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Abstract. Order parameter equations, such as the complex Swift-Hohenberg (CSH) equation, offer a
simplified and universal description that hold close to an instability threshold. The universality of the
description refers to the fact that the same kind of instability produces the same order parameter equation.
In the case of lasers, the instability usually corresponds to the emitting threshold, and the CSH equation
can be obtained from the Maxwell-Bloch (MB) equations for a class C laser with small detuning. In this
paper we numerically check the validity of the CSH equation as an approximation of the MB equations,
taking into account that its terms are of different asymptotic order, and that, despite of having been
systematically overlooked in the literature, this fact is essential in order to correctly capture the weakly
nonlinear dynamics of the MB. The approximate distance to threshold range for which the CSH equation
holds is also estimated.

PACS. 42.65.Sf Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity,
and optical spatio-temporal dynamics – 05.45.-a Nonlinear dynamics and chaos

1 Introduction

The complex Swift-Hohenberg (CSH) equation is an or-
der parameter equation that provides a reduced descrip-
tion of a variety of systems [1], such as Rayleigh-Bénard
convection [2], optical parametric oscillators [3–5], Cou-
ette flow [6], nematic liquid crystal [7], magnetoconvec-
tion [8], propagating flame front [9] and photorefractive
oscillator [10,11] among others. In the case of lasers op-
erating near peak gain (small detuning), a derivation of
the CSH equation for class A and C lasers was obtained
in [12,13], starting from the semiclassical Maxwell Bloch
(MB) equations [14–18], that provide a general descrip-
tion of transverse patterns in two levels, wide aperture and
single longitudinal mode lasers. For class B lasers, such as
CO2 and semiconductor laser, CSH equations have been
obtained in [19] and [20] respectively. (For an explanation
of the classification of lasers, see Ref. [21]). Experimen-
tal observations of patterns in wide aperture lasers were
reported in, for example, [22–26] (for reviews on pattern
formation in nonlinear optical systems, see [27–29]).

The deduction of a generic order parameter equation
greatly simplifies the theoretical description of the sys-
tem. But it is important to note the limitation of this
kind of model equations, as Cross and Hohenberg state in

a e-mail: hoyuelos@mdp.edu.ar

their review ([1], p. 874): “it is true that many properties
of nonequilibrium systems are encountered in these equa-
tions, and indeed many hard problems (...) may profitably
be addressed in the simple framework provided by these
equations. However, it is only as a perturbative expansion
valid in a small region near threshold that they provide a
quantitative description of real experimental systems, and
results may be even qualitatively misleading if applied far
from threshold”.

We will focus our attention in a class C laser near
peak gain that is assumed to be well described by the cor-
responding Maxwell Bloch equations. Using the assump-
tions that the amplitudes of the physical fields are small
and depend slowly on time and on the transversal spatial
scales, a CSH equation is derived form the Maxwell Bloch
equations. The resulting CSH equation is that derived by
Lega et al. in [12,13]. Although not explicitly stated in this
original formulation, the equation includes terms of dif-
ferent asymptotic order, in contrast to the Ginzburg Lan-
dau equation that is obtained for negative detuning [30].
This asymptotic nonuniformity is systematically obviated
in the literature and was only recently addressed [31]. It is
the manifestation of the fact that dispersion and diffusion
have necessarily different asymptotic order, and it affects
the slow scales that the system develops near threshold.
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The argument of a qualitative only scope of the model
equation is usually invoked to justify the application of the
CSH equation far from threshold. The qualitative correct-
ness is difficult to be theoretically established, but, on the
other hand, the capacity to produce quantitative predic-
tions can be determined from the numerical integration of
both, the original system of Maxwell Bloch equations and
the CSH equation. The results of the comparison between
the numerical simulations of the CSH and the MB equa-
tions is what we present in the subsequent sections of this
paper. We can obtain from the simulations the relative er-
ror that introduces the approximation and estimate how
far from threshold we can increase the pump while keep-
ing a small relative error. Also, this numerical comparison
between the CSH and the MB equations provides a con-
firmation of the main result presented in [31]: that the
CSH equation for the description of the weakly nonlinear
dynamics of the system near threshold (derived in [12,13])
necessarily contains terms of different asymptotic order.

2 The complex Swift-Hohenberg equation
and its numerical phase diagram

The Maxwell-Bloch equations for a two-level single longi-
tudinal mode laser with flat mirrors are

∂E

∂t
= ia∇2E − σE + σP, (1)

∂P

∂t
= −(1 + iΩ)P + (r − N)E, (2)

∂N

∂t
= −bN +

1
2
(EP + EP ), (3)

where E(x, y, t) and P (x, y, t) represent the complex elec-
tric and polarization fields, and N(x, y, t) is the real valued
field of the population inversion (the same nondimensional
formulation as in Ref. [30] is used). Parameter a > 0
is the strength of the diffraction (that we set to 1 by
scaling the space variables), σ > 0 is the cavity losses,
Ω is the cavity detuning (the difference between atomic
and resonance frequencies), r is the pumping parame-
ter, b > 0 is the decay rate of the population inversion,
∇2 = ∂2/∂x2 + ∂2/∂y2 is the Laplacian operator in the
plane transverse to light propagation, and the bar stands
for the complex conjugate. We will consider, as a specific
case, a class C laser, for which σ ∼ 1 and b ∼ 1.

The corresponding CSH equation was obtained
in [12,13], and a simpler derivation method, in which no a
priori relative scaling of the variables is assumed, was in-
troduced in [31]. A linear stability analysis of the Maxwell
Bloch equations shows that the lasing instability takes
place at a critical value of the pump rc = 1. The assump-
tions of small detuning and small distance to threshold,

|Ω| � 1, |r − 1| � 1,

are expressed through a small parameter 0 < ε � 1:

Ω =
(σ + 1)2

σ
ωε,

r − 1 =
(σ + 1)2

σ2
(ω2 + α)ε2, (4)

were α and ω are order 1 parameters that represent the
scaled pump and detuning respectively.

The resulting CSH equation is of the from:

φt̃ = αφ + i∇2φ − φ|φ|2 − 2εω∇2φ − ε2∇4φ, (5)

where time and space were scaled as t̃ = (σ+1)
σ tε2 and

(x̃, ỹ) = (σ+1)√
σ

(x, y)ε.
This CSH equation is exactly the same as that ob-

tained by Lega et al. in [12,13], but with the variables
rescaled to show that it has terms of different asymptotic
order and that it is not possible to remove the small pa-
rameter ε from the equation. This asymptotic nonunifor-
mity comes from the simple fact that dispersion involves
second order spatial derivatives while double diffusion has
fourth order ones and thus, in the long wave approx-
imation where higher derivatives correspond to smaller
terms, these two terms have necessarily different asymp-
totic order. This crucial fact is precisely what forced Lega
et al. [12,13] to derive the CSH expanding first up to two
orders (the first one included dispersion and the next the
double-diffusion) and then collapsing back the expansion
to get the CSH equation. But, despite of the wide use of
the CSH equation, the asymptotic nonuniformity is never
mentioned in the literature, and it was only recently ana-
lyzed in [31] where it was shown that it gives rise to two
characteristic slow scales: one associated with dispersion
δdisp and a second one associated with diffusion δdiff . Using
the scaling indicated above, δdisp ∼ 1 and δdiff ∼ √

ε � 1,
but in the original scaling of the Maxwell Bloch equation
δdisp ∼ 1/ε � 1 and δdiff ∼ 1/

√
ε � 1, so both are long

spatial scales.
The CSH equation above has to be considered in the

close-to-threshold limit of ε → 0, and the relation between
the Maxwell Bloch and CSH solutions can be written as
⎡
⎣

E(x, y, t)
P (x, y, t)
N(x, y, t)

⎤
⎦=

⎡
⎣

1
1
0

⎤
⎦√

b
(σ+1)

σ
e−iσωt̃/εφ(x̃, ỹ, t̃) ε+O(ε2).

(6)
Traveling wave solutions of the form φTW =√

α exp(ikTW · x̃ − ik2
TW t̃), with kTW = |kTW| ∼ 1

are approximate solutions of the CSH equation up to
O(ε) corrections (this family of TW is just the result of
making the limit ε → 0 and k ∼ 1 in the well known
expression of the exact TW family, see [12,13,18,32,33]).
This solution exists only for α > 0 and a linear stability
analysis shows that it becomes unstable outside the region
defined by ω > 0 and α > ω2 with a critical wavenumber
kc =

√
ω/ε � 1 [31], which corresponds to a perturbation

with small diffusive length scale. The phase diagram in
the parameter space α-ω represented in Figure 1 was
numerically reproduced starting with an initial condition
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Fig. 1. Real part of φ, in a 2D system of size 3 × 3 with
periodic boundary conditions, for different points in the region
of parameter space α > 0 and ω > 0. Each square represents
an individual numerical integration of equation (5) with initial
condition given by a traveling wave, with kTW = (1, 1) 2π/3,
plus noise of amplitude 0.02. The curve α = ω2 is the stability
limit of this kind of solution. The final time is t̃ = 10 and
ε = 0.0083. The gray scale limit values are: black � −2.5 and
white � 2.5.

with kTW = (1, 1) 2π/3 plus noise of amplitude 0.02.
The system has been integrated using periodic boundary
conditions in a square box of length 3. The mesh of
Figure 1 represents the final states for the corresponding
values of α and ω, for t̃ = 10 and ε = 0.0083 (each square
in the mesh is the result of an individual numerical
integration). To the right of the parabola α = ω2 the
traveling wave solution becomes unstable and gives rise
to another structure with smaller wavelength associated
with the diffusive terms in equation (5). Some squares of
the mesh still show the long wavelength solution to the
right of the parabola, where it should be unstable. The
reason is that, close to the stability limit, the unstable
modes require a time greater than t̃ = 10 to grow.

The nonlasing solution, φ = 0, is linearly unstable
for α > 0 if ω < 0, and for α > −ω2 if ω > 0
(exhibiting again a large diffusive critical wavenumber
kc =

√
ω/ε � 1) [31]. The numerical phase diagram of

Figure 2 confirms again the theoretical stability pre-
dictions and shows the appearance of a structure with
wavenumber k ∼ 1/

√
ε � 1 to the right of the stability

limit given by the parabola α > −ω2. The initial condi-
tion is Gaussian noise with amplitude 0.2, the final time
is t̃ = 10 and ε = 0.0083.

A Fourier spectral method has been used for the nu-
merical integration of the CSH in a square box with peri-
odic boundary conditions. The solution is first represented

Fig. 2. Real part of φ for different points in the region of
parameter space α < 0 and ω > 0. Each square represents
an individual numerical integration of equation (5) with initial
condition given by the nonlasing solution, φ = 0, plus Gaussian
noise of amplitude 0.2. The curve α = −ω2 is the stability
limit of the zero solution. The final time is t̃ = 10 and ε =
0.0083. The gray scale values are: black = −2.5, gray = 0, and
white = 2.5.

as a truncated Fourier series

φ(x̃, ỹ, t̃) =
∑
k

φk(t̃)eik·x̃.

Then, in the system of ODE’s for the Fourier mode coef-
ficients

dφk

dt̃
= (α + |k|2(2εω − i) − ε2|k|4)φk − [φ|φ|2]k.

An integrating factor is used that exactly integrates the
linear terms to avoid the severe time step restrictions that
appear for large values of |k| [34], and the resulting system

d(e−ck t̃φk)
dt̃

= −e−ckt̃[φ|φ|2]k

with ck = α+|k|2(2εω−i)−ε2|k|4, is finally integrated us-
ing a 4th order Runge-Kutta method. The nonlinear terms
are calculated in physical space using the 2/3 rule for the
aliasing terms (see e.g. [34]), the FFTW subroutines [35]
have been used to perform the Fourier transforms, and we
typically have used 128×128 Fourier modes and dt = .001
for the simulations presented in this section.

In the next section we will analyze the dynamics in
two representative points of the phase diagram: α = 0.75,
ω = 0.5 (pattern with dispersive scale δdisp ∼ 1), and
α = 0.5, ω = 2 (pattern with diffusive scale δdiff ∼ √

ε). It
can be seen in Figure 1 that these two points represent pat-
terns characterized by different spatial scales. Both points
are far enough from the parabola α = ω2, which marks the



528 The European Physical Journal B

threshold for the onset of small diffusive scales, so that a
final time t̃ = 10 is sufficient to reach a stationary state.
Moreover, for the one dimensional systems that are ana-
lyzed in the next section, a final time t̃ = 5 turns out to
be enough to reach the stationary state. A point in space
α-ω closer to α = ω2, and to the right of the parabola
(diffusive scales), could require a larger time to stabilize.

3 Numerical validation

We numerically check the accuracy of the CSH equation
(5) as a reduced dynamics of the Maxwell Bloch equa-
tions (1)–(3). The difference between both descriptions is
computed as

d =

∣∣∣∣∣∣

∣∣∣∣∣∣

⎡
⎣

E(x, y, t)
P (x, y, t)
N(x, y, t)

⎤
⎦ −

⎡
⎣

1
1
0

⎤
⎦√

b
(σ + 1)

σ
e−iσωt̃/εφ(x̃, ỹ, t̃) ε

∣∣∣∣∣∣

∣∣∣∣∣∣
.

(7)
Symbols || · || denote the Euclidian norm on C3N divided
by

√
N , where N is the number of points of the discretized

system. So, d is an average absolute error, that, accord-
ing to the weakly nonlinear procedure applied to the MB
equations to derive the CSH equation, has to behave as
d ∼ ε2; see equation (6).

There is a severe numerical difficulty in integrating
equation (5) due to the presence of two spatial scales,
δdisp ∼ 1 and δdiff ∼ √

ε, which are very different in the
relevant limit ε → 0 and should be simultaneously well re-
solved. We consider a one dimensional system, with peri-
odic boundary conditions, in order to reduce the size of the
computations and be able to use a greater system length
than would be possible in higher dimensions. We let the
system evolve until the difference d reaches a stationary
value ds. For the parameters used, a time t̃ ∼ 10 is enough
to reach a stationary state, and the corresponding maxi-
mum integration time for the MB equations is t ∼ 10/ε2.
Therefore, to check the asymptotic theoretical behaviour
for ε → 0, we need a large number of Fourier modes and
long time. The CSH and MB equations are integrated
in a periodic 1D interval using a numerical scheme com-
pletely similar to that described in the previous section,
with 1024 Fourier modes, σ = b = 1, time step dt = 0.01
(dt̃ = 2 dt ε2), space step dx̃ = 1/1024 (dx = dx̃/(2ε)),
and ε in the range between 0.0011 and 0.025.

The initial condition for φ is filtered Gaussian noise of
amplitude 1. Since equation (5) does not include spatial
scales smaller than δdiff ∼ √

ε, the modes with wavenum-
ber greater than k ∼ 1/

√
ε are initially filtered. The initial

condition for (E, P, N) is obtained from the one for φ using
equation (6). In Figure 3 we show the real and imaginary
part of φ at t̃ = 0 and t̃ = 5, for ε = 0.0011, α = 0.5 and
ω = 2.

In order to calculate an average relative error, we di-
vide d by ε, the typical magnitude of the fields in the
Maxwell Bloch equations (note that φ is of order 1). In
Figure 4 we plot d/ε in log scale against t̃, for different
values of ε and for α = 0.5 and ω = 2.

Fig. 3. Real (continuous line) and imaginary (dashed line)
parts of φ in a 1D system of size 1 and periodic boundary
conditions. Top: the initial condition given by filtered Gaussian
noise. Bottom: final state for t̃ = 5. Parameters are ε = 0.0011,
α = 0.5 and ω = 2.

Fig. 4. Average relative error d/ε in log scale against
time t̃ for different values of ε. From top to bottom, ε =
0.025, 0.018, 0.013, 0.0088, 0.0063, 0.0044, 0.0031, 0.0022, 0.0016
and 0.0011. Parameters are α = 0.5 and ω = 2.

We consider the stationary value of the relative error
for long times (d/ε)s, and check the theoretical asymptotic
behaviour (d/ε)s ∼ ε. In Figure 5 we plot (d/ε)s against
ε for two points in parameter space: α = 0.75, ω = 0.5;
and α = 0.5, ω = 2. In both cases, the linear behaviour
(d/ε)s ∼ ε is confirmed. But the numerical result offers a
new important figure: the slope. The slopes are 3.6 ± 0.1
for α = 0.75, ω = 0.5; and 18 ± 1 for α = 0.5, ω = 2.
The increase of the slope in the second case is related to
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Fig. 5. Stationary relative error (d/ε)s against ε. Plus symbols
correspond to α = 0.75, ω = 0.5 (slope 3.6±0.1); and asterisks
to α = 0.5, ω = 2 (slope 18 ± 1).

the fact that patterns with smaller length scales appear
for α = 0.5, ω = 2 (see Fig. 1).

An experimental confirmation of the CSH equation
would require to know a specific value of the appropriate
distance to threshold for which the equation is valid. Let
us suppose that the sought experimental confirmation has
a maximum relative error of 10% and make the favorable
assumptions that the Maxwell Bloch equations accurately
describe the experiment and that the chosen parameters
correspond to a simple pattern with characteristic length
equal to δdisp ∼ 1 as, for example, for α = 0.75, ω = 0.5.
Then, using the slopes of Figure 5, we can calculate that
the distance to threshold should not exceed r−1 = 0.003,
and the pump must be tuned with a relative error smaller
than 0.3%. For α = 0.5, ω = 2, where patterns with diffu-
sive scale δdiff ∼ √

ε arise, the situation is worse since the
maximum distance to threshold is r−1 = 0.0006, and the
relative error of the pump should be smaller than 0.06%.

4 Conclusions

We performed numerical integrations of the Maxwell
Bloch equations and the corresponding CSH equation, for
a class C laser. The CSH equation gives a simplified and
reduced dynamics of the original Maxwell Bloch equations
for small detuning. Comparing the results produced by
both set of equations, we obtain an average relative error
of the CSH equation solutions. The numerical results con-
firm the following theoretical prediction: (d/ε)s ∼ ε, where
(d/ε)s is the stationary relative error that is reached for
long times (the small parameter ε is introduced in the
deduction of the CSH equation and is directly related to
the detuning and distance to threshold). Therefore, as ex-
pected, the CSH equation with terms of different asymp-
totic order [31] is the appropriate envelope equation to
accurately represent the behaviour of the Maxwell Bloch
equations when ε → 0. The behaviour (d/ε)s ∼ ε was
numerically reproduced in Figure 5 where two different
slopes were obtained for two points in parameter space
α-ω. The plot shows that, as expected, the difference in-
creases faster for α = 0.5 and ω = 2, i.e., for the more
complex case where small diffusive scales are present.

Note that the fact that the CSH gives a good approx-
imation of the MB for small deviations from the lasing
threshold, |r − 1| ∼ ε2 � 1, does not constitute any nov-
elty; this is in fact an expected result since the CSH is
precisely derived from the MB in the ε → 0 limit. What
constitutes the main point of this paper is the numeri-
cal confirmation that this CSH contains terms of different
asymptotic order, see [31]. This asymptotic nonuniformity
of the CSH has been systematically overlooked in the lit-
erature (see e.g., [12,13]), and it is essential in order to
correctly model the laser dynamics near threshold.

The numerical results also allow us to estimate the
distance to threshold range for which the CSH equation
holds. Assuming an average relative error of 10%, the max-
imum distance to threshold is between 0.003 and 0.0006
for the parameter values analyzed: α = 0.75, ω = 0.5, and
α = 0.5, ω = 2. The most restrictive value (0.0006) corre-
sponds to the case when the resulting pattern has diffusive
scales (δdiff ∼ √

ε). Although it is not unfeasable to ex-
perimentally establish such small distance to threshold, it
requires a fine tuning of the pump that is not usually avail-
able in standard lasers. Another important experimental
difficulty is to obtain a wide enough beam for the patterns
to develop.

Finally, it is important to mention that, despite of the
problems for setting up an accurate laser experiment in the
CSH range, the numerical results on this paper confirm-
ing the validity of the CSH equation are interesting and
valuable from the more general point of view of Pattern
Formation. The CSH equation is an envelope equation and
it is universal in the sense that its structure depends only
on the kind of instability of the problem and not on the
particular physical problem under consideration.
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