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Closed-form expression for the profile of partially wetting two-dimensional droplets under gravity
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Analytical solutions for the shape of both hanging and sitting droplets under the effects of gravity and surface
tension are presented. The modeling also includes the action of molecular forces arising between the liquid and
the substrate, which are responsible for the formation of a stable nanometric film in the region close to the droplet
contact line. The shape of the droplet is completely described by an analytical solution that also accounts for the
pancake-shaped droplets as a limiting case. We find expressions that relate microscopic and nanoscopic aspects,
such as the strengths of the molecular forces and the thickness of the nanometric film, to macroscopic quantities,
such as the cross-sectional area and the width of the droplet. We study the effect of gravity on the contact angle
and find that for small droplets the contact angle follows a power law with the droplet’s size. For sitting droplets
we find that the there is an upper limit for the value of the gravity.
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I. INTRODUCTION

The study of the shape of droplets offers a large number
of research opportunities both in fundamental and applied
fields. On the fundamental side, the dynamics and statics of
droplets are now possible to experimentally explore at the
nanometric scale thanks to the development of new techniques
on droplet production and imaging. This information is useful
to test theoretical models that relate geometric and molecular
parameters and also to improve the understanding of wetting
related phenomena, such as the coarsening and coalescence of
droplets, the dependence of contact angle on droplets size and
temperature, line tension effects, volume selection, contact line
instabilities, etc. [1–19]. From the technological side, this field
of research is increasing our understanding of key processes
of printing, coating, and electronic industries [20–24]. The
knowledge of the dynamics of wetting developed during the
last two decades also has crucial importance to the design of a
large number of microfluidic devices [25], and more research
on this issue is needed in order to improve the efficiency of
these reduced-size systems, where the action of interfacial and
molecular forces play a key role.

Here, we present analytical solutions for the thickness
profile of hanging and sitting two-dimensional droplets under
partially wetting conditions. The modeling takes into account
capillary and gravity effects as well as the forces between
the liquid and solid molecules. Following Derjaguin [26], the
integrated action of attractive and repulsive molecular forces
results in a net disjoining-conjoining pressure. Although this
pressure must be considered only when the fluid thickness
goes below 100 nm, its effect has a large impact on the wetting
properties of the fluid and thus on the macroscale dynamics of
droplets and films [3,9,27].

In general, three different regions can be distinguished in
the shape of a large droplet. The first one is the bulk, where
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the effect of the intermolecular forces is negligible and the
thickness profile is the result of the action of the capillarity
and gravity (if considered). The second region is constituted
by a constant-thickness nanometric film that surrounds the
droplet, where the thickness is determined by the competition
of intermolecular forces between the solid and the liquid.
The last one is the transition region, where the bulk meets
the nanometric film and where all the involved forces compete
[28–30]. Different methods have been applied to describe the
shape of these three regions, such as the numerical resolution
of the governing equations [31], asymptotic matching [30,32],
series expansions, which is valid in the region where the
liquid-vapor interface meets the substrate [27,33,34], guess
functions [35], and parametric solutions [36].

Despite the large number of papers analyzing the morphol-
ogy of droplets, few of them give analytical solutions that relate
the macroscopic and microscopic parameters of the droplets
when a pair of attractive and repulsive molecular forces are
considered. To our knowledge, the first complete analytical
solution was reported in Ref. [37], in which the gravity was
not included in the model. In that work, the authors find a
unique expression for the complete profile of the droplet and
present a number of analytical results that link molecular and
shape parameters. Here, we extend their study by including
the effect of gravity, finding solutions and analyzing some
restrictions that gravity imposes on them.

This article is organized as follows. In Sec. II we introduce
the formulation. In Sec. III we analyze the range of parameters
for which the governing equation has an analytical solution
with the shape of a drop. The analytical solutions for the
thickness profile of the droplet and for its cross-sectional area
are presented in Sec. IV, while the effect of gravity on the
contact angle is analyzed in Sec. V. Finally, the last section is
devoted to the conclusions.

II. FORMULATION

In this section we introduce the basic equations. Although
we focus on stationary droplets, here we include temporal
terms in order to show that the proposed adimensionalization
results in a one-parameter dimensionless equation even when
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FIG. 1. (Color online) Scheme of a sitting (d > 0) or hanging
(d < 0) droplet. Here, hf is the thickness of the precursor film that
surrounds the droplet.

nonstationary droplets are considered. We analyze the case
of a two-dimensional droplet sitting on (or hanging from) a
horizontal rigid substrate, as shown in Fig. 1.

The liquid is Newtonian, with a viscosity μ, density ρ,
and coefficient of surface tension γ . The horizontal and the
vertical coordinates are x and z, respectively, and t is the
time. The thickness of the film is h ≡ h(x,t), and we assume
that the slope of the free surface is gentle and the flow is
slow. With these assumptions we can apply the lubrication
approximation [13,38], so that the evolution of h is governed
by

∂h

∂t
+ ∂(uh)

∂x
= 0, u = − 1

3μ
h2 ∂p

∂x
, (1)

with [39]

p = −γ
∂2h

∂x2
+ ρg(h − z) − �(h) + �(z). (2)

Here u is the vertically averaged horizontal velocity, and g

is the acceleration due to gravity. The pressure p has three
contributions: the Laplace pressure, the hydrostatic pressure,
and the conjoining-disjoining pressure �, which we choose
as [14,40]

�(h) = κ

[(
h0

h

)n

−
(

h0

h

)m]
, (3)

where n > m, h0 is an energetically favored molecular
thickness, and κ is related to the Hamaker constant [37].

Defining the dimensionless variables and quantities,

ĥ = h/h0, x̂ = x/x0, t̂ = t/t0, û = u t0/x0, (4)

and choosing x2
0 = γ h0/κ and t0 = 3μγ/h0κ

2, the evolution
equations for the dimensionless thickness become

∂h

∂t
+ ∂(uh)

∂x
= 0, (5)

u = h2 ∂

∂x

[
∂2h

∂x2
+

(
1

hn
− 1

hm

)
− dh

]
, (6)

where we have omitted the hats for simplicity. Notice that
with this scaling d is the unique parameter of the governing
equation, and it is given by

d ≡ ρgh0

κ
= ρgx2

0

γ
. (7)

This dimensionless number quantifies the relative strength of
gravity with respect to the molecular interaction between the
solid and the liquid. The case of droplets hanging from a
substrate is analyzed by considering d < 0.

To look for stationary solutions for Eqs. (5) and (6) we
impose u = 0 to get

h′′ +
(

1

hn
− 1

hm

)
− dh = −P, (8)

where each prime denotes a derivative with respect to x and
P is a constant to be determined. The solution we are seeking
tends to a nanometric flat film hf for x → ±∞, a boundary
condition that allows us to write P in terms of hf :

P = −
(

1

hn
f

− 1

hm
f

)
+ dhf . (9)

Substituting Eq. (9) in Eq. (8), we obtain

0 = h′′ +
(

1

hn
− 1

hm

)
−

(
1

hn
f

− 1

hm
f

)
− d(h − hf ). (10)

The integration of this last equation results in

0 = 1

2
(h′)2 +

(
1

1 − n

1

hn
+ 1

m − 1

1

hm

)
h

−
(

1

hn
f

− 1

hm
f

)
h − 1

2
dh2 + dhf h + C. (11)

The value of C is found from the condition h′ → 0 for h → hf .
Finally, we assume, as in Ref. [37] and the references therein,
n = 3 and m = 2 to find out h′:

(h′)2 = (h − hf )2

h2h3
f

[
dh2h3

f − 2(hf − 1)h + hf

]
. (12)

It is instructive to observe that Eq. (12) can also be obtained
by minimizing the dimensionless energy

F (h,h′) =
∫

(ug + u� + uγ )dx, (13)

where

ug = 1

2
dh2, (14)

u� = 1

2h2
− 1

h
, (15)

uγ = 1

2
h′2. (16)

For a vertical column of fluid with height h and width dx, the
above defined ug , u�, and uγ are the gravitational energy, the
energy from the molecular interaction with the substrate, and
the energy from surface tension, respectively.
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III. PARAMETER SPACE ANALYSIS

In this section we analyze the values of hf and d for which
Eq. (12) allows a droplet solution. The solution must verify two
conditions. The first one is that it must have two values of h for
which h′ = 0; one of them is hf , and the other corresponds to
the maximum of the profile hm. Naturally, the second condition
is that hm > hf .

Besides h = hf , h′ has two other roots. One of them has
no physical sense, and the second one, corresponding to the
maximum of the droplet, is

hm =
hf − 1 −

√
(hf − 1)2 − dh4

f

dh3
f

. (17)

In order to ensure a real value, the second order polynomial
within the square root in Eq. (17) must be non-negative. This
condition gives a first restriction to the value of d:

d � d∗ ≡ (hf − 1)2

h4
f

. (18)

The second condition, which is to impose that hm > hf , gives

dmin < d < dmax for 0 < hf � 2, (19)

where

dmin ≡ 2hf − 3

h4
f

,

dmax ≡
{

0 for 0 < hf � 1,

d∗ for 1 < hf � 2.
(20)

Figure 2 shows the region of the space parameter where the
condition given in Eq. (19) is verified. Observe that for a fixed
d we have hf,min � hf � hf,max, where

hf,min =
{

0 if d < 0,
2

1+
√

1−4
√

d
if d � 0, (21)

and

hf,max = D

2

(
√

r −
√

−r + D
4

d
√

r

)
. (22)

Here D ≡ sgn(d), and r is given by

r ≡ 25/3d + 21/3(d + √
d2 − 16d3)2/3

d(d + √
d2 − 16d3)1/3

. (23)
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FIG. 2. The gray zone represents the values of d and hf for the
existence of droplet solutions. The dashed line is d = d∗, and the
dotted one is d = dmin.
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FIG. 3. (Color online) The maximum thickness hm given by (17)
as function of hf for d = 0, ±0.02, ±0.04, and ±0.06. The parameter
d increases from left to right (from blue to red). The thick line
corresponds to d = 0, and the dashed lines correspond to hm = hf

and hm = h∗
m.

From Eq. (21), the maximum value for d is 1/16, which
corresponds to hf = 2.

Figure 3 shows the maximum thickness of the droplet hm

for different values of d. Notice that for a given d > 0 (sitting
droplets), hm has an upper bound h∗

m given by

h∗
m = hf,min

(hf,min − 1)
≡ 2

1 −
√

1 − 4
√

d
. (24)

As expected, for nongravity conditions or hanging droplets,
i.e., d � 0, hm is unbounded.

IV. THE ANALYTICAL THICKNESS PROFILE

In this section we present an analytical expression that
describes completely the thickness profile of a droplet from the
nanometric precursor film to the maximum. We also analyze
how the involved parameters affect the shape of the droplet.

Equation (12) can be integrated to obtain the solution of the
thickness profile in the following implicit form:

x = − 1√
d

ln

(
s1 − s

√
d

hf

√
dmax − d

)
+ 1√

d − dmin

× ln

(
s2 + s

√
d − dmin

(h − hf )
√

dmax − d

)
, (25a)

where

s =
√

hf

(
2h + hf − 2hhf + dh2h3

f

)
,

s1 = 1 − (
1 + dhh3

f

)
/hf ,

s2 = −1 + (
h + 2hf − hhf + dhh4

f

)/
h2

f .

(25b)

Here, without loss of generality, the droplet has been
centered at x = 0. This solution describes the shape of a droplet
for any allowed pair of values of d and hf . The thickness profile
for d = 0 presented in Ref. [37] is recovered from Eqs. (25)
when d tends to 0.
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FIG. 4. Thickness profiles for d = const and different values of
hf : (a) d = −0.02 and hf = 0.7,0.8,0.9,1.0, and 1.1; (b) d = 0.02
and hf /hf,min − 1 = 10−1,10−3,10−5,10−7, and 10−9. The solid
(dashed) lines are for d > 0 (d < 0). The arrows point in the direction
of decreasing hf .

It is convenient to make a comment about the validity of
the solution (25). Notice that Eqs. (1) and (2) were derived
assuming the lubrication approximation, which means that the
slope of their solutions has to be small. Then, only when
this condition is verified does the solution (25) properly
describe a droplet. In connection with this, Ref. [41] presents
solutions of the Navier-Stokes equations that agree very well
with the respective solutions obtained using the lubrication
approximation for slopes as large as 30◦.

Figure 4 shows the solution presented in Eq. (25) for a
negative and a positive value of d and different values of hf .
For a given d, a lower value of hf corresponds to a larger
cross-sectional area a of the droplet. Nevertheless, while for
d < 0 the increment of the area is carried out by continuously
increasing hm, for d > 0 we have that, as hf → hf,min (and
then hm → h∗

m), the area is instead incremented by increasing
its width. This last case corresponds to the “pancake”-shaped
droplet [9], a profile that is completely described as a limit
case of Eq. (25) without the need of assuming a strictly flat
profile (null first derivative) at the top of the droplet.

A similar analysis can be performed by keeping hf constant
and changing d continuously. Figure 5 shows profiles of
droplets for hf < 1 (for which dmax = 0) and hf > 1. In the
first case, when d is increased from dmin to dmax, the area of the
droplet continuously grows from zero to infinite by increasing
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FIG. 5. Thickness profiles for hf = const and different values
of d: (a) hf = 0.8 and d = −0.04, − 0.03, − 0.02, and −0.01; (b)
hf = 1.2 and d/dmax − 1 = −3, − 2, − 10−1, − 10−3, − 10−5, and
−10−7. The solid (dashed) lines are for d > 0 (d < 0). The arrows
point in the direction of increasing d .
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FIG. 6. (Color online) The half width w as function of hf for
d = 0, ±0.02, ±0.04, and ±0.06. The thick line corresponds to
d = 0.

hm. For hf > 1, the area also grows from zero to infinite, but
when d → dmax one has hm → h∗

m, and the area of the droplet
continues growing by increasing its width, in a similar manner
as observed for the case with d = const.

We also analyzed the behavior of the half width w of the
droplet, arbitrarily defined as

w = x

(
hf + hm

2

)
. (26)

From Eqs. (17), (25), and (26) it is possible to obtain a closed
expression for w as a function of hf and d (not shown here
for brevity). Figure 6 shows w as a function of hf for different
values of d. Notice that for any fixed d, w has a minimum at
some intermediate value between hf,min and hf,max.

For hf approaching hf,min or hf,max, w presents different
behaviors depending on the value of d. The half width
diverges when hf → hf,max for both positive and negative
d and also when hf → hf,min for d � 0. Interestingly, when
hf → hf,min and d < 0, the half width w tends to a constant,
w∗ = π/2

√−d despite hm tending to infinity, as shown in
Fig. 3.

Up to this point, all the presented solutions depend on d

and on the nanoscopic parameter hf . We now introduce the
relationship of the cross-sectional area a to the parameters hf

and d, which helps to link all the previously derived solutions
with a.

We define the dimensionless area a of the droplet as

a =
∫ ∞

−∞
(h − hf )dx. (27)

A close expression for a is obtained by using Eq. (25) and is
given by

a = − 2

d

√
d − dminhf + 2

h2
f d3/2

(
1

hf

− 1

)

× ln

[
hf − 1 − dh4

f − √
d(d − dmin)h4

f√
dmax − dh2

f

]
. (28)
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FIG. 7. (Color online) The area a as function of hf for d = 0,
±0.02, ±0.04, and ±0.06 (d increases from left to right). The thick
line corresponds to d = 0.

Figure 7 shows a as a function of hf for different values of d.
For a fixed d the area is a decreasing function of hf , ranging
from infinity to zero as hf goes from hf,min to hf,max.

V. THE CONTACT ANGLE

We define the macroscopic contact angle θ as the slope of
the surface h(x) at the inflection point. A closed expression
of θ as a function of hf and d is obtained from Eq. (12),
which is given by the roots of a third order polynomial.
Thus, three expressions of θ are found, but only one is
physically meaningful for given values of hf and d (the
resulting relationships are too long to be written out here).
Figure 8 shows θ as function of a for different d. For small
a the contact angle verifies θ ∝ a3, where the constant of
proportionality depends on d. For large areas, θ is independent
of d for d � 0: θ tends to π/2 for any d < 0 and to π/4 if
d = 0. For d > 0, θ tends to θmax, a decreasing function of d

log10a
log10θ1

−1

−2

−3

−4

−1 1 2 3 4 5 6

FIG. 8. (Color online) The apparent contact angle θ as function
of area a for d = 0, ±0.02, ±0.04, and ±0.06. The thick line
corresponds to d = 0, and the dotted line corresponds to θ ∝ a3.

given by

tan θmax =
√

1 − 4d1/4 + 4
√

d. (29)

For sessile drops, when the area is large, the drop adopts
the pancake shape. Then, expression (29) gives the contact
angle of a pancake droplet. Finally, it is important to remark
that 	, the contact angle of the droplet with the dimen-
sions restored, is related to θ by means of the relationship
tan 	 = √

h0κ/γ tan θ , as was explained in Ref. [37].

VI. DISCUSSION AND CONCLUSIONS

In Ref. [37] the case without gravity (d = 0) was exten-
sively studied and discussed, so that here we focus attention
on the effects of gravity on the characteristics of a droplet. We
first discussed the conditions for the existence of a droplet.
From Fig. 2, the precursor film hf of a sessile droplet
verifies 1 � hf,min < hf < hf,max � 2, and more remarkable,
independently of the value of hf there is no sessile droplet
when d � 1/16 or, equivalently, when g � κ/16ρh0. For
pendant droplets, the thickness of the precursor film satisfies
hf < hf,max � 3/2, and there is no limit for d, the parameter
that measures gravity. Without gravity the condition for the
existence of a droplet is 1 � hf � 3/2, and the comparison
with the case for d > 0 implies that gravity reduces the range
of possible values of hf and shifts it to larger values. In the
case of hanging droplets the presence of gravity allows the
existence of droplets with hf < 1.

Some of the requirements for the existence of a droplet,
shown in Fig. 2, can be understood in terms of the stability of
an infinite film of thickness hf . This is due to the fact that the
droplet may be considered as being mounted over a film with
a constant thickness hf . Effectively, the system of Eqs. (1) and
(2) has h = hf = const as a solution, and it is straightforward
to verify that such a solution is linearly stable for d > dmin,
with dmin defined in Eq. (20). In a similar way, when the linear
stability of a flat film is studied for a given d, it is easy to find
that the film is stable only when hf � hf,max, with hf,max given
in Eq. (22). Thus, some of the requirements for the existence
of a droplet are just the necessary conditions for the stability
of the film that surrounds the droplet.

For the existence of a thin film with thickness hf it is also
required that the surface energy of the dry substrate is larger
than the surface energy of the substrate covered with the film:

γSV � γfilm, (30)

where γSV is the surface tension of the unwetted substrate and
γfilm is the effective surface tension of a film, and it is given
by [39]

γfilm = γ + γSL + h0κ

[
u�(hf ) + hf

κ
�(hf ) − 1

2
dh2

f

]
.

Here γSL is the surface tension of the solid-liquid interface.
Replacing this expression in Eq. (30) and introducing the
spreading parameter S = γSV − (γ + γSL), we obtain

S

h0κ
� u�(hf ) + hf

κ
�(hf ) − 1

2
dh2

f . (31)

Employing the terminology introduced by de Gennes et al.
[39], the disjoining pressure we are using describes a
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pseudopartial wetting. In particular, in our case � → ∞
as h → 0, and therefore we are dealing with a spreading
parameter S = ∞. Henceforth Eq. (31) is satisfied for any
combination of the parameters hf and d. Only if we slightly
modify our disjoining pressure in a way that S becomes finite,
but still positive, will Eq. (31) imply a new minimum for hf

only when d < 0.
Figure 3 shows that when gravity is absent, the maximum

height hm of a droplet has no upper bound. But for a given
value d > 0 the value of hm has an upper bound given by
Eq. (24). This means that gravity limits the height of a droplet
on a substrate. On the other hand, for a given d < 0 the
behavior of hm is similar to the case with d = 0.

Regarding the half width w, Fig. 6 shows that for a given
value d � 0 there is a minimum value. As d increases, this
minimum also increases, and it occurs at larger values of hf .

It is interesting to note that the increment of the area is
achieved in three different ways. In the first one, the area is
increased by growing hm and keeping its width w constant.
This case occurs for d = const < 0 when hf → 0. In the
second one, both hm and w grow, a behavior observed for
hf = const < 1 when d → 0. In the third case, the maximum
height hm is kept constant and only w is increased. This last
way to grow the area of the droplet occurs for d > 0 and
hf → hf,min. These different ways to increase the area are
based on a minimization of the energy. For example, for the
case of a sessile droplet placed on a substrate (d > 0) and
when its area is very large (i.e., in the limit hf → hf,min

or d → dmax), any added mass is energetically more easily
located by increasing the width of the droplet and keeping
its height constant [notice from Eq. (14) that the gravitational
energy grows as h2]. On the contrary, for the case of a hanging
droplet (d < 0), when the area is increased, the gravity tends
to stretch the droplet in the vertical direction (when d < 0, the
gravitational energy decreases as h2).

Another remarkable difference between hanging and sitting
droplets is the dependence of θ with d. Figure 8 shows that
for a sitting droplet and considering its area a as a constant,
the contact angle decreases as the absolute value of gravity
becomes larger. For the case of a pendant droplet the behavior
is the opposite.

For a droplet with a nanoscopic precursor film a contact
angle 	∗ can be defined from the equilibrium condition of
the horizontal forces, which leads to γ cos 	∗ = γfilm − γSL.
Notice that this definition assumes that the thickness of the
drop is much larger than the thickness of the precursor film
so that a clear transition between the drop and the film exists.
The contact angle θ adopted in this work (defined as the angle
at the inflection point) agrees with 	∗ only when d → 0 and
hf → 1. This can be understood by noting that in this limit
the maximum thickness hm of the droplet tends to infinity. The
thickness of the droplet diverges also when d < 0 and hf → 0,
but in this case the contact angle θ tends to π/2 (see Fig. 8),
so that the gentle slope condition h′ 
 1 is not verified.

The stability analysis of thin films and droplets has
been addressed elsewhere [30–32,42,43]. In those works, the
authors found that an unstable film first breaks up into near-
equilibrium droplets connected by an ultrathin film. This stage
is followed by a slow coarsening process, in which the droplets
exchange mass with neighbors through the thin film. The rate

of coarsening depends on whether gravity is included or not.
When gravity is not considered, the number of droplets N (t)
follows a t−2/5 power law [30]. When gravity is not negligible,
the number of droplets decrease as N (t) ∝ 1/ ln t [32]. The
final stage consists of a single droplet in equilibrium with a
surrounding thin film. This final configuration is stable, and it
is the situation described by our solution. This fact, of course,
does not allow us to claim that our solution is stable for all the
allowed combinations of parameters hf and d. Although the
goal of this paper is to present analytical solutions describing
this final situation and a complete stability analysis is out of
the scope of this work, we illustrate in the Appendix how an
unstable configuration evolves to our analytical solution.

Finally, notice that the solution given in Eq. (25) also
describes the transversal profile of an infinite straight rivulet
flowing down over or below a rigid inclined plane after
replacing g by g cos α, where α is the angle between the
substrate and the horizontal. In this case the velocity is parallel
to the plane, and its profile is obtained by resolving a Poisson
equation [41,44].

In summary, a complete analytical solution for the shape
of a droplet under the effects of gravity, surface tension, and
solid-fluid molecular forces was presented. With this solution
it is possible to analyze the connection between the thickness
of the precursor film and gravity with the characteristics of a
droplet, such as height, width, area, and contact angle. This
solution describes, for example, the pancake-shaped droplet, a
profile analyzed by many authors but for which no analytical
solution has been reported [38,39].

ACKNOWLEDGMENTS

C.A.P. and J.M.G. acknowledge Grants PIP No. 299 and
PIP No. 356, respectively, both from Consejo Nacional de
Investigaciones Cientı́ficas y Técnicas (CONICET).

APPENDIX: EVOLUTION TO THE STEADY STATE

We here show how a nonsteady configuration evolves to
the analytical solution given by Eq. (25a). Knowing the initial
volume A, is it possible to predict the final thickness of the
precursor film hf and thus predict the final area of the droplet,
its maximum, etc. In order to determine the stationary value
for hf , we equate the initial volume and the final volume
(unknown), that is,

A = a + L × hf , (A1)

where a = a(hf ,d) is given by Eq. (28) and L is the numerical
domain.

We solve numerically the evolution equation for h, i.e., the
dimensionless version of Eq. (1). The boundary conditions
at the borders of the numerical domain are hx = hxxx = 0
(no flux condition). The evolution equation is discretized
in space by centered finite differences and evolved in time
using a Crank-Nicolson time-marching scheme. A complete
description of the numerical method employed can be found
elsewhere [14,45].

As was largely studied by Witelski and collaborators
[30,32], the evolution of a volume of fluid to its steady state
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FIG. 9. (Color online) Evolution to the steady state configuration
for d = 0.02 and A = 160. The gray line is the analytical solution,
which is reached at t = 20 000.

depends on how the mass is initially distributed. But, as
explained in the text, they found that nonsteady configurations
evolve to a single droplet configuration. Here, we choose an
initial distribution of mass that is close to the steady state
in order to capture how the bulk and film regions evolve to
the analytical solution given by Eq. (25a). The initial area
and thickness of the precursor film are A = 160 and hf,i = 1,
respectively.

Figure 9 shows the evolution for d = 0.02. By using the
mass conservation criteria given in Eq. (A1), the final film
thickness is hf = 1.27416. We employ this value to plot the
analytical solution in Fig. 9. The corresponding predicted val-
ues for the maximum of the droplet and for the cross-sectional
area are hm = 3.00518 and a = 32.58, respectively, which are
in excellent agreement with the numerical simulation. Figure 9
shows that for t = 20 000 the simulation has reached its steady
state. We continued the simulation up to t = 200 000, but the
profile did not change.
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FIG. 10. (Color online) (a) Evolution to a steady state solution
for d = −0.02 and A = 160. The gray line is the analytical solution.
(b) A close-up of the precursor film region.

Notice that the profile tries first to match the pressure in
the precursor film by increasing its height and curvature. After
an abrupt initial increase in the height, it starts to decrease
until it reaches the value given by Eq. (17). On the other hand,
the thickness of the precursor monotonically reaches the value
predicted, hf = 1.27416.

Figure 10 shows the evolution for a hanging droplet with
d = −0.02. By using the mass conservation criteria given in
Eq. (A1), the final film thickness is hf = 1.05109, which is
employed to plot the analytical solution in the Fig. 10. Again,
the predicted values for the maximum of the droplet and for
the cross-sectional area are in excellent agreement with the
numerical simulation, as shown in Fig. 10.

For this case, the evolution to the steady state is different
from that previously analyzed. Here, the maximum thickness
is reached monotonically, while the thickness of the precursor
film shows an increase before its thickness is reduced to the
final value of hf .
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