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A QUILLEN MODEL STRUCTURE OF LOCAL HOMOTOPY
EQUIVALENCES

GUILLERMO CORTIÑAS, DEVARSHI MUKHERJEE

Abstract. In this note, we construct a closed model structure on the category of
Z/2Z-graded complexes of projective systems of ind-Banach spaces. When the base field
is the fraction field F of a complete discrete valuation ring V , the homotopy category
of this model category is the derived category of Z/2Z-graded complexes of the quasi-

abelian category
←−−−−−−−
Ind(BanF ). This homotopy category is the appropriate target of the

local and analytic cyclic homology theories for complete, torsionfree V -algebras and F-
algebras. When the base field is C, the homotopy category is the target of local and
analytic cyclic homology for pro-bornologicalC-algebras, which includes the subcategory
of pro-C∗-algebras.

1. Introduction

In their fundamental work on periodic cyclic homology, leading to the celebrated excision
theorem, Cuntz and Quillen ([CQ]) associate to each algebra A, a functorial inverse system
X∞(A) = {Xn+1(A) // Xn(A) : n ≥ 1} of Z/2Z-graded complexes. Localizing the

category
←−−
Kom of inverse systems of Z/2Z-graded complexes - or briefly, pro-supercomplexes

- at a certain class of weak equivalences, called local equivalences, one obtains a derived

category Der(
←−−
Kom) which is enriched over Z/2Z-graded complexes. The bivariant periodic

cyclic homology HP∗(A,B) of a pair of algebras (A,B) is then defined as the homology
of the hom-complex Hom

Der(
←−−
Kom)

(X∞(A), X∞(B)). These weak equivalences are part of

a Quillen model structure on the category of pro-supercomplexes described in [CV].
In the study of variants of HP in several contexts of topological and bornological

algebras, one is lead to consider inverse systems of directed systems of Z/2Z-complexes.
That is notably the case of analytic cyclic homology for torsion-free complete bornological
algebras over a discrete valuation ring V [CMM], algebras over its residue field F [MM1]
and local cyclic homology for dagger algebras [MM2]. In each of the latter cases, the rel-

evant homology is represented by a functor taking values in the category Der(
←−−−−−−
Ind(BanF ))

which results from the category
←−−−−−−−−−−−
Kom(Ind(BanF )) of projective systems of Z/2Z-graded
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2 GUILLERMO CORTIÑAS, DEVARSHI MUKHERJEE

complexes of inductive systems of Banach spaces over F , upon inverting local weak equiv-
alences. Similarly, local cyclic homology of pro-C∗-algebras can be defined in terms of a

functorial complex taking values in Der(
←−−−−−−
Ind(BanC)). The purpose of this article is to prove

the following.

1.1. Theorem. Let C be an exact category with enough projectives. Then the category
←−−−−−−−−−−
Kom(Ind((C))) carries an injective model structure where the weak equivalences are the
local weak equivalences. Thus for the associated homotopy category we have

Ho(
←−−−−−−−−−−
Kom(Ind((C)))) ∼= Der(

←−−−
Ind(C)).

This applies, in particular, when C is the category of Banach spaces over R, C or any
complete valuation field F , equipped with the split-exact structure. If F is discretely valued,
the latter agrees with the quasi-abelian structure.

The article is organised as follows. In Section 2 we consider, for an additive category E
with kernels and cokernels, an exact structure on the category Ind(E) whose distinguished
extensions are kernel-cokernel pairs that split locally. This means that Hom(X,−) pre-
serves cokernels in Ind(E) for X ∈ E . When E is quasi-abelian, we use this exact structure

on Ind(E) to induce an exact structure on the category
←−−−
Ind(E) of countable projective

systems of inductive systems of objects in E . We call this exact structure the locally split

exact structure. The main result of Section 2 shows that
←−−−
Ind(E) has enough injectives

for the locally split exact structure. Moreover, this category is countably complete since
E is in particular additive with kernels and cokernels. In Section 3, we use the work
of Gillespie [Gil] and Kelly [Kely1] to show in Proposition 3.3 that if F is a countably
complete exact category with enough injectives, then Kom(F) carries a model structure,
where weak equivalences are quasi-isomorphisms, and where cofibrations are degreewise

inflations. In particular, this applies to F =
←−−−
Ind(E) with the exact structures of Section 2.

Section 4 specializes all of the above to the category C = Bank, where k is any non-
trivially valued complete field. In Subsection 4.1 we consider the case when k is discretely
valued. Proposition 3.9 explicitly describes the weak equivalences in the resulting model

structure on
←−−−−−−−−−−−
Kom(Ind(Bank)), showing that when k is discretely valued, they are exactly

the local homotopy equivalences used in local and analytic cyclic homology for nonar-
chimedean algebras [CMM, MM1, MM2]. Thus our results allow us to interpret those
homologies as homomorphism spaces in the homotopy category of our model category. In
Subsection 4.6 we consider the case when k = C. If one disregards the projective system
level, then the exact structure on Ind(BanC) of Section 2 has previously been used in
[Mey1, Section 2.3] to define the target of local cyclic homology for locally multiplicative
complex Banach algebras. The availability of a model structure for complexes of pro-ind-
Banach spaces over C means that we can extend analytic and local cyclic homology to
projective systems of complete bornological and Ind-Banach algebras, respectively, having
the expected homotopy invariance, stability and excision properties (Theorem 4.7), and
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in the case of local cyclic homology, also invariance under isoradial embeddings (Theorem
4.8). Using these properties and the universal property of Bonkat’s bivariant K-theory for
pro-C∗-algebras [BJM, Bon], we obtain a Chern character from the latter to our bivariant
local cyclic homology (see 4.8.1). This Chern character could be used in the future to
study the topological K-theory and local cyclic homology of the recently defined pro-C∗-
algebras of noncommutative classifying spaces of quasi-topological groups, appearing in
[CT].

2. An exact structure on pro-objects in E

In this section, we recall some generalities on Quillen’s exact categories. We will show
that under certain assumptions, an exact category E produces the so-called injective model
structure on the category of (unbounded) chain complexes Ch(E), the homotopy category
of which is the derived category of E .

Let E be an additive category. An extension in E is a diagram of the form

K
i
 E

p
։ Q

where i is the kernel of p and p is the cokernel of i. An exact category 1 is an additive
category with a distinguished class of extensions, called conflations - wherein the maps i
and p are called inflations and deflations, respectively - satisfying the following properties:

• the identity map on the zero object is a deflation;

• if f and g are composable deflations, then their composition is a deflation;

• the pullback of a deflation along an arbitrary morphism of E exists and is a deflation;

• the pushout of an inflation along an arbitrary morphism of E exists and is an infla-
tion.

In this article, our interest is a more convenient class of exact categories, called quasi-
abelian categories in the sense of [Schn]. These are additive categories with kernels and
cokernels, which are stable under pushout and pullback, respectively. In other words,
they are exact categories whose distinguished class of extensions is the class of all kernel-
cokernel pairs. Note however that being quasi-abelian is a property of a category rather
than additional structure.

1This is an equivalent formulation of Quillen’s original definition due to Keller (see Appendix A in
[Kell]).
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2.1. Definition. We call a Z-graded chain complex (C, d) with entries in an exact cat-
egory E with kernels exact if the induced diagram

ker(d)  C ։ ker(d)

is a conflation in E . Here the inflation ker(d) // C is the canonical inclusion and the
deflation C // ker(d) is the canonical map induced by d. A chain map f : C // D is
called a quasi-isomorphism if its mapping cone cone(f) is exact.

We denote by Kom(E) the category of Z/2Z-graded chain complexes (also called su-
percomplexes) with entries in E . Its internal Hom is defined as the mapping complex
HOME(C,D) ∈ Kom(E) for two complexes C, D ∈ Kom(E) is defined as

HOME(C,D)n :=
∏

k∈Z/2Z

HomE(Ck, Dk+n),

δn((fk)k∈Z/2Z) = δDk+n ◦ fk − (−1)nfk−1 ◦ δ
C
k ,

for C, D ∈ Kom(E), and n = 0, 1. This definition makes sense for chain complexes in any
additive category. As we are interested in cyclic homology theories which are 2-periodic,
we restrict ourselves to this category rather than working in the category Ch(E) of Z-
graded chain complexes. The homotopy category HoKom(E) of the category Kom(E) is a
triangulated category. We define the derived category Der(E) of an exact category E as
the localisation of the homotopy category of Z/2Z-graded chain complexes HoKom(E) at
the quasi-isomorphisms.

Given a (locally small) category C, we denote by
←−
C the category of countable projective

systems (or briefly, pro-systems) over C. Given two such pro-systems X and Y , we define
its Hom-set as

Hom←−
C
(X, Y ) = lim←−

n

lim−→
m

HomC(Xm, Yn).

We will proceed as in [CV] to construct a model category structure on the category of

pro-supercomplexes
←−−−−−
Kom(E).

2.2. Lemma. Let E be a quasi-abelian category. Then
←−
E is a quasi-abelian category.

Proof. The same proof as in [Pro, Proposition 7.1.5] works for countable projective
systems.

In our applications to local cyclic homology, although the underlying category E is
usually quasi-abelian, we use an exact category structure to do homological algebra which
we now describe. Let C be an additive category with kernels and cokernels. Its category of
inductive systems Ind(C) is the category of functors I // C, where I is a filtered category.
For two such inductive systems X : I // C and Y : J // C, the morphism set is defined
as the set

Hom(X, Y ) = lim←−
i

lim−→
j

HomC(Xi, Yj).
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We may equip C with the split exact structure, that is, an extension K  E ։ Q is a
conflation in C if and only if for each X ∈ C,

HomC(X,K)  HomC(X,E) ։ HomC(X,Q)

is an exact sequence of abelian groups. This induces the following exact category structure
on Ind(C):

2.3. Definition. Let C be an additive category with kernels and cokernels. We say an
extension K  E ։ Q in Ind(C) is ind-locally split if for every X ∈ C, the induced
sequence

HomInd(C)(X,K)  HomInd(C)(X,E) ։ HomInd(C)(X,Q)

is a short exact sequence of abelian groups. Equivalently, every morphism X // Q with
X ∈ C in Ind(C) lifts to a morphism X // E.

2.4. Lemma. Let C be a quasi-abelian category. Then the ind-locally split extensions of
Definition 2.3 form an exact category structure on Ind(C).

Proof. The identity map on the zero object is clearly a deflation. To check that the
composition of deflations is a deflation, consider two such deflations X ։ Y and Y ։ Z.
Then their composition is a cokernel. Now let P // Z be a morphism, where P ∈ C.
Since Y ։ Z is a deflation, there is a lifting P // Y , and since X ։ Y is a deflation,
there is a lifting P // X , as required. We now check that the pullback of a deflation
E ։ Q by an arbitrary morphism Q′ // Q is a deflation. Since C is finitely complete,
Ind(C) has pullbacks. Let P denote the pullback of the maps E ։ Q and Q′ //Q. The
hypothesis that E is quasi-abelian implies that the resulting canonical map P // Q′ is
a cokernel. To see that the map P // Q′ is locally split, consider a morphism X // Q′

where X ∈ E . Composing with the map Q′ // Q and using that the original cokernel
E //Q was locally split, we obtain a lifting X //E. The existence of the required lifting
X // P follows from the fact that P is a pullback. Pushouts are dealt with dually.

2.5. Remark. [Indisation of an exact category] In Lemma 2.4, the hypothesis that C is
quasi-abelian is sufficient to show that the pullback of a cokernel is a cokernel. This is
also the situation that is most relevant for the purposes of the article. However, more
generally, if C is any small exact category, we can define the category Lex(Cop,ModZ) of left
exact functors on C. This is an abelian category (see Section 3 of [BGW]). The filtered
cocompletion of the image of the Yoneda embedding C ⊆ Lex(Cop,ModZ) is precisely
the category of inductive systems Ind(C). Here by filtered cocompletion, we mean those
functors in Lex(Cop,ModZ) which are direct limits of representable functors. Furthermore,
Ind(C) is an extension closed subcategory of Lex(Cop,ModZ). Using this identification, it
is shown in [KKM, Proposition 4.8] that K  E ։ Q is a conflation in Ind(C) if and
only if it can be represented by a diagram (Ki  Ei ։ Qi)i∈I of conflations in C for a
filtered category I. This is called the indisation of an exact category.

We now describe an exact category structure on
←−
E which takes this internal exact

structure on E into account.
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2.6. Definition. Let E be an additive category with kernels and cokernels and J a full

subcategory. We call an extension K  E ։ Q in
←−
E locally split relative to J if the

induced diagram

Hom←−
E
(X,K)  Hom←−

E
(X,E) ։ Hom←−

E
(X,Q)

is an extension of abelian groups for all X ∈ J .

2.7. Lemma. Let E be quasi-abelian and J a full subcategory. The locally split extensions

relative to J yield an exact category structure on
←−
E .

Proof. The identity map is clearly a deflation. To see that the composition of deflations
is a deflation, let E ։ Q and Q ։ L be two such deflations, and let X // L be a
morphism with X ∈ J . Since Q ։ L is a deflation, we get a lifting X // Q, and since
E ։ Q is a deflation, we get the required lifting X //E of the composition E //L. To
see that the pullback of a deflation E ։ Q by an arbitrary map L // Q is a deflation,

we first note that the pullback P // L is a cokernel as
←−
E is quasi-abelian. Now suppose

X //L is a morphism, where X ∈ J . Then the composition X //L //Q has a lifting to
E since E ։ Q is a deflation. By the universal property of pullbacks, we get the required
lifting X // P . Now let K  E be an inflation and K // L be an arbitrary morphism

in
←−
E . Then the pushout P is a kernel again as

←−
E is quasi-abelian, with cokernel Q. That

is, we have a kernel-cokernel pair L  P ։ Q. Consider a map X // Q with X ∈ J .
Then since E ։ Q is a deflation, there is a lifting X // E, whose composition with the
canonical map E // P yields the desired lifting.

We now combine the relative locally split exact structure with the ind-locally split
exact structure on E = Ind(C). More concretely, we have the following:

2.8. Proposition. Let C be an additive category with kernels and cokernels. Then an

extension K  E ։ Q in
←−−−
Ind(C) is locally split relative to C if and only if it is isomorphic

to a diagram (Kn  En ։ Qn)n∈N of ind-locally split extensions.

Proof. By the proof of [CMM, Proposition 4.3.13], an extension K  E ։ Q in
←−−−
Ind(C)

is isomorphic to a diagram of extensions Kn  En ։ Qn in Ind(C). Being locally split
relative to C means in particular that for each i in the indexing category of Qn, the
canonical map Qn,i

// Qn has a lifting to En. Combining this with the fact that for a
constant pro-system X , a morphism X //Q is an inverse system of morphisms X //Qn

implies the result.

Let E be an exact category. An object Z ∈ E is said to be relatively injective if for
any inflation f : X  Y , the induced map HomE(f, Z) : HomE(Y, Z) ։ HomE(X,Z) is
a surjection of abelian groups. An exact category is said to have enough injectives if for
any X ∈ E , there is an inflation X  Z, where Z is relatively injective. Dually, one
defines projective objects relative to the exact category structure on E as those objects P
for which Hom(P,−) maps a deflation in E to a surjection of abelian groups.
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2.9. Lemma. [Pro, Proposition 7.3.2] Let E be a quasi-abelian category with enough in-

jectives. Then
←−
E has enough injectives. Dually, if E has enough projectives, then Ind(E)

has enough projectives.

Lemma 2.9 only provides information about injective objects for filtered cocompletions
and pro-completions of quasi-abelian categories. In our main applications, however, the
relevant exact structure on E = Ind(C) is the ind-locally split exact structure.

2.10. Lemma. [KKM, Proposition 4.8] Let C be an exact category with kernels and cok-
ernels, and enough projective objects. Then Ind(C) is an elementary exact category for the
indisation of the exact category structure of C.

2.11. Lemma. Suppose E is an elementary exact category, then E has enough (functorial)
injectives.

Proof. Combine [Kely1, Lemma 3.3.54] and [Sto, Corollary 5.9].

2.12. Corollary. Let C be a quasi-abelian category. Then Ind(C) has enough (functo-
rial) injectives for the ind-locally split exact structure.

Proof. We view C as an exact category with respect to the split exact structure, with
respect to which every object is projective. Furthermore, the ind-locally split exact struc-
ture on Ind(C) is the indisation of the split exact structure on C (see [Kely2, Example
4.26]). So by Lemma 2.10, it is elementary. The conclusion follows from Lemma 2.11.

2.13. Theorem. Let C be a quasi-abelian category. Then
←−−−
Ind(C) with the locally split

exact structure relative to C has enough injectives.

Proof. Let X ∈
←−−−
Ind(C). Then the map X //“

∏

”X into the fake product is an inflation.
It is a kernel by the proof of [Pro, Proposition 7.3.2]. The resulting kernel-cokernel pair
can be represented by the kernel-cokernel pairs

(Xn 

n
⊕

i=0

Xi ։

n−1
⊕

i=0

Xi)n∈N,

where the coproduct is taking place in the category Ind(C). Furthermore, the cokernel
splits by the obvious inclusion into the first n− 1-summands, which suffices to show that
the cokernel

⊕n
i=0Xi ։

⊕n−1
i=0 Xi is ind-locally split.

Now since Ind(C) has enough injectives for the ind-locally split exact structure by
Corollary 2.12, for each n ∈ N, there is an inflation jn : Xn  In, where In is relatively
injective. We first observe that each In is relatively injective when we view it as a constant

pro-object in
←−−−
Ind(C). This is because if X  Y is an inflation in

←−−−
Ind(C), and X // In an

arbitrary morphism, then as X  Y is in particular a kernel in
←−−−
Ind(C), by [Pro, Lemma

7.3.1], there is a lifting Y // In. Now since Xn

jn
 In ։ coker(jn) is ind-locally split for
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each n by hypothesis, taking products in the pro-category
←−−−
Ind(C), we get a kernel-cokernel

pair

“
∏

”X  “
∏

”I ։ “
∏

” coker(jn),

which is locally split. Finally, the fake product of a sequence of relatively injective objects
in relatively injective by the same argument as the proof of [CV, Lemma 2.2.2].

3. From exact to model categories

In this section, we show that under suitable conditions on an exact category F, there is an
induced closed model structure on Kom(F). We then specialise this to the exact category
←−−−
Ind(E) with the locally split exact structure relative to a quasi-abelian category E . We
call an object X ∈ Kom(F) fibrant if at each degree n, Xn is relatively injective. The
model structure we desire is defined as follows:

3.1. Definition. Let F be an exact category. The injective model category structure on
Kom(F), if it exists, is the model structure in which

• weak equivalences are the quasi-isomorphisms;

• cofibrations are the degree-wise inflations;

• fibrations are the degree-wise deflations with fibrant kernels.

We now use the general machinery developed in [Kely1] to find conditions on an
exact category under which the injective model structure exists. The results we need
from [Kely1] that are stated for arbitrary unbounded chain complexes work verbatim for
Z/2Z-periodic (unbounded) chain complexes.

3.2. Lemma. Let F be a countably complete exact category with enough injectives. A
morphism f : X // Y in Ch(F) is degree-wise a deflation in F and its kernel is fibrant if
and only if it satisfies the right lifting property with respect to cofibrations that are weak
equivalences. Here cofibrations and weak equivalences refer to degree-wise inflations and
quasi-isomorphisms, respectively.

Proof. We use some terminology and notation from [Kely1, Section 4]. Let F denote
the class of morphisms in Ch(F) that satisfy the right lifting property with respect to
cofibrations that are weak equivalences, and let F ′ denote the class of morphisms that
are degreewise deflations in F, and whose kernels are relatively injective. Let C and
W denote the class of cofibrations and weak equivalences, respectively. Since F has
enough injectives, the pair (Ob(F), Inj(F)) of all objects and relatively injective objects
is a complete cotorsion pair on F in the sense of [Kely1, Definitions 4.1.2 and 4.1.3]. By
[Kely1, Corollary 4.2.25], the pair

(Õb(F), ˜dg(Inj(F)))
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of exact chain complexes and complexes with relatively injective terms, as defined in
[Kely1, Definition 4.2.18] is a cotorsion pair. To see that it is complete, one simply
dualises the proof of [Kely1, Theorem 4.3.58]. Here the presence of enough injectives
and countable completeness is used to prove the existence of dg-injective resolutions.

By [Kely1, Theorem 4.1.7], the pair (Infl(Õb(F)),Defl( ˜dg(Inj(F)))) defined by degreewise
inflations in Ch(F) with exact cokernels, and deflations with fibrant kernels, is a compatible
weak factorisation system. It is equal to the pair (C ∩ W,F ′). Since weak factorisation
systems satisfy left and right lifting properties with respect to each other, we have that
F ′ = F as required.

3.3. Proposition. Let F be a countably complete exact category with enough injectives.
Then there is a closed model category structure on Kom(F) where the weak equivalences
are the quasi-isomorphisms, the cofibrations the degreewise inflations, and the fibrations
the cokernels of cofibrations with fibrant kernels.

Proof. In the proof of Lemma 3.2, we have already seen that the existence of enough

injectives on F implies that the pair (Õb(F), ˜dg(Inj(F))) is a complete cotorsion pair on

Ch(F). Furthermore, the pair ( ˜dg(Ob(F)), Ĩnj(F)) coincides with the injective cotorsion

pair on Ch(F). This is because Ĩnj(F) coincides with split exact chain complexes of injective
objects relative to the exact category structure on F, which in turn equals the collection
of injective objects on Ch(F), by dualising [Kely1, Proposition 2.6.111]. The collection

˜dg(Ob(F)) equals Ch(F), using [Kely1, Proposition 4.2.53]. And, since the presence of
enough injectives on F implies the same for Kom(F) (by adapting the proof of [Kely1,

Corollary 2.6.112]), the cotorsion pair (Ch(F), Ĩnj(F)) is complete. Finally, for the class

W of exact chain complexes, we have ˜dg(Ob(F)) ∩W = Ch(F) ∩W = W = Õb(F) and
˜dg(Inj(F)) ∩W = Ĩnj(F), where the last identity follows from [Kely1, 4.2.34]. The Hovey

Correspondence (see [Gil, Theorem 3.3] for the exact categorical version) induces the
model structure as in the statement of the proposition. Finally, by [Kely1, 5.2.4], Kom(F)
inherits the same model structure, by interpreting weak equivalences, cofibrations and
fibrations degree-wise.

We now specialise Proposition 3.3 to our setting. Concretely, given a quasi-abelian
category E and a full subcategory J , we want the locally split exact category structure

on
←−
E relative to J to induce a model category structure on Kom(

←−
E ) by interpreting

chain maps and extensions degreewise. Note that there is a related category, namely,

the category
←−−−−−
Kom(E) of projective systems of complexes with entries in E . Proposition

3.5 below shows that these two categories are equivalent. First we require the following
technical lemma.

3.4. Lemma. Let R be a ring that is finitely generated as a Z-module. Let (X, σX) and
(Y, σY ) be projective systems of R-modules, and f : X // Y a morphism of projective
systems of Z-modules that is R-linear in the sense that
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R⊗Z Y YmY

//

R⊗Z X

R⊗Z Y

1⊗f

��

R⊗Z X X
mX // X

Y

f

��

commutes, where mX and mY are the multiplication maps of X and Y , respectively. Then
f can be represented as a morphism of projective system of R-modules.

Proof. We can represent f by Z-linear maps (fn : Xm(n)
// Yn)n∈N. The condition of

R-linearity says that for each generator r ∈ R, there are indices kr(n) ≥ m(n) to have
fn(σ

X(r · x)) = r · σY (fkr(x)) for x ∈ Xkr(n). Now since R is finitely generated, we can
arrange that this equality holds simultaneously on all the generators of R, by taking the
maximum k(n) of all such indices kr(n). So {fn ◦ σ : Xk(n)

// Yn} is a morphism of
projective systems of R-modules.

3.5. Proposition. Let E be an additive category with cokernels. Then we have an equiv-

alence of categories
←−−−−−
Kom(E) ∼= Kom(

←−
E ).

Proof. Let R be the ring with the presentation {g, d : g2 = 1, gd + dg = 0, d2 = 0}.
Then a Z/2Z-graded chain complex over E is equivalent to an object X ∈ E , together
with a ring homomorphism R // EndE(X). Now since E is additive and has cokernels,

so does
←−
E . Therefore any chain complex in Kom(

←−
E ) is a projective system X = (Xn)n∈N

in
←−
E , together with a ring homomorphism f : R // End←−

E
(X). Viewing R as an R-

module, we obtain a projective system R⊗ZX of R-modules. Since R is finitely generated

and free as an abelian group and, since
←−
E is an additive category, R ⊗Z X is well-

defined. It is a direct sum of finitely many copies of X . The map f induces a morphism

R ⊗Z X // X of projective systems in
←−
E . Tensoring on the left with R, we obtain

a morphism R ⊗Z R ⊗Z X // R ⊗Z X of projective systems in
←−
E , which is R-linear.

Since R is finitely generated, Lemma 3.4 implies that we can represent this map as a
projective system of R-module maps R ⊗Z R ⊗Z X // R ⊗Z X . These can be further
represented as a diagram of R-modules (R ⊗Z R ⊗Z Xn

// R ⊗Z Xn)n∈M , after suitably

reindexing by some directed set M , with (Xn)n∈M ∼= X in
←−
E . For each n, the cokernel

of R ⊗Z R ⊗Z Xn
// R ⊗Z Xn is Xn, so that each Xn is an R-module. Therefore, X is

a projective system of R-modules. By naturality of the bar resolution, this assignment is

indeed a functor Kom(
←−
E ) //

←−−−−−
Kom(E), which is inverse to the functor

←−−−−−
Kom(E) //Kom(

←−
E )

that forgets the R-action on a diagram in E .

Now given C, D ∈ Kom(
←−
E ) ∼=

←−−−−−
Kom(E), there are two internal mapping spaces,

namely, HOM←−
E
(C,D) and Hom←−−−−−

Kom(E)
(C,D) = lim−→n

lim←−m
HOME(Cn, Dm). Since the for-

getful functor in Proposition 3.5 is fully faithful, we have a bijection HOM←−
E
(C,D) ∼=

Hom←−−−−−
Kom(E)

(C,D). In the situation where E is quasi-abelian and J is a full subcategory,

we use this bijection and the locally split exact category structure on
←−
E , to construct
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a model structure on
←−−−−−
Kom(E) by means of cofibrations and weak equivalences defined

on Kom(
←−
E ). For the rest of this article, HOM←−

E
will unambiguously denote the mor-

phism set of the category
←−−−−−
Kom(E). In particular, we call a morphism f : X // Y in

←−−−−−
Kom(E) ∼= Kom(

←−
E ) a cofibration if it is degree-wise an inflation for the locally split exact

structure on
←−
E .

We now spell out the fibrations in the category
←−−−−−
Kom(E) ∼= Kom(

←−
E ) more explicitly

when
←−
E has the locally split exact structure relative to a full subcategory J of a quasi-

abelian category E . A pro-complex X = (Xn)n∈N ∈
←−−−−−
Kom(E) ∼= Kom(

←−
E ) is fibrant if at

each degree, Xn is relatively injective for the locally split exact category structure on
←−
E

relative to J . Finally, a morphism f : X // Y in
←−−−−−
Kom(E) is a fibration if it is degree-wise

a deflation and ker(f) is fibrant.

We now describe the injective model structure on the category
←−−−−−−−−
Kom(Ind(C)) (which by

Proposition 3.5 is the same as the category Kom(
←−−−
Ind(C)).

3.6. Theorem. Let C be a quasi-abelian category, and consider
←−−−
Ind(C) as an exact cate-

gory with respect to the locally split exact structure relative to C. Then the injective model

structure exists on
←−−−−−−−−
Kom(Ind(C)) ∼= Kom(

←−−−
Ind(C)). Explicitly,

• its weak equivalences are the quasi-isomorphisms for the exact category structure on
←−−−
Ind(C);

• its cofibrations are degree-wise inflations for the exact structure above;

• its fibrations are degree-wise deflations for the exact structure above, with fibrant
kernels.

Proof. By Theorem 2.13, under the hypotheses on C, the category
←−−−
Ind(C) with the locally

split exact structure relative to C has enough injectives. The existence of finite limits in

Ind(C) implies that
←−−−
Ind(C) has countable limits. Proposition 3.3 now yields the desired

result.

The Hovey correspondence mentioned in the proof of Proposition 3.3 also provides

that the collections ˜dg(Ob(F)) = Kom(F) (resp. Õb(F)) and ˜dg(Inj(F)) (resp. Ĩnj(F))
are the cofibrant (resp. trivially cofibrant) and fibrant (resp. trivially fibrant) objects
of Kom(F), respectively. The trivial objects are, of course, the exact chain complexes.
The nomenclature “injective” model structure is due to the fact that the trivially fibrant
objects coincide with the injective objects of Kom(F).

We now describe the quasi-isomorphisms and exact chain complexes in this category
more explicitly.
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3.7. Definition. Let C be an additive category with kernels and cokernels and let C =

(Ck, α
k
n)k,n∈N be a chain complex over

←−−−
Ind(C). We may arrange for each Ck to be a chain

complex and write Ck
∼= (Ck,i)i∈Ik as an inductive system of chain complexes. For each

n, k ∈ N, i ∈ Ik, with k ≥ n, let αk
n,i : Ck,i

// Cn be the component of the structure map
αk
n : Ck

// Cn of the projective system at i; this is a morphism in C to Cn,j for some
j ∈ In. The chain complex C is called locally contractible if, for every n, there is a k ≥ n
such that for any i ∈ Ik, the map αk

n,i is null-homotopic. A chain map f : C // D is
called a local chain homotopy equivalence if its mapping cone is locally contractible.

3.8. Proposition. A chain complex in
←−−−
Ind(C) is locally contractible if and only if it is

exact for the locally split exact structure on
←−−−
Ind(C).

Proof. Let C be a locally contractible chain complex. Write C ∼= (Ck, dk)k∈Z with a
compatible family of morphisms dk : Ck

// Ck in Ind(C) with d2k = 0, as in the definition
of a locally contractible chain complex. Then ker(d) ∼= ker(dn)n∈Z. We need to prove that
the morphism of projective systems described by the morphisms dn : Cn

// ker(dn) is a

cokernel in the category
←−−−
Ind(C). Let (Ck,i, dk,i), α

k
n and αk

n,i be as in Definition 3.7. Let
n ∈ Z. Since C is locally contractible, there is k ≥ n such that for each i ∈ Ik, there is a
map hk

n,i : Ck,i
// Cn with

hk
n,i ◦ dk,i + dn ◦ h

k
n,i = αk

n,i.

We replace hk
n,i by its restriction to ker dk,i, which satisfies dn ◦ hk

n,i = αk
n,i. Composing

with the structure maps αl
k, we get such maps for all l ≥ k and i ∈ Il as well. For l ≥ k,

we build a pull-back diagram

Cn ker(dn)dn
//

Xl,n

Cn

γl,n

��

Xl,n ker(dl)
gl,n

// ker(dl)

ker(dn)

αl
n

��

The universal property of pullbacks gives a unique map σn
l,i : ker(dl)i // Xl,n with

gl,n ◦ σi
l,n = cani : ker(dl)i // ker(dl) and γl,n ◦ σi

l,n = hl
n,i. Then gl,n : Xl,n

// ker(dl)
is a cokernel in Ind(C). The maps (gl,n) combine to a morphism of pro-ind systems.
This morphism is a cokernel because each gl,n is a cokernel. Since the family of maps
ker(dl) // ker(dn) represents the identity map of projective systems, X is isomorphic
as a projective system to C, and the maps (gl,n) represent the map d : C // ker(d).
Consequently, d : C // ker(d) is a cokernel.

To see the converse, let (C, d) be an exact chain complex in
←−−−
Ind(C). Then by definition,

ker(d)  C ։ ker(d) is a locally split extension. Now the proof of [M1, Theorem 3.3.9]
applies to yield local contracting homotopies for the projective system structure maps of
C.
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The following lemma describes local chain homotopy equivalences directly without
referring to the mapping cone:

3.9. Proposition. Let f : C //D be a chain map in
←−−−
Ind(C). We may represent f by a

compatible family (fn : Cn
//Dn)n∈N of chain maps in Ind(C), and each fn by a coherent

family of chain maps fn,i : Cn,i
// Dn,i in C for i ∈ In with some filtered category In.

Then f is a local chain homotopy equivalence if and only if for each n ∈ N, there is an
m ≥ n, such that for each i ∈ Im, there are morphisms

gnm,i : Dm,i
// Cn, hD

m,i : Dm,i
//Dn[1], hC

m,i : Cm,i
// Cn[1],

where gnm,i are chain maps and hD
m,i and hC

m,j are chain homotopies between fn ◦ g
n
m,i and

gm,i ◦ fm,i, and the canonical maps ηnm,i : Dm,i
//Dn and γn

m,i : Cm,i
// Cn, respectively.

Proof. We need to show that cone(f) is locally contractible, that is, for each n, there is
an m ≥ n such that for all i ∈ Im, the structure map

cone(f)nm,i = C[−1]m,i ⊕Dm,i

γn
m,i⊕η

n
m,i

−−−−−−→ C[−1]n ⊕Dn = cone(f)n (1)

is null-homotopic. Here γ and η are the structure maps of C and D, respectively.
Let δcone(f)n denote the boundary map of the cone of fn. Since hC

m,i, h
D
m,i are local chain

homotopies between gm,i ◦ fm,i and γn
m,i, and fn ◦ gm,i and ηnm,i, respectively, the matrix

h̃m,i =

(

−hC[−1]
m,i gnm,i

0 hD
m,i

)

: cone(f)m,(i,j)
// cone(f)n

satisfies

δcone(f)n ◦ h̃m,i + h̃m,i ◦ δ
cone(f)m,(i,j) =

(

γn
m,i hD

m,i ◦ fm,i − fn ◦ hC
m,i

0 ηnm,i

)

.

Then we compute that h = h̃ ◦Ψ with

Ψn
m,i :=

(

ηnm,i fn ◦ hC
m,i − hD

m,i ◦ fm,i

0 γn
m,i

)

,

is the desired null-homotopy for (1).

4. Bivariant local and analytic cyclic homology

In this section, we specialise Theorem 3.6 to the case where C = Bank is the category
of Banach spaces and bounded k-linear maps over a nontrivially valued Banach field k.
By [BBK, Lemma A.30], this category is quasi-abelian. Furthermore, it is a symmetric
monoidal category with respect to the completed projective tensor product and k is its
tensor unit. It is also closed in the sense that its internal Hom-object HomBank

(A,B)
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is a Banach space with respect to the operator norm. It is also finitely complete and
cocomplete, so that its ind-completion Ind(BanF ) is bicomplete. As a consequence of
these properties, categories of inductive systems of Banach spaces, and the full subcategory
CBornk of complete bornological vector spaces are ideal for the purposes of cyclic homology
theories for topological algebras.

4.1. Local cyclic homology for nonarchimedean Banach algebras. In this
subsection, we shall see that something peculiar happens when the category C in Proposi-
tion 2.8 is the category of Banach spaces over a discretely valued nonarchimedean Banach
field - the ind-locally split exact structure trivialises to the quasi-abelian structure. Let
V be a complete discrete valuation ring, F its fraction field and F its residue field. For
the purposes of non-archimedean cyclic theories, we are mainly interested in the addi-

tive category of Z/2Z-graded complexes in the category
←−−−−−−
Ind(BanF ) of projective systems

of inductive systems of Banach F -vector spaces. In this section, we explictly describe
the injective model structure - that is, the cofibrations and weak equivalences from the

previous section - which greatly simplifies for the category
←−−−−−−
Ind(BanF ).

4.2. Lemma. The quasi-abelian structure on the category BanF coincides with its split
exact structure. In particular, it has enough projectives. Furthermore, Ind(BanF ) has
enough injectives for its quasi-abelian structure.

Proof. Let K  E
q
։ Q be any extension of Banach spaces. Then by [Sch, Remark

10.2], Q ∼= C0(D,F ) for some set D. Now by [BBK, A. 38], C0(D,F ) is projective
for the quasi-abelian structure on BanF , so that the quotient map E ։ Q splits. As
a consequence, the quasi-abelian and the split exact structures coincide in the category
BanF . Finally, Ind(BanF ) has enough injectives by Lemmas 2.10 and 2.11.

4.3. Theorem. Every extension in Ind(BanF ) is ind-locally split. Consequently, any

extension K  E ։ Q in the category
←−−−−−−
Ind(BanF ) is locally split relative to BanF .

Proof. Let K  E ։ Q be an extension in Ind(BanF ), represented by an inductive
system of extensions (Ki  Ei ։ Qi)i∈I . By Lemma 4.2, extension in the system
splits in BanF . Consequently, if X // Q is any morphism represented by a level map
X //Qi, its composition with the section at that level yields a map X //Ei. Composing
with the map Ei

// E yields the required lifting of the original map X // Q. For the
second part, any extension K  E ։ Q can be represented by a diagram of extensions
(Kn  En ։ Qn)n∈N of objects in Ind(BanF ). For each fixed n, by the first part, the
extension Kn  En ։ Qn is already ind-locally split. Hence K  E ։ Q is locally
split, by Propostion 2.8.

4.4. Corollary. The category
←−−−−−−
Ind(BanF ) has enough injectives for its quasi-abelian

structure, which coincides with its locally split exact structure relative to BanF .
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Proof. By Corollary 2.12, Ind(BanF ) has enough injectives for the ind-locally split exact
structure, which coincides with the quasi-abelian structure by Theorem 4.3. The conclu-
sion now follows from Lemma 2.9.

What we have therefore shown is that locally split extensions in
←−−−−−−
Ind(BanF ) relative to

BanF are equivalent to projective limits of diagrams of all extensions in Ind(BanF ). The
surprising feature of the nonarchimedean setting is that such extension in Ind(BanF ) is
equivalent to an ind-locally split extension in Ind(BanF ) relative to the subcategory BanF .

In [CMM, MM2, MM1], the authors define three chain complex valued functors

HA :
←−−−−−−−−
Alg(CBorntfV ) // Der(

←−−−−−−
Ind(BanF )),

HA :
←−−−−−−−
Alg(ModF) // Der(

←−−−−−−
Ind(BanF )),

and
HL : Alg†V

// Der(
←−−−−−−−
Ind(BanF ))

for projective systems of complete, bornologically torsionfree V -algebras, projective sys-
tems of F-algebras and dagger algebras. The latter class of algebras were introduced in
[MM3]. The definition of these homology theories is beyond the scope of this article, and
we therefore direct the interested reader to their original references above. Each of these
functors is homotopy invariant for suitable classes of homotopies, matricially stable and
excisive.

An important property of the analytic cyclic homology theory defined in [MM1] is
that it is independent of choices of liftings. More precisely, the main result that used local
homotopy equivalences that this article clarifies conceptually is the following:

4.5. Theorem. [MM1, Theorem 5.5] Let D1 and D2 be two dagger algebras such that
D1/πD1

∼= A ∼= D2/πD2, and the quotient maps are bounded when we view A as a
bornological algebra with the fine bornology. Then we have weak equivalences HA(D1) ≃
HA(A) ≃ HA(D2).

In other words, the weak equivalences of the injective model structure on the category

Kom(
←−−−−−−
Ind(BanF )) are precisely the local chain homotopy equivalences used to prove [MM1,

Theorem 5.5]. The authors also define bivariant versions of analytic cyclic homology
in [CMM, MM1], whose morphism (ind-Banach) space we may now interpret using the
homotopy category of our model category: let A and B belong to one of the categories of
algebras mentioned at the start of the section. Denoting by Hom

Ho(
←−−−−−−−
Ind(BanF ))

the morphism

space of the homotopy category of the model category
←−−−−−−
Ind(BanF ) with its injective model

structure, bivariant analytic cyclic homology can be redefined as

HAi(A,B) := Hom
Ho(Kom(

←−−−−−−−
Ind(BanF )))

(HA(A),HA(B)[i])

∼= Hi(Hom
HoKom(

←−−−−−−−
Ind(BanF ))

(RHA(A), RHA(B)))
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for i = 0, 1, where R is the fibrant replacement functor. Note that by the description of
cofibrant objects provided after Theorem 3.6, every object is already cofibrant, so there is
no need for cofibrant replacement. As local cyclic homology is defined only by changing the
bornology on a dagger algebra to the compactoid bornology (see [MM2, Section 3]), that
is, HL(A) = HA(A′), where A′ is the dagger algebra A with the compactoid bornology,
we may also put

HLi(A,B) := Hom
Ho(Kom(

←−−−−−−−
Ind(BanF )))

(HL(A),HL(B)[i]),

for i = 0, 1. By [MM2, Theorem 7.4], we have a chain homotopy equivalence HL(V ) ∼=
HA(V ), so that

HLi(V,B) ∼= HLi(B)

for all dagger algebras B and i = 0, 1.

4.6. Local cyclic homology for pro-C∗-algebras.We now consider the category
BanC of complex Banach spaces, viewed as an exact category for its split exact structure.
This does not simplify to the quasi-abelian structure. The resulting ind-locally split
exact structure on the category Ind(BanC) is used to define the local homotopy category
of complexes - the correct target category of local cyclic homology ([Mey1, Pus]). By
definition, the local homotopy category of chain complexes is the localisation of the naive
homotopy category of Kom(Ind(BanC)) of chain complexes at the collection of chain maps
f whose mapping cone cone(f) is ind-locally split exact. It is actually rather important to
work in this generality to prove an important property of local cyclic homology, namely,
invariance under isoradial embeddings defined in [Mey1, Section 3.4]. For an isoradial,
dense subalgebra A ⊆ B - for instance C∞(M) ⊆ C(M) for a smooth manifold M -
the induced map HL(C∞(M)) // HL(C(M)) in local cyclic homology is a local chain
homotopy equivalence by [Mey1, Theorem 6.21]. Equivalently, its cone is ind-locally split
exact.

Invariance under isoradial embeddings is an important reason why local cyclic ho-
mology yields good results for C∗-algebras. However, neither local cyclic homology nor
the related analytic cyclic homology, commute with inverse limits, which prevents their
extension to pro-C∗-algebras. To extend local cyclic homology to pro-C∗-algebras, one
needs to enlarge the target category to include projective systems of chain complexes in
Ind(BanC). This is what justifies the generality of Theorem 3.6. With the homotopy cat-

egory of
←−−−−−−−−−−−
Kom(Ind(BanC)) with the injective model structure as the target, we can extend

analytic cyclic homology

Alg(CBornC)

��

HA // Ho(
←−−−−−−−−−−−
Kom(Ind(BanC)))

←−−−−−−−−
Alg(CBornC)

HApro

66
♠
♠
♠
♠
♠
♠
♠
♠
♠
♠
♠
♠
♠
♠
♠
♠
♠
♠
♠
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to projective systems of complete bornological C-algebras, by applying it levelwise to each
bornological algebra. Similarly, we can extend local cyclic homology

HLpro :
←−−−−−−−−−−
Alg(Ind(BanC)) // Ho(

←−−−−−−−−−−−
Kom(Ind(BanC)))

to pro-algebras.

4.7. Theorem. The functors

HApro :
←−−−−−−−−
Alg(CBornC) // Ho(

←−−−−−−−−−−−
Kom(Ind(BanC)))

and HLpro :
←−−−−−−−−−−
Alg(Ind(BanC)) // Ho(

←−−−−−−−−−−−
Kom(Ind(BanC)))

satisfy

• homotopy invariance for homotopies of bounded variation;

• stability with respect to algebras of nuclear operators;

• excision for extensions of pro-bornological C-algebras with a bounded pro-linear sec-
tion.

Proof. We view the space of bounded variations A([0, 1]) and the algebra l of nuclear
operators as constant pro-systems. Now for each n, we have chain homotopy equivalences
HA(An) ≃ HA(An ⊗π A([0, 1])) and HA(An) ≃ HA(An ⊗πM) by [Mey1, Theorem 5.45,
Theorem 5.65]. By varying n, we get weak equivalences HApro(A) ≃ HApro(A⊗πA([0, 1])
and HApro(A) ≃ HA(A⊗πM) in the homotopy category. For excision, we observe that
any extension of pro-algebras that splits by a pro-linear section can be represented by an
extension of bornological algebras with compatible bounded linear sections. Now use the
excision theorem for bornological algebras with bounded linear sections.

We remark that Theorem 4.7 goes through even if we work in the quasi-abelian cate-

gory
←−−−−−−
Ind(BanC) as the equivalences HA(A) ≃ HA(A⊗π A([0, 1]), HA(A) ≃ HA(A⊗πM)

are chain homotopy equivalences, rather than the more general weak equivalences of The-
orem 3.6. The context in which these more general local chain homotopy equivalences are
unavoidable is the following:

4.8. Theorem. Let A // B be a pro-algebra homomorphism in
←−−−−−−−−−−
Ind(Alg(BanC)) that is

represented by an inverse system of isoradial embeddings at each pro-system level. Then

HLpro(A) ≃ HLpro(B) in Ho(
←−−−−−−−−−−−
Kom(Ind(BanC))).

Proof. By definition of HLpro, we only need to consider the levelwise maps

HL(An) //HL(Bn)

between local cyclic homology complexes in Ind(BanC), the cones of which are ind-locally
split exact relative to BanC as a consequence of [Mey1, Theorem 6.20 and 6.11].
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4.8.1. Chern character. Let CP be the category whose objects are the separable
C∗-algebras and whose morphisms are the completely positive maps, and C∗Alg ⊂ CP
the subcategory with the same objects but where homomorphisms are ∗-algebra homo-

morphisms. Let C ⊂
←−
CP be the full subcategory on the inverse systems whose transition

maps are surjective ∗-algebra homomorphisms, and let D ⊂ C the category with the same

objects, and with the homomorphisms making it into a full subcategory of
←−−−
C∗Alg. In

his thesis [Bon, Chapter 3], Bonkat constructs a functor D // KK
D
C and proves [Bon,

Satz 3.5.11] that it is universal among those taking valued in an additive category that
are C([0, 1])-homotopy invariant, compact operator stable and half exact with respect to
extensions with completely positive contractive linear sections. Actually, the construction
in [Bon] works for general pairs of subcategories D ⊆ C of pro-C∗-algebras, satisfying the
axioms laid out in [Bon, Section 2.1 and Definition 2.4.1]. Now by Theorem 4.7, the re-
striction of HLpro

0 (−,−) to D satisfies all these properties, as the C∗-algebra of compact
operators are a special case of algebras of nuclear operators. So by the universal property
of Bonkat’s bivariant K-theory, we get a bivariant Chern character

KK
D
C (A,B) // HLpro

0 (A,B) = Hom
Ho(Kom(

←−−−−−−
Ind(BanC)))

(HLpro(A),HLpro(B)),

for pro-C∗-algebras A and B ∈ D.
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pean Mathematical Society (EMS), Zürich, pp. viii+360, 2007, DOI: 10.4171/039

[MM1] Ralf Meyer, Devarshi Mukherjee, Analytic cyclic homology in positive characteristic,
Annals of K-Theory 8-3, 379–419, 2023 DOI 10.2140/akt.2023.8.379

[MM2] Ralf Meyer, Devarshi Mukherjee, Local cyclic homology for nonarchimedean Banach
algebras, Cyclic Cohomology at 40: Achievements and Future Prospects, 105: 281,
2023

[MM3] Ralf Meyer, Devarshi Mukherjee Dagger completions and bornological torsion-freeness,
Q. J. Math., 70 (3), pp. 1135–1156, 2019, DOI 10.1093/qmath/haz012

[M1] Devarshi Mukherjee, Topological Invariants for Non-Archimedean Bornologi-
cal Algebras, PhD Thesis, Georg-August-Universität Göttingen, 2020, DOI
10.53846/goediss-8247

[Pro] Fabienne Prosmans, Derived limits in quasi-abelian categories, Bull.
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