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by contrasting the insulation paper condition with the probability that the transformer withstands the
short-circuit current flowing along the winding during an external fault. In order to assess the risk, this
probability and the value of the degree of polymerization of the insulating paper are regarded as inputs of
a type-2 fuzzy logic system (T2-FLS), which computes the fuzzy risk level. A Monte Carlo simulation has
been used to find the survival function of the currents flowing through the transformer winding during a
single-phase or a three-phase short-circuit. The Roy Billinton Test System and a real power system have
been used to test the results.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

During an external short-circuit the windings of power trans-
formers are subjected to electromagnetic forces. These forces cause
windings displacements and deformations. Such a phenomenon
influences the reliable operation of power transformers [1].

If a short-circuit occurs at the secondary side of the transformer,
the short-circuit current can flow through the windings. This cur-
rentis several times the rated current of the transformer. Due to this
increased short-circuit current the transformer winding is prone
to undergo mechanical fatigue due to the electromagnetic forces,
which are proportional to the square of the short-circuit current
[2].In case of a winding damage, long transformer downtimes are
to be expected since the repairing time can be very long and in
some cases the fault disables completely the equipment [3].

On the other hand, when the transformer’s insulating paper
condition reaches a questionable aging level, the ability of the
equipment to withstand an external short-circuit decrease signif-
icantly. This is due to the fact that cellulose in poor condition can
cause an internal fault due to transient stresses [4].

The mechanical strength of the insulating paper can be assessed
by measuring the degree of polymerization (DP). The DP repre-
sents the number of monomers 3 of glucose CgH19O5 present in
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the paper cellulose molecules [5]. During the manufacturing pro-
cess of a transformer, the DP of the paper is between 1000 and
1300, but its aging in service conditions reduces it considerably.
The mechanical strength of the paper falls down to 20% of its ini-
tial value when the DP is 150. Below this value, the paper does not
have any mechanical strength. Usually, it is considered that with DP
below to 200 the paper loses all its mechanical properties and the
equipment is susceptible to damage [6]. However, from the point
of view of short-circuits it is considered that the transformer has
reached its end of life when the DP has reached a value lower than
or equal to 450 [7].

A novel methodology to assess the power transformer failure
risk under short-circuits is presented in this work. This methodol-
ogy takes into account the condition of the paper insulation on the
basis of its DP and the probability (So) that the current (Ijy), circu-
lating through the transformer during short-circuits, be grater than
a specific value. In order to find this probability a Monte Carlo sim-
ulation, using a test system, was performed. Also, it is implemented
the analysis in a real power system. Subsequently, the values of DP
and probability are used as input of a T2-FLS (Type-2 fuzzy logic sys-
tems), which evaluates the risk level of the device. The results show
that it is feasible to evaluate the risk level of a power transformer
due to external short-circuit faults. For the sake of simplicity, only
single-phase and three-phase faults were simulated.

The structure of the paper is as follows. The procedure for obtain-
ing the survival function (S) of the short-circuit current (Iy) is
shown in Section 2. The calculation algorithm for I;;, and S is also
shown in this section. Section 3 gives a brief overview of fuzzy
inference systems. The T2-FLS used for the risk analysis is shown in
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Section 4. In Section 5, the procedure to determine the membership
function of So from the ordered pair (I — S) is described. Section 6
gives the results obtained. Finally, the conclusions are presented in
Section 7.

2. Short-circuit current probability

Power systems behaviour is stochastic in nature and therefore
it is natural to consider that the assessment of such systems should
be based on techniques that take this characteristic into account
(i.e., probabilistic techniques) [8].

The probability distributions are typically defined in terms of
the probability density function (PDF). However, there are various
probability functions used in different applications. One of these
functions is the survival function. The survival function is used
widely in reliability analysis and related fields. Concretely, the sur-
vival function S(x) describes the probability that a variable X takes
a value greater than a number ¥, i.e.,:

S(x) = P[X > X] (1)

In order to obtain the distribution S within the context of the
transformer fault risk evaluation caused by external short-circuits,
a Monte Carlo simulation was performed. This simulation makes
possible to take into account the uncertainty of the power system
configuration (changes in the system configuration), the uncer-
tainty of the fault type (single-phase or three-phase), the line
that experiences the fault, the phase involved in the fault (dur-
ing the event of a single-phase fault), and the percentage of the
line under faulted condition. By means of this procedure the differ-
ent values of I, with their respective probability values (greater
than) are found. A similar approach which uses a Monte Carlo
sampling for the evaluation of reliability indexes can be found in
Ref. [9]. The procedure for obtaining the S function is presented
following.

2.1. State sampling approach

A system state depends on the combination of all component
states. Each component state can be determined by sampling the
probability that the component is in such state [9]. The behaviour
of each component can be described by a uniform distribution
in the interval (0, 1). It is assumed that each component has
two states: in-service and out-of-service, and that the component
faults are independent events. Assume S; as the state of the jth
component and FP; as its state probability. A random number U;
distributed uniformly between (0 and 1) is evaluated for the jth
component state. Then, the state of S; of the jth component will
be

Sj:

{ 0 (In —service)ifU; > FP; 2)

1 (Out — of — service)if0 < U; < FP;

The probability that the component is out-of-service could be
represented by means of the forced outage rate (FOR) defined by
the following equation:

A
FOR = e 3)
where A is the expected failure rate and u is the expected repair
rate of each component of the system.

By substituting FOR by FP; (2), for each component, as well as
comparing this value with the uniformly distributed number Uj, the
component state is obtained. So, the network configuration to be
used in the short-circuit simulations is obtained in this manner.

Table 1
Probability of short-circuit occurrence [11].

Short-circuit Occurrence (%)

Three-phase-to-ground 1.5
Three-phase 1.5
Line-to-line-to-ground 6.0
Line-to-line 10.0
Single-phase 81.0
3Ph-T 3Ph 2Ph-T 2Ph 1Ph-T
| 15% | 15%  60% ; 0% | B1%
| | | | 1 |
_ Uk " Uk _ Uk _ Uk _ Uk
T T T T ) 1
0 0.015 0.03 0,09 0.19 1

Fig. 1. Representation of the intervals that determine the type of fault [11].
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Position of Fault

Fig. 2. Representation of the intervals that determine the location of fault.

2.2. Calculation of the failure probability and type of fault

The previous procedure is also used while considering a short-
circuit affecting a certain line. In this case, the probability that this
line is affected by a fault is obtained using Eq. (4). The faulted line is
chosen comparing this value with a uniformly distributed number
between zero and one.

Prayitk = —— (4)

j=1

where Pg, ¢ is the probability of fault in line k; L is the length of
N

line k and ZL]- : Sumatory of the length of all lines of the system
j=1

The use of a uniform distribution for the location of faults in
transmission lines describes the typical lack of predictability in this
matter [10]. Consequently, Eq. (4) simply models the probability by
assuming that the number of faults is proportional to the length
of the line, which makes sense, since it is to be expected that lines
having greater lengths have greater number of faults, and therefore
its probability of failure has to be greater. An opposite condition
occurs in lines having smaller lengths.

The probability of occurrence of any type of short-circuit is spec-
ified according to Table 1. The probability intervals are shown in
Fig. 1, just as proposed in Ref. [11], and is modelled by means of a
generator of uniformly distributed random numbers between zero

Phase A Phase B Phase C

33,33% 33.33% 33.33%

1 | |
Un 0.33 Un 0.66 Un 1

* O

Fig. 3. Representation of the intervals that determine. The phase involved in the
fault.
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and one (Uy). As it was mentioned in the previous section, only
single-phase and three-phase faults are considered. The former
being the most common fault [10] and latter the most severe.
Asimilar procedure is used while considering the randomness of
the fault location in the line. The percentage of length of line failed
is modelled by means of uniformly distributed random numbers
between zero and one (Ur). That is, the location of the fault in the
line is considered to have a uniform probability, as shown in Fig. 2.
The same assumption is made while choosing the faulted line.
The choice of the failed phase is done in the same way, i.e., con-
sidering the probability intervals shown in Fig. 3. This selection

o, A and

LL, (each
element)

Forced Qutput
Rate of each
element: FORj

¥

Randem number
distribuited <

provides robustness to the methodology, since in the case of analyz-
ing asymmetrical networks the results of the algorithm will reflect
the changes in the fault currents.

The algorithm used to apply the previously described procedure
is shown in Fig. 4. For the sake of simplicity, the 60909 IEC standard,
2001 [12] is used to calculate the short-circuit current.

The A and u inputs represent the expected failure rate and the
expected repair rate of each system component, respectively. The
maximum number of fault simulations («) that the algorithm has
to perform depends on the convergence level of the Monte Carlo
simulation, as it will be shown later.
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Fig. 4. Algorithm to obtain I and S.
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Fig. 5. Structure of a T2-FLS [13].

3. Fuzzy logic systems: a brief overview

Before continuing, it is considered worth to present a brief
description of the type-2 fuzzy sets and T2-FLS. A rigorous descrip-
tion of the FLS mathematical theory and applications can be found
in Ref. [13].

The main advantage of the fuzzy systems theory is that it
approximates the behaviour of a system in cases where analyti-
cal functions or numerical relations for describing its behaviour do
not exist [14]. Therefore, fuzzy systems have a high potential as a
tool to understand systems for which behaviour models have not
been developed, i.e., complex systems. The relationship between
cause and effect in these systems is generally non-understood, but
usually it can be observed.

The concept of the fuzzy sets theory can be used in several ways
for system modelling [15]. Several subsystems in control engineer-
ing and system theory can be “fuzzified”, and different kinds of
fuzzy systems can be applied to model them.

In the field of artificial intelligence there are several forms to
represent the knowledge [14]. The most usual way to represent
the human knowledge is perhaps to formulate it by means of rules
written in natural language based on IF-THEN expressions, as that
shown by the following equation:

where A; is the Ith fuzzy set representing the antecedent of the rth
rule and B; is the fuzzy set representing the rth consequent from
the rth rule.

The FLS are used to represent and numerically manipulate lin-
guistic rules in a natural way. They are also useful because of their
ability to handle problems which the conventional control theory
cannot focus successfully. Also, the latter requires a valid and pre-
cise model which not always exists [16].

On the other hand, a type-2 fuzzy set A can model the uncer-
tainty related to the meaning of words using a function of
three-dimensional property which is fuzzy and is defined by mean
of (6) and (7).

/ p(X)
it xeX

A= e (6)
)
pa) = = e <[0.1] (7)

where pj(x) is the secondary membership function for an element

xeX. The domain (Jx) and the amplitude (fx(u)) of wj(x), are the

primary membership of x and the secondary grade, respectively.
The union (| J) of all primary memberships of Ais aregion called

IF x; is A; and...and x; is A, THEN y is By (5)  fingerprint ofuncertainty (FOU)whichis defined in Eq.(8). The upper
B = By
1 3 1 1
3 = =
0 0 0
1 A B C 1 AyA, € Cy1
x X X

Fig. 6. Memberships functions of type-2 singleton (left), type-1 triangular fuzzy set (middle) and FOU of interval type-2 triangular fuzzy set (right).
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Table 2

Example of base of rules from T2-FLS for the analysis of risk.

Rule Antecedents Consequent
DP So IR

1 Unacceptable Low Medium

2 Questionable Low Medium

3 Acceptable Low Low

4 Unacceptable Medium High

5) Questionable Medium Medium

6 Acceptable Medium Low

7 Unacceptable High High

8 Questionable High Medium

9 Acceptable High Low

and lower lir1~1its of the FOU are called upper and lower membership
functions of A, respectively, and they are defined in Egs. (9) and (10).

FOU(A) = | |Jx (8)
xeX
fi5(x) = FOU(A) = fo VxeX 9)
xeX
i) =FOUA) = | Jjx VxeX (10)
xeX

T2-FLSs can be classified into two types: general type and inter-
val type. The former uses fuzzy sets whose secondary grade can
take any value in the interval between (0, 1), and the latter uses
fuzzy sets whose secondary degrees are equal to 1. In this work
only type-2 fuzzy sets of interval type are used, because they are
computationally more efficient than those of general kind [13].

The structure of a T2-FLS is shown in Fig. 5. This figure shows
the different parts of a T2-FLS. A description of these parts can be
foundin[13]. The rules depend on the basis of rules of the particular
system. In the following section the base of rules of the T2-FLS used
for the risk analysis has two antecedents and one consequent (see
Table 2).

The inputs of a T2-FLS can be modelled by type-2 singletons,
type-1 fuzzy sets or interval type-2 fuzzy sets, depending on the
nature of uncertainty. These are shown in Fig. 6.

The shaded area of the FOU models the uniformity of the sec-
ondary grades of an interval type-2 fuzzy set (fyx(u)=1, V €Jx). The
output of a T2-FLSis a crisp value (y;.) and a type-1 interval (y; = [¥iL,
yiul) called type-reduced fuzzy set, which is shown in Fig. 7. This
interval is a measure of the uncertainty of the crisp output, in a sim-
ilar way that for models based on probability, where the standard
deviation is a measure of the uncertainty of the average.

yiC= (yil+yil)/2

il nl nlU 1

Fig. 7. Type-reduced fuzzy set.

DP
T2-FLS Risk Level
So
—]

Fig. 8. T2-FLS for risk analysis due to short-circuits.

4. T2-FLS for the risk analysis of transformer failure due to
short-circuit

A T2-FLS is used to evaluate the fault risk due to short-circuits,
since it has suitable characteristics of T-2 FLS for this purpose. Fur-
thermore, at present there is no model considering the state of the
paper insulation and the probability that the equipment withstands
an external short-circuit. This T2-FLS can be seen in Fig. 8. Its base
of rules is shown in Table 2.

Each rule has two antecedents (DP y So) and one consequent,
the risk level (Iz), which is a type-1 fuzzy set (see Fig. 7) or a crisp
value (y;c). The membership function of DP is derived from its crisp
value and the type-1 fuzzy sets shown in Fig. 9.

In Ref. [17], ranges of DP are defined according to the loss of
the paper mechanical strength caused by aging. However, to take
into account the insulation weakness when a short-circuit occurs,
the subdivision shown in Fig. 9 is proposed by the authors. These
fuzzy sets are constructed using the criterion mentioned in Ref. [7],
where it is stated that “from the point of view of short-circuits; it
is considered that a power transformer has arrived at its ending of
life when the DP has reached a value smaller than or equal to 450”.

From Table 2, the membership functions of So are obtained using
the procedure shown in Section 5. The consequents are modelled
by means of type-2 fuzzy sets of interval type (see Fig. 6, right). Each
consequent is described by three linguistic terms (High, Medium,
Low), whose membership function is obtained by means of expert
surveys regarding the value of these linguistic terms within the
interval 0-10. The extreme linguistic terms (High and Low) are
modelled by means of trapezoidal type-2 fuzzy sets. The term
“Medium” is modelled using a triangular type-2 fuzzy set. The type-
2 fuzzy sets of these linguistic terms are shown in Fig. 10.

The result of this T2-FLS is an interval similar to that
shown in Fig. 7. The consequent is the type-reduced fuzzy set
and it is obtained using the extended sup-star composition,

mf

Unnaceptable Questionable Acceptable

450 500 550 600 DP

Fig. 9. Type-1 fuzzy sets for membership function of DP.
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Fig. 10. Type-2 fuzzy sets of linguistic terms used as consequent in the T2-FLS.

under maximum-product norms and centre of type-reduction
sets [13].

5. Obtaining the membership function S,

To obtain the membership function of a variable, a procedure
in the context of the extraction of knowledge from numerical data
set can be used. In this way a rule-based system could be obtained
[19].

A simple solution for obtaining the membership function So is
therefore obtained from the values of S and I, both determined by
means of the procedure shown in Section 2. With the aim to obtain
So, the artificial neural network (ANN) shown in Fig. 11 is used
together with the K-means clustering method [14]. The K-means
is one of the simplest unsupervised learning algorithms that solve
the well-known clustering problem [18]. The clustering procedure
classifies a given data set in a certain number of clusters (assumed
k clusters), which is established a priori (k =3 in our case). The main
idea is to define k centroids, one for each cluster, so that the sum of
squares of the distances between each data point and the centre of
the cluster is minimized.

Once the data have been distributed in the clusters, an ANN
is created and trained using the data collected in the simulation.
With this aim several configurations of ANN were trained being
the feed-forward backpropagation ANN constituted by 4 layers-2
hidden inputs and three outputs showed the best performance. This
network is trained either setting the consequent to zero, if the data
does not belong to a particular region, or to one, if the data belong
to it. This is shown in the example of Fig. 12.

The partition of So is made by means of three linguistic terms:
“High”, “Medium” and “Low” represented by the regions Ry, R, y R3,
respectively (see Fig. 11). This kind of division can be extended so

—_—— — — —

s —r
| |
s Js1]s2] . Jon : | Ri[ oo
Ikkll1 12 .,.lln ANN | R2 IR2[1]0
| | R3[0]1
| |
Ikk S | R3

Fig. 12. Training the ANN.

as to use more membership functions, e.g. Medium Low, Medium
High, etc. However, in our case, this would not be suitable because
the known phenomenon called curse of dimensionality, which refers
to the exponential growth of the number of rules with the number
of input variables, should be avoided. The mentioned partition is
enough to allow the expert to evaluate the risk using a minimum
quantity of rules without loss of objectivity in the decision.

Once the ANN has been trained, it is possible to obtain the mem-
bership function of So by means of the given ordered pair (I, So).
This ordered pair used as input, can be obtained considering that
the transformer has a rated short-circuit current (Iccrateq) [20]- The
power transformer shall withstand this current if DP >450.

By contrasting the value of the rated short-circuit current with
the survival function S, partitioned in the three aforementioned
regions, the membership function of So used as antecedent in the
base of rules (Table 2) can be obtained.

6. Results

In order to illustrate the procedure described in the previous
sections, firstly a simulation using the Digsilent Power Factory
software® has been performed. The system used in the simula-
tions is the Roy Billinton Test System (RBTS) proposed in [9]. The
referred system consists of six buses as depicted in Fig. 13. On the
other hand, it is implemented the algorithm for the analysis of risk
in the electric power system of Honduras (see Fig. 21). In this case,
the risk analysis is used on the 230/138 kV, 100 MVA, TSY power
transformer located at Suyapa substation.

6.1. Simulation

The failure and repair rates of all lines, transformers and genera-
tors are considered in the simulation. The symmetrical short-circuit
current (I ) due to three-phase faults as well as the asymmetri-
cal short-circuit current (Iy,) due to single-phase faults flowing
through the secondary winding of the 75 MVA power transformer
TT2 (see Fig. 13) is analyzed. For the sake of clarity and conciseness

Fig. 11. ANN used to obtain So [14].
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L1 L6 Lz L7

Bus 12
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20 MW

Bus 11 Bus 13
L9
85 MW 40 MW

Bus 15
20 MW

Bus 14

20 MW

Fig. 13. Test feeder RBTS.

only the results for three-phase faults are presented. The amount of
three-phase faults simulated was 3000, whereas the single-phase
faults were 162,000. The procedure to be followed is basically the
same for each transformer of the system.

By applying the algorithm of Fig. 4 and after a specific number of
iterations, it is possible to analyze the convergence of the I} average
value. Such convergence of the transformer TT2 while analysing
three-phase faults is shown in Fig. 14.

Once the convergence of Monte Carlo method is reached, I and
S are obtained. Fig. 15 shows the function S calculated from Iy, and
from Iy, flowing through TT2. Furthermore, the probability density
function of I, is shown in Fig. 16.

The ANN is trained using the ordered pair (Ikk, S). Thereafter, the
partition of S shown in Fig. 17 is obtained.

In this case the inputs of the trained ANN were the times of [
which TT2 (Fig. 13) is capable of support (Isc =6.5 P.U.) and the cor- 02} 1
responding value of probability (S=0, see Fig. 15). In this way, the
following membership functions were obtained: Ry =0, R, =0.0076 0 =00 1000 1500 20‘00 2500 3000
y R3 =0.9877. So, the low probability zone (R3) has the higher mem-
bership function. Therefore, it is “Low” the probability that similar
or higher currents than the allowed one flow through the sec- Fig. 14. Convergence of average value of I for TT2.

1 WWA—- 1
0.8 E

06} i

Mean Value of Ikk, P.U.

Iterations
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ondary winding of the transformer, during a three-phase fault.
Similar results are obtained by using the data of single-phase faults.
Because Iy is inversely proportional to the system impedance and
considering that the system grows over time, I, will decrease with
the growth of the system. This entails that the membership func-
tion of R;-R3 will change over time as well as the fuzzy risk. Thus,
the fuzzy risk index is a dynamical index.
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Fuzzy Risk Index
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Fig. 18. Fuzzy risk index type-2 for TT2 transformer under three-phase fault.

The fuzzy risk profile for the power transformer TT2 is shown in
Fig. 18. This fuzzy risk is obtained from all possible values of DP and
S of the three-phase faults. Specifically, the type-reduced fuzzy set
and the crisp value (middle), which resulted from the T2-FLS, are
shown in Fig. 18. Similar results can be obtained if the procedure is
applied to the remaining power transformers of the system either
for three-phase or single-phase faults.

Fig. 18 shows also that if the DP is high, the risk is always low.
On the other hand, the values of DP between 450 and 600 cause a
“Medium” risk; thus, a rise of the risk with respect to the minimum
value is observed. Furthermore, if the probability and the DP are
low, the fuzzy risk obtained will be lower than the fuzzy risk for
higher probabilities. This is shown in more detail in Fig. 19. Finally,
if the probability So is high and the value of DP is low, the values of
the fuzzy risk are high (see Fig. 18).

On the other hand, if is used a Type-1 FLS the fuzzy risk profile
for the power transformer TT2 is shown in Fig. 20. In this case the
uncertainty of the meaning of words is not modelling, because only
Type-2 fuzzy sets and T2-FLS provide flexibility for modelling this
uncertainty as well as the uncertainty of data.

6.2. Application on an electric power system

The algorithm for the risk analysis is implemented in the electric
power system of Honduras. A section of this system is showed in

10 -
~ B — = ; -
= High Probability
E 6l X (5=0.91561)
>
N af
T
2k
0 L ] 1 1 1 1 1 J
200 300 400 500 600 700 800 900 1000

Low Probability
(5=0.041027)

Fuzzy Risk
- N W s N
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Fig. 19. Two profiles of fuzzy risk index for TT2 under three-phase fault and S

constant.
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Fig. 20. Fuzzy risk index type-1 for TT2 transformer under three-phase fault.

Fig. 21. The symmetrical short-circuit current (I;) due to three-
phase faults flowing through the secondary winding of the 100 MVA
power transformer TSY (see Fig. 21) is analyzed.

By applying the algorithm and after a specific number of iter-
ations, it is possible to analyze the convergence of the I, average
value. Such convergence is shown in Fig. 22.

Fig. 23 shows the function S calculated from I, flowing through
TSY. Furthermore, the probability density function of I, is shown
in Fig. 24.

The ANN is trained using the ordered pair (Ikk, S). Thereafter, the
partition of S shown in Fig. 25 is obtained.

The inputs of the trained ANN were the times of I, (Isc = 7.11 P.U.)
of TSY transformer and the corresponding value of probability (S=0,
see Fig. 23), the following membership functions were obtained:
R1=0, R, =0.041 y R3 =0.9965. In this way, the low probability zone
(R3) has the higher membership function. Therefore, it is “Low” the
probability that similar or higher currents than the allowed one
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Fig. 22. Convergence of average value of I for TSY.
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Fig. 23. Survival function for Iy circulating through transformer TSY.
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Fig. 21. A section of the electric power system of Honduras.
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flow through the secondary winding of the transformer, during a
three-phase fault.

The fuzzy risk index profile for the power transformer TSY is
shown in Fig. 26. This fuzzy risk index is obtained from all possible
values of DP and S of the three-phase faults. On the other hand, the
result of tests applied to TSY shown that DP was 500. In this way,
the inputs for the T2-FLS were DP =500 and S= Low. Therefore, the
fuzzy risk index is “medium”, which is a result expected by the
maintenance personnel because of the condition of the insulation
paper. Finally, Fig. 27 shows the interval obtained for “medium” risk.
Formally, the centroid of the consequent representing the fuzzy risk
“medium” is 4.3944 and the solution interval [Risk Mediumg, Risk
Mediumg] is [4.0600, 4.7289].

7. Conclusions

A novel methodology to assess the risk of power transformer
failures, due to external faults such as short-circuits, regarding the
condition of the paper insulation was in this paper presented.

The methodology takes into account the paper insulation con-
dition and the stochastic nature of the fault.

The fuzzy risk index provides a quantitative measure of the
equipment reliability at the installation location. This tool will be
very useful for power transmission utilities, which at present time
does not have a tool to assess the failure risk of power transformers
caused by external faults, which includes the condition of the paper
insulation as an important influencing factor.
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