximate constant value defined in terms of a given
tolerance.

Remark 1. The size of the representative volume, i.e. the compu-
tational domain to be used in the numerical experiments, is not
arbitrary: the side length L has to be big enough to contain a
significant number of mesoscopic scale heterogeneities but, at the
same time, it has to be much smaller than the wavelengths
associated with each excitation frequency. To find an upper bound
for L we checked that the compressibility and shear tests applied to
homogeneous samples of side length L, composed of any of the
different materials forming the heterogeneous medium, give
negligible attenuation and velocity dispersion in the frequency
range under consideration.
0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

0  20  40  60  80  100

1/
Q

p

 Frequency (Hz)

 Compressibility test 
White model

Fig. 2. P-wave inverse quality factor obtained from the compressibility test (dots)
and using White’s theory (line) for frequencies lying between 0 and 100 Hz.

qf 1040 kg/m 78 kg/m
g 0.003 Pa s 0.00015 Pa s
7. Numerical experiments

7.1. Validation of the procedure

First, to validate the proposed methodology, Figs. 1 and 2 dis-
play the results of the compressibility test to obtain the P-wave
phase velocities and inverse of quality factors for the case in which
the sample is a periodic media consisting of alternating layers of
equal thickness 0.2 m saturated with either gas or water. The phys-
ical properties of the solid matrix are taken constant in all the do-
main, and correspond to the sandstone 1 in Table 1, while the
physical properties of the fluids (water and gas) are given in Table
2. We compare the phase velocities and inverse quality factors ob-
tained using our numerical approach for frequencies between 0
and 100 Hz with the corresponding values calculated as indicated
in Appendix A using the theory of [23] but, in the last case, consid-
ering a periodic medium composed of alternating layers of equal
thickness 0.4 m saturated with either gas or water. This compari-
son is valid because the boundary conditions (6)–(11) for the com-
pressibility test can be associated with a compression similar to
that proposed by [23], but applied to a periodic sample obtained
by a mirror reflection with respect to the x-axis of the domain X.
As can be observed in Figs. 1 and 2, the computed values are in
excellent agreement with those predicted by White’s theory.

In the case of the shear modulus and for uniform either gas or
water saturation, the code was checked to yield the real shear
modulus at the zero limit frequency.
 2.48

 2.5

 2.52

 2.54

 2.56

 2.58

 2.6

 2.62

 2.64

 2.66

0  20  40  60  80  100

V
p 

(K
m

/s
)

 Frequency (Hz)

 Compressibility test 
White model

Fig. 1. P-wave phase velocity obtained from the compressibility test (dots) and
using White’s theory (line) for frequencies lying between 0 and 100 Hz.
7.2. The patchy gas–water saturation case

An interesting case arise in hydrocarbon reservoirs, where re-
gions of non-uniform patchy saturation occur at gas–water con-
tacts. Patchy saturation patterns produce very important
mesoscopic effects at the seismic band of frequencies, as shown
by White in [22].

In order to study these effects, we consider porous samples with
spatially variable gas–water distribution in the form of irregular
patches fully saturated with gas and zones fully saturated with
water. We consider that the domain X is a square of side length
20 cm, and the partition Th is composed of 75� 75 squares Xj.
For each computation, the excitation frequency is varied from 0
to 900 Hz using Nf ¼ 20 equally spaced values. The solid matrix
is the sandstone 1 with properties given in Table 1, while the phys-
ical parameters of the fluids are those given in Table 2.

To generate realizations of this type of binary fluid distributions
we proceed as follows. The first step to generate a patchy fluid dis-
tribution is to assign to each subdomain Xj of the partition Th a
pseudo-random number using a generator with uniform distribu-
tion associated to a given seed number. This random field is Fourier
transformed to the spatial wavenumber domain and its amplitude
spectrum is filtered using Eq. (51). The result is then transformed
back to the spatial domain, obtaining a micro-heterogeneous water
saturation model SðjÞw ; j ¼ 1; . . . ; J.
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Next, to assign to each cell Xj pure water or pure gas, we choose
a threshold value S� so that for each subdomain Xj where SðjÞw 6 S�

we assume that such subdomain is fully saturated with gas, while
if SðjÞw > S� we consider that Xj is fully saturated with water. In this
way, the patchy saturation model is constructed and an overall
water saturation Sw is obtained for the computational rock sample.

We analyze a set of experiments involving NR ¼ 70 realizations,
choosing S� in each case so that the overall gas saturation ð1� SwÞ
of the 70 realizations are fixed and equal to 0.1. The correlation
length a is taken to be 4 cm. An example of the gas–water distribu-
tion for a particular realization is illustrated in Fig. 3, where the
black zones correspond to pure gas saturation and the white ones
to pure water saturation.

To illustrate the loss mechanism being analyzed, Fig. 4 shows
the normalized fluid-pressure amplitude field induced by the com-
Fig. 3. Gas–water distribution for a given realization. Black zones correspond to
pure gas saturation and the white ones to pure water saturation. The overall gas
saturation is 0.1.
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Fig. 4. Normalized fluid-pressure amplitude for the fluid distribution shown in
Fig. 3. The excitation frequency is 190 Hz.
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Fig. 5. Averaged variance of the compressional phase velocity as function of the
total number of realizations.
pressibility experiment at a frequency of 190 Hz for the particular
realization shown in Fig. 3. Comparing Figs. 3 and 4 it can be seen
that the compressibility test induces greater fluid pressures in the
water-saturated zones than in the gas-saturated ones, which is re-
lated to the fact that the bulk modulus of the gas is much smaller
than that of the water. The associated fluid-pressure gradient,
which has its greatest values in the interfaces between the zones
fully saturated with gas and those fully saturated with water, pro-
duces fluid flow and Biot slow waves which difusse away from the
gas–water interfaces generating energy losses and velocity disper-
sion on the fast compressional waves.

Next, we show the results of applying the Monte Carlo proce-
dure to determine the effective complex moduli for patchy satura-
tion distributions. Fig. 5 shows the variance of the compressional
phase velocity averaged in the whole range of frequencies for dif-
ferent values of NR. It can be observed that after 70 realizations this
parameter stabilizes at an almost constant value, with a similar
behavior observed for the inverse quality factor. This fact suggests
that the effective compressional velocity and inverse quality factor
as a function of frequency, defined as the mean compressional
velocity and mean compressional inverse quality factor after 70
realizations as shown in the next two figures are representative
physical parameters for the kind of media under consideration.
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Fig. 6. Effective compressional phase velocity as function of frequency (solid lines).
Dotted lines indicate the corresponding standard deviations.
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Fig. 8. Distribution of shale and sandstone. Black zones correspond to pure shale,
and the white ones to pure sandstone.
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Fig. 9. Equivalent P-wave phase velocity as function of frequency.
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Fig. 6 displays the mean compressional velocity versus fre-
quency after 70 realizations and their corresponding standard
deviation (which are indicated with dotted lines). We observe an
important dispersion of the compressional phase velocity in the
whole frequency range. Fig. 7 illustrates the behavior of the mean
compressional inverse quality factor versus frequency and their
corresponding standard deviation; we can see that the mesoscopic
attenuation is very important for almost all the frequency range
under consideration, with a maximum value of about 12 at
250 Hz showing the drastic amplitude losses that would suffer
compressional waves propagating through these kind of media.

In order to obtain the effective complex shear modulus of these
samples we also applied the shear tests to the same set of patchy-
saturated rocks. As expected, the effective shear modulus resulted
to have negligible imaginary part, while its real part was very close
to the shear modulus of the dry matrix. This behavior is due to the
fact that shear tests applied to samples where the heterogeneities
are related to fluid inhomogeneities induce negligible values of the
fluid-pressure gradient and, thus, negligible mesoscopic effects.

7.3. The shale–sandstone mixture case

The finite element procedures (38) and (39) were implemented
to analyze the response of a rock sample composed of a mixture of
two different materials: the sandstone 2 of Table 1, fully saturated
with gas and shale (with properties given in the same Table), fully
saturated with water. We consider that the domain X is a square
domain of side length 1 cm, and the partition Th is composed of
75� 75 squares Xj. For each realization, the boundary value prob-
lems associated with the compressibility and shear tests were
solved for Nf ¼ 20 frequencies in the range 0 to 5000 Hz.

We assume a distribution of shale and sandstone in the form of
irregular patches following the stochastic fractal field based on the
von Karman self-similar correlation functions as explained above.
The procedure to generate the mixture is similar to that explained
for the case of patchy saturation. We assign to each subdomain Xj a
pseudo-random number using a generator with uniform distribu-
tion. This random field is Fourier transformed to the spatial wave-
number domain and its amplitude spectrum is filtered using Eq.
(51). The result is then transformed back to the spatial domain,
obtaining a micro-heterogeneous sandstone content model
SðjÞ; j ¼ 1; � � � ; J.

Next, to assign to the matrix of each Xj pure shale or pure sand-
stone, we choose a threshold value S� so that for each subdomain
Xj where SðjÞ 6 S� we assume that such subdomain matrix is pure
shale, while if SðjÞ > S� we consider that Xj is pure sandstone. In this
way, the highly heterogeneous mixture model is constructed and
an overall sandstone content S is obtained for the computational
rock sample. In this experiment we choose S� so that the overall
sandstone content S is equal to 0:5. The parameters of the fractal
spectral density are respectively E ¼ 2;D ¼ 2:2 and the correlation
length a is taken to be 7� 10�3 cm. The distribution of shale and
sandstone obtained in this fashion is illustrated in Fig. 8, where
the black zones correspond to pure shale while the white ones to
pure sandstone.

These combined lithological and fluid variations produce strong
mesoscopic effects in the case of the compressibility tests, as it is
shown in Figs. 9 and 10 where the equivalent compressional phase
velocity and inverse quality factor for the particular realization
shown in Fig. 8 are plotted as function of frequency; we can see
that for frequencies around 750 Hz the quality factor Q p takes very
low values of about 8, while the compressional velocity shows a
high velocity dispersion, with about 18% increase between 0 and
5000 Hz.
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These mesoscopic scale heterogeneities also produce non-negli-
gible mesoscopic effects in the case of the quasistatic shear tests. In
fact, Fig. 11 shows the shear inverse quality factor as function of
the frequency. It can be seen that the lithological variations pro-
duce non-negligible effects, with values of Q s of about 75 for a fre-
quency of 1200 Hz. This fact is showing us that shear waves
propagating through these kind of media are also affected by
wave-induced fluid flow effects. The associated equivalent shear
velocity shows very slight dispersion, being approximately equal
to 1.3 Km/s in the whole range analyzed. We do not include the
corresponding Figure for brevity. The Monte Carlo simulation pro-
cedure was performed for this particular set of stochastic parame-
ters by generating a set of realizations, but since in the range of
frequencies being analyzed the rock samples are statistically
homogeneous the variances of the phase velocities and inverse
quality factors show negligible values. Thus we may conclude that
the values determined from the chosen realization are associated
with an effective viscoelastic medium having in the average the
same response than our highly heterogeneous fluid-saturated por-
ous medium.

8. Conclusions

In this paper we presented a numerical upscaling procedure to
estimate the effective phase velocity and quality factors in highly
heterogenous fluid-saturated porous rocks, with heterogeneities
represented by stochastic fractals.

The methodology is based on the finite element solution of the
classical Biot’s equations to simulate oscillatory compressibility
and shear tests, combined with a Monte Carlo approach to obtain
the complex effective compressional and shear phase velocities
and inverse quality factors in this type of media.

Unlike the analytical White’s theories ([23,22]) valid only for
periodic alternating layers or for spherical gas pockets, our method
allows to simulate any kind of heterogeneities in the solid matrix
and the saturant fluids within the domain.

In order to illustrate the procedure, numerical experiments
were performed to obtain the effective complex moduli in gas–
water patchy-saturated sandstones and in partially saturated mix-
tures of sandstone and shale at frequencies ranging from the seis-
mic to the sonic range. We concluded that mesoscopic attenuation
and velocity dispersion can be very important in the case of com-
pressional waves propagating in patchy-saturated media in the
range 0 to 900 Hz. Also, we showed that mesoscopic scale litholog-
ical variations in partially saturated rocks can produce non-negligi-
ble mesoscopic effects in the propagation of shear and
compressional waves in the range 0 to 5 kHz.

The presented numerical upscaling procedure may be used to
replace a highly heterogeneous porous medium with stochastic
heterogeneities characterized by a given spectral density distribu-
tion by an effective viscoelastic medium behaving in the average as
the original medium. The computational advantages of this meth-
odology are obvious due to the drastic reduction in the number of
degrees of freedom needed to represent the obtained effective vis-
coelastic medium as compared with the original heterogenous one
and will be the subject of forthcoming works.

Acknowledgements

This work was partially supported through Grant PICT 03-
13376 from the Agencia Nacional de Promoción Cientı́fica y Tec-
nológica, Argentina (ANPCyT) and from Grant PIP 04-5126 from
CONICET, Argentina.

Appendix A. Calculation of the complex plane wave modulus in
a periodic system of fluid-saturated porous layers

We consider a periodic layered system composed of porous
media 1 and 2 with thickness dl; l ¼ 1;2 and period d1 þ d2. White
et al. [23] obtained the complex undrained plane wave moduluseMðxÞ for a fast P1 wave traveling along the direction perpendicu-
lar to the stratification. It is given by

eMðxÞ ¼ 1
M0
þ 2ðr2 � r1Þ2

ixðd1 þ d2ÞðI1 þ I2Þ

" #�1

; ð55Þ

where

M0 ¼
p1

MG1

þ p2

MG2

� ��1

; ð56Þ

with pl ¼ dl=ðd1 þ d2Þ; l ¼ 1;2. Omitting the subindex l for clarity,
we have for each medium

MG ¼ Kc þ
4
3
l; ð57Þ

where Kc is given by Eq. (3).
Moreover,

r ¼ aKav

MG
ð58Þ

is the ratio of fast P-wave fluid tension to total normal stress,
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I ¼ g
kq

coth
kd
2

� �
ð59Þ

is an impedance related to the slow P-wave,

q ¼

ffiffiffiffiffiffiffiffiffi
ixg
kKE

s
ð60Þ

is the complex wavenumber of the slow P-wave and

KE ¼
MdryKav

MG
; ð61Þ

is an effective modulus, with

Mdry ¼ Km þ
4
3
l ð62Þ

being the dry-rock fast P-wave modulus.
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