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At issue here is the distinction between noise and chaos. They are different phenomena but sometimes

produce results that resemble each other. From a numerical viewpoint, in particular, subtle differences

that exist between them are often difficult to discern. We present here a conceptual scheme, based

on Information Theory, that successfully distinguishes between these two regimes. The idea is to look

for the location of the pertinent signal on a special plane, called the information-one, whose axes are

entropic-like measures. Using these quantifiers (one local, the other global), the contrast between the

two dynamical regimes becomes apparent.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Temporal sequences of measurements (or observations) are, of

course, the basic elements for the study of natural phenomena.

In particular, from these sequences, commonly called time series

(TS), one should judiciously extract information on dynamical sys-

tems. The TS-analysis and characterization is of relevance to a

broad range of research domains, as indicated by the variety of

time series studied in different areas of science. Irregular and ap-

parently unpredictable behavior is often observed in natural time

series. Consequently, it is of great interest to establish whether the

underlying dynamical process is of either deterministic or stochas-

tic character in order to i) model the associated phenomenon and

ii) determine which are the relevant quantifiers. Many procedures

have been proposed to such effect. In the present work we focus

attention on Information Theory quantifiers and try to use them in

order to distinguish between time series generated by pure deter-

ministic (chaos) and pure stochastic (noise) processes.

Given the TS S(t) ≡ {xt}, the starting point is extracting from

it a probability distribution function (PDF) P ≡ {pi}. The determi-

nation of the most adequate PDF is a fundamental issue. P and

the pertinent sample space Ω are inextricably linked. Indeed,

many methods have been proposed for a proper selection of the
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probability space (Ω, P ), but their applicability depends on spe-

cific features of the data, such as stationarity, TS-length, variation

of parameters, level of noise contamination, etc. Global aspects of

the dynamics can be “captured”, but the different approaches are

not equivalent in their ability to discern the relevant physical de-

tails.

The permutation of ordinal patterns proposed by Bandt–Pompe

(BP) for generating a TS-PDF [1] is one of the most simple symbol-

ization techniques available and takes into account time-causality

in the concomitant process. In particular, Rosso et al. [2] showed

that the BP methodology may be profitably used in the so-called

entropy-complexity plane (H × C ) so as to separate and differenti-

ate amongst chaotic and deterministic systems.

Another relevant information plane is the Shannon–Fisher one,

introduced by Vignat and Bercher in [3]. These authors showed

that the simultaneous examination of both Shannon’s entropy and

Fisher’s information measure (FIM) is required to characterize the

non-stationary behavior of a complex signal. They also demon-

strated that scaling and uncertainly properties, together, highlight

the fact that FIM and Shannon’s entropy are intrinsically linked

(see [4] for explicit relationships), so that the characterization of

complex signals should improve when considering their localiza-

tion in the Shannon–Fisher plane. It is worth noting that some

ambiguity arises in trying to apply the Bandt–Pompe methodol-

ogy in a Fisher environment, a point exhaustively examined in [5],

using the logistic map as illustrative example.

In this communication we introduce a representation space, to

be called the causality Shannon–Fisher information plane (H × F ).

Its horizontal and vertical axis are suitable functionals of the per-

tinent probability distribution, namely, the normalized Shannon
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entropy (H) and the normalized FIM (F ). It is of the essence

for us to evaluate these quantifiers as functions of a TS-PDF ob-

tained via the Bandt and Pompe recipe [1]. In the present work,

the same dynamical systems studied in [2] are revisited. We will

show that the causality Shannon–Fisher information plane helps

one to get additional insights with respect to those gathered via

the entropy-complexity plane [2]. The distinction between stochas-

tic noise (true noise) and deterministic dynamics (chaos) gets now

more clearly delineated with relation to differences in planar loca-

tion.

2. Shannon entropy and Fisher information measure

Given a continuous probability distribution function (PDF) f (x)

(with x ∈ [xmin, xmax] and
∫ xmax

xmin
f (x)dx = 1), its associated Shannon

Entropy S [6] is

S[ f ] = −
xmax∫

xmin

f ln( f )dx, (1)

a measure of “global character” [7] that it is not too sensitive to

strong changes in the distribution taking place on a small-sized

region. Such is not the case with Fisher’s Information Measure (FIM)

F [8,9], which constitutes a measure of the gradient content of

the distribution f , thus being quite sensitive even to tiny localized

perturbations. It reads

F [ f ] =
xmax∫

xmin

| �∇ f |2
f

dx. (2)

The above is not the most general Fisher-definition, but in physical

applications it is the one often employed [9]. FIM can be variously

interpreted as a measure of the ability to estimate a parameter,

as the amount of information that can be extracted from a set of

measurements, and also as a measure of the state of disorder of a

system or phenomenon [9].

In the previous definition of FIM (Eq. (2)) the division by f (x)

is not convenient if f (x) → 0 at certain x-values. Frieden [9] has

shown that such points can be avoided if the integral in Eq. (2) is

understood in terms of Cauchy’s principal value. Another way out

is work with a real probability amplitudes f = ψ2 [8,9], then

F [ψ] = 4

xmax∫
xmin

| �∇ψ |2 dx, (3)

which is a simpler form than Eq. (2) (no divisors) and shows that

F simply measures the gradient content in ψ(x). The gradient

operator significantly influences the contribution of minute local

f -variations to FIM’s value. Accordingly, this quantifier is called a

“local” one [7,9]. Note that Shannon’s entropy decreases for skewed

distributions, while FIM increases in such a case. Local sensitivity

is useful in scenarios whose description necessitates appeal to a

notion of “order” (see below).

Let now P = {pi; i = 1, . . . ,N} be a discrete probability distri-

bution, with N the number of possible states of the system under

study. The concomitant problem of information-loss due to dis-

cretization has been thoroughly studied (see, for instance, [10–12],

and references therein) and, in particular, it entails the loss of

FIM’s shift-invariance, which is of no importance for our present

purposes. In the discrete case, we define a “normalized” Shannon

entropy as

H[P ] = S[P ]/Smax =
{

−
N∑

i=1

pi ln(pi)

}
/Smax, (4)

where the denominator Smax = S[Pe] = lnN is that attained by a

uniform probability distribution Pe = {pi = 1/N , ∀i = 1, . . . ,N}.
Eqs. (2) or (3) can be used as a FIM-starting point in the dis-

crete case. The proposal of Frieden [9] and of Ferri et al. [13] take,

as starting point, Eq. (2). However, the concomitant discretizations

can be considered just approximations to what results when using

Eq. (3) as the starting point. We emphasize that a discrete normal-

ized FIM, convenient for our present purposes, is given by

F [P ] = F0

N−1∑
i=1

[
(pi+1)

1/2 − (pi)
1/2

]2
, (5)

which follow from Eq. (3). Here the normalization constant F0
reads

F0 =
{
1 if pi∗ = 1 for i∗ = 1 or i∗ = N and pi = 0 ∀i 	= i∗,
1/2 otherwise.

(6)

Important note: some ambiguity arises in trying to apply the

Bandt–Pompe methodology to the construction of local entropic

quantifiers, an issue discussed and clarified by us in [5], using the

logistic map as illustrative example. An important inequality has to

be obeyed by FIM, that was advanced by Vignat–Bercher [3]. Let

Y = 1
2πe

exp [2S] and J equal the un-normalized FIM-quantifier.

Then, the Bercher and Vignat inequality reads

Y · J � 1. (7)

We have numerically verified that Eq. (7) is duly satisfied in all our

calculations. The concomitant results are not displayed because of

space-saving reasons.

If our system lies in a very ordered state, being thus repre-

sented by an extremely narrow PDF, we have a normalized Shan-

non entropy H ∼ 0 and a normalized Fisher’s Information Mea-

sure F ∼ 1. On the other hand, when the system under study is

represented by a very disordered state, one gets an almost flat

PDF and H ∼ 1 while F ∼ 0. One can state that the general FIM-

behavior is opposite to that of the Shannon entropy [13–15]. The

local sensitivity of FIM for discrete-PDFs is reflected in the fact

that the specific “i-ordering” of the discrete values pi must be se-

riously taken into account in evaluating the sum in Eq. (5). The

summands can be regarded as a kind of “distance” between two

contiguous probabilities. Thus, a different ordering of the pertinent

summands would lead to a different FIM-value, hereby its local

nature.

3. Description of our chaotic and stochastic systems

Here we study both chaotic and stochastic systems, selected

as illustrative examples of different classes of signals, namely,

(a) chaotic dynamic maps and (b) truly stochastic processes. Of the

first kind we deal with:

(1) The Logistic Map: the classical one-dimensional quadratic

map [16] defined by

xn+1 = rxn(1− xn). (8)

For the fully chaotic case r = 4 this map has a non-uniform natural

invariant histogram PDF.

(2) The Skew Tent Map: one has [16]{
x/ω for x ∈ [0,ω],
(1− x)/(1 − ω) for x ∈ [ω,1]. (9)

The case ω = 0.1847 is here considered. For any ω-value this map

has a uniform, invariant-histogram PDF.
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(3) Henon’s Map: This is a 2D extension of the Logistic Map [16]

given by:{
xn+1 = 1− ax2n + yn,

yn+1 = b − xn.
(10)

The values used here, a = 1.4 and b = 0.3, correspond to a chaotic

dynamics.

(4) The Lorenz Map of Rossler’s oscillator: for the 3D continuous

Rossler oscillator [16] one has{
ẋ = −y − z,

ẏ = x+ ay,

ż = b + z(x − c),

(11)

where a = 0.2, b = 0.2, and c = 5.7 correspond to a chaotic dy-

namics. The evolution of the system was determined by recourse

to a variable-step Runge–Kutta–Fehlberg approach with a sampling

time of �t = 10−5. The Lorenz map is obtained by storing just x-

minimal values.

(5) Schuster Maps: Schuster and coworkers [17] introduced a

class of maps which generate intermittent signals with chaotic

bursts that also display 1/ f z noise

xn+1 = xn + xzn, Mod 1. (12)

In particular, results for 1.25� z� 2 with �z = 0.25 are reported.

Additionally, the following stochastic processes are considered

in the present study. They are chosen because of their popularity

in characterizing and modeling the behavior of natural time series.

(6) Noises with f −k power spectrum: The corresponding time se-

ries are generated as follows [18]:

1) Using the Mersenne twister generator [19] through the Mat-
lab© RAND function we generate pseudo random numbers y0i
in the interval (−0.5,0.5) with an

(a) almost flat power spectra (PS),

(b) uniform PDF, and

(c) zero mean value.

2) Then, the Fast Fourier Transform (FFT) y1i is first obtained and

then multiplied by f −k/2, yielding y2i .

3) Now, y2i is symmetrized so as to obtain a real function.

The pertinent inverse FFT is now at our disposal, after discard-

ing the small imaginary components produced by the numeri-

cal approximations. The resulting time series η(k) exhibits the

desired power spectra and, by construction, is representative of

non-Gaussian noises. In the present communication, noises with

0� k� 5 and �k = 0.25 are considered.

(7) Fractional Brownian motion (fBm) and fractional Gaussian noise
(fGn): fBm is the only family of processes which is (a) Gaus-

sian, (b) self-similar, and (c) endowed with stationary increments

(see [20] and references therein). The normalized families of these

Gaussian processes, {BH(t), t > 0}, are endowed with the following

properties:

i) BH(0) = 0 almost surely (a.s.), i.e., with probability 1,

ii) E[BH(t)] = 0 (zero mean), and

iii) covariance given by

E
[
BH(t)BH(s)

] = (
t2H + s2H − |t − s|2H)

/2, (13)

for s, t ∈R. Here E[·] refers to the average computed with a Gaus-

sian probability density. The power exponent 0 < H < 1 is com-

monly known as the Hurst parameter or Hurst exponent. These

processes exhibit “memory” for any Hurst parameter except for H =
1/2, as one realizes from Eq. (13). The H = 1/2-case corresponds

to classical Brownian motion and successive “motion-increments”

are as likely to have the same sign as the opposite (there is no

correlation among them). Thus, Hurst’s parameter defines two dis-

tinct regions in the interval (0,1). When H > 1/2, consecutive

increments tend to have the same sign so that these processes are

persistent. For H < 1/2, on the other hand, consecutive increments

are more likely to have opposite signs, and we say that they are

anti-persistent.

Let us introduce the quantity WH(t) = BH(t + 1) − BH(t),

t > 0, (fBm-“increments”) so as to express our Gaussian noise in

the fashion

ρ(k) = E
[
WH(t)WH(t + k)

]
= 1

2

[
(k + 1)2H − 2k2H + |k − 1|2H]

, k > 0. (14)

Note that for H = 1/2 all correlations at nonzero lags vanish and

{W 1/2(t), t > 0} thus represents white noise. The fBm and fGn are

continuous but non-differentiable processes (in the classical sense).

As a non-stationary process, they do not possess a spectrum de-

fined in the usual sense. However, it is possible to define a gen-

eralized power spectrum of the form Φ ∝ | f |−α , with α = 2H + 1,

1 < α < 3 for fBm and, α = 2H − 1, −1 < α < 1, for fGn. Due to

their Gaussian nature, and other characteristics enumerated above,

the Bandt–Pompe ideas are applicable to the fBn and fGn dynami-

cal processes [20,21]. To simulate the fBm and fGn time series we

adopt the Davies–Harte algorithm [22], as recently improved by

Wood and Chan [23], which is both exact and fast.

4. Results and discussion

4.1. Generalities

As we mentioned in Section 2, the “i-ordering” for the discrete-

PDFs must be specified so as to compute the FIM. The question is,

which is the arrangement that one could regard as the “proper” order-

ing? The answer is straightforward in some cases, histogram-based

PDF constituting a conspicuous example. For such a procedure one

first divides the interval [a,b] (with a and b the minimum and

maximum values in the time series) into a finite number on non-

overlapping sub-intervals (bins). Thus, the division procedure of

the interval [a,b] provides the natural order-sequence for the eval-

uation of the PDF gradient involved in Fisher’s information mea-

sure.

Consider, for example, the time series generated by the logistic

map with r = 4, whose associated dynamics is totally developed

chaos [16]. It is well known that in this situation the logistic map

exhibits an almost flat PDF-histogram (referred to the amplitude

values in the interval [0,1]), with peaks at x = 0 and x = 1. This

histogram-PDF constitutes an invariant measure of the system [16].

Thus, if we use this PDF we obtain H[P ] ∼= 1 and F [P ] ∼= 0, which
makes the logistic map almost indistinguishable from a pure noise signal
(uncorrelated random process), although one certainly knows that

chaos is not noise. Accordingly, if one wants to use quantifiers based

on Information Theory with the purpose of distinguishing deter-

ministic signals (chaos) from noise (random process), one should

demand for improvements in the methodology used for associating

a PDF to a time series generated by a dynamical system. Such goal

can be achieved if the time-causality (in the series’ values) is duly

taken into account when extracting from the TS the associated PDF,

something that one gets automatically from the Bandt–Pompe (BP)

methodology.

BP introduced their successful approach for such extraction us-

ing a symbolization technique [1]. Their symbolic data are created

by appropriately ranking the series’ values. This rank is defined

(this is the essential feature) by reordering the suitably embedded

data in ascending order with an embedding dimension D . “Causal”
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information is, in such a manner, properly incorporated into the

“building-up” process that yields (Ω, P ).

4.2. The Bandt and Pompe approach to the PDF determination

The Bandt–Pompe methodology is not restricted to time se-

ries representative of low-dimensional dynamical systems but can

be applied to any type of time series {xt} (regular, chaotic, noisy,

or reality based). No attractor reconstruction is assumed for our

D-dimensional space. The only limitation for its applicability is

that the underlying dynamical process (time series) fulfills a very

weak stationarity condition: for k� D , the probability for xt < xt+k

should not depend on t [1]. It is clear that with this ordinal time

series analysis details of the original amplitude information are

lost. However, a meaningful reduction of the complex systems to

their basic intrinsic structure is provided. This way of symbolizing

time series, based on a comparison of consecutive points, allows

for a more accurate empirical reconstruction of the underlying

phase space in the case of chaotic time series affected by weak

(observational and dynamical) noise. Furthermore, ordinal pattern

distributions are invariant with respect to nonlinear monotonous

transformations. Thus, nonlinear drifts or scalings artificially in-

troduced by a measurement device do not modify the quantifiers’

estimations, a highly desirable property for the analysis of exper-

imental data. We see that many BP-advantages recommend it as

an alternative to more conventional methods based on range par-

titioning.

To use the Bandt and Pompe [1] methodology for evaluat-

ing the PDF P associated to the time series (dynamical system)

under study, one starts by considering partitions of the perti-

nent D-dimensional space that will hopefully “reveal” relevant

details of the ordinal-structure of a given one-dimensional time

series S(t) = {xt; t = 1, . . . ,M} with embedding dimension D > 1

(D ∈ N) and embedding time delay τ (τ ∈ N). We are inter-

ested in “ordinal patterns” of order (length) D generated by (s) �→
(xs−(D−1)τ , xs−(D−2)τ , . . . , xs−τ , xs), which assigns to each time s

the D-dimensional vector of values at times s, s − τ , . . . , s − (D −
1)τ . Clearly, the greater the D-value, the more information on the

past is incorporated into our vectors. By “ordinal pattern” related

to the time (s) we mean the permutation π = (r0, r1, . . . , rD−1)

of [0,1, . . . , D − 1] defined by xs−rD−1τ � xs−rD−2τ � · · · � xs−r1τ �
xs−r0τ . In order to get a unique result we set ri < ri−1 if xs−ri =
xs−ri−1

. This is justified if the values of xt have a continuous distri-

bution so that equal values are very unusual. Thus, for all the D!
possible permutations π of order D , their associated relative fre-

quencies can be naturally computed by the number of times this

particular order sequence is found in the time series divided by

the total number of sequences.

In order to illustrate Bandt–Pompe method (BP), we will con-

sider a simple example: a time series with seven (M = 7) values

x = {4,7,9,10,6,11,3} and we evaluate the BP-PDF for D = 3

and τ = 1. The triplet (4,7,9) and (7,9,10) represent the per-

mutation pattern {012} since they are in increasing order. On the

other hand, (9,10,6) and (6,11,3) correspond to the permuta-

tion pattern {201} since xs+2 < xs < xs+1, while (10,6,11) has the

permutation pattern {102} with xs+1 < xs < xs+2. Then, the associ-

ated probabilities to the 6 patterns are: p({012}) = p({201}) = 2/5;

p({102}) = 1/5; p({021}) = p({120}) = p({210}) = 0.

Consequently, it is possible to quantify the diversity of the or-

dering symbols (patterns of length D) derived from a scalar time-

series, by evaluating the so-called permutation entropy (that Shan-

non’s entropy special version corresponding to the Bandt–Pompe

PDF). Of course, the embedding dimension D plays an important

role in the evaluation of the appropriate probability distribution

because D determines the number of accessible states D! and also

conditions the minimum acceptable length M  D! of the time

series that one needs in order to work with a reliable statistics

[24]. With respect to the selection of the other parameter, Bandt

and Pompe suggest to work with 4 � D � 6 and specifically con-

sidered an embedding delay τ = 1 in their cornerstone paper [1].

Nevertheless, it is clear that other values of τ could provide addi-

tional information. It has been recently shown that this parameter

is strongly related, if it is relevant, with the intrinsic time scales of

the system under analysis [25,26].

Let us insist: the Bandt and Pompe technique is computation-

ally fast and constitutes the only procedure, among those currently

in use, that takes into account the temporal structure of the orig-

inal time series (that is in turn generated by the physical process

under study). In addition, the BP technique allows one to i) un-

cover important details concerning the TS-ordinal structure [2] and

ii) to disclose information about temporal correlations [27,28]. For

the BP-computed PDF we follow the lexicographic ordering [29,30].

Such is the order sequence used in the evaluation of FIM’s PDF gra-

dient.

4.3. The Bandt–Pompe PDF for deterministic and stochastic process

A central issue is to be now brought up. For determinis-

tic one-dimensional maps, Amigó et al. [31,32] have conclusively

demonstrated that not all possible ordinal patterns (as defined us-

ing Bandt–Pompe’s methodology) can effectively materialize into

orbits, which in a sense makes these patterns “forbidden”. Remark

that this is an established fact, not a conjecture. The existence of these

forbidden ordinal patterns becomes indeed a persistent feature, a

“new” dynamical property. For a fixed pattern-length (embedding

dimension D) the number of forbidden patterns of a time series

(unobserved patterns) is independent of the series length M . Such

independence does not characterize other properties of the series

like proximity and correlation, which die out with time [31,32].

For example, in the time series generated by the logistic map with

r = 4, if we consider patterns of length D = 3 and τ = 1, the

pattern {210} is forbidden. That is, the pattern xs+2 < xs+1 < xs
never appears [31]. In consequence, the BP-PDF will not be finite

everywhere (pi 	= 0) since for the forbidden patterns we neces-

sarily have pi = 0 (independently of the time series’ length M).

Thus, for such a PDF, its logistic map version makes the normal-

ized Shannon’s entropy obey 0 < H[P ] < 1 while we have for FIM

0 < F [P ] < 1.

Stochastic processes can also exhibit forbidden patterns [33,34].

However, in the case of either uncorrelated (white noise) or cer-

tain correlated stochastic processes (noise with power law spec-

trum f −k with k � 0, i.e., fBm, fGn), it can be numerically shown

that no forbidden patterns emerge. In the case of time series

generated by an unconstrained stochastic process (uncorrelated pro-

cess) every ordinal pattern has the same probability of appear-

ance [31,32]. If the time series is large enough, all the ordinal

patterns should eventually appear. If the number of time-series’

observations is sufficiently large, the associated probability distri-

bution function is the uniform distribution, and the number of

observed patterns should depend only on the length M of the

time series under study. Accordingly, in applying the Bandt–Pompe

technique to an unconstrained stochastic process with enough

data, the PDF is pi = 1/N 	= 0 ∀i and one has H[P ] = 1 and

F [P ] = 0.

For correlated stochastic processes (like noise with power spec-

trum f −k with k > 0, fBm and fGn) the probability of observing

individual patterns depends not only on the time series length M

but also on the correlations’ structure [33]. The existence of a non-

observed ordinal pattern does not qualify them as forbidden but

only as missing, since the effect could be attributed due finitude

of the time series. A similar observation also holds for the case of

real data, that always possess a stochastic component due to the
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omnipresence of dynamical noise [35]. Thus, the existence of miss-

ing ordinal patterns could be either related to stochastic processes

(correlated or uncorrelated) or to deterministic, noisy processes,

which is the case for observational time series. In consequence, the

Bandt–Pompe PDF for constrained stochastic process with enough

data will be a PDF different from the uniform one and character-

ized by 0 < H[P ] < 1 and 0 < F [P ] < 1.

4.4. Our findings

For each system (see Section 3) 10 different TS of M = 215

data each were analyzed. In all cases each series possesses a dif-

ferent initial condition. For all of them, the corresponding Bandt–

Pompe PDF was evaluated with a pattern-length (embedding di-

mension) D = 6 and embedding delay τ = 1, using the lexico-

graphic pattern-ordering proposed by Lehmer [30]. Similar results

are obtained (but not shown) when a small variation of the lexi-

cographic pattern-ordering [29] is instead implemented. For addi-

tional discussion on BP-PDF and the i-ordering see [5]. The con-

comitant mean values of both the normalized Shannon entropy,

H[P ], and normalized Fisher Information Measure, F [P ] are plot-

ted in Fig. 1. Qualitatively same results are obtained when the

evaluations were made with embedding dimensions D = 4 and 5.

As mentioned in Section 2, different FIM-discretization proce-

dures are available. We have compared the present FIM-numerical

results with those obtained via de discretization approach of Ferri

et al. [13]. One can in this way discover that, even if the ensu-

ing pertinent pairs of FIM-values are not identical, their position

and distribution in the Shannon–Fisher plane are not qualitatively

different. The associated causality’s global aspects are invariant

against discretization-technique-change, entailing that our planar

representation is robust. Let us reiterate that we have numerically

verified fulfillment of the Vignat–Bercher inequality, Eq. (7), a sort

of uncertainty property which relates Shannon’s entropy with FIM

and that Vignat–Bercher advance as their Cramer–Rao version. The

inequality is obeyed by all the dynamical systems (time series) an-

alyzed in the present work.

Let us consider localization in the H × F -plane. From Fig. 1

we clearly see that all chaotic dynamic maps under study (Logis-

tic map, Henon’s map, Lorenz Map of Rossler’s oscillator, Schuster’s

map) are located at the entropic region lying between 0.45 and 0.7

and reach high FIM values. This entails that characteristics struc-

tures in the chaotic time series lead to a planar position near to

the middle-top of the entropy-causality plane (H × C ) (see [2]).

For the Henon chaotic map both the X and Y time series coor-

dinates have been considered, sharing the same point-localization

in the H × F plane. Schuster’s maps exhibit intermediate entropic

and FIM values (0.2 < H < 0.65, 0.4 < F < 0.6). The reason for this

behavior is that these maps exhibit laminar regions separated by

chaotic bursts. When the parameter z decreases, FIM increases ap-

proaching a location in the vicinity of the chaotic maps. This is so

because the size of the laminar regions is small, entailing that the

system becomes more similar to a fully chaotic one.

Noises with f −k power spectrum (with 0 � k � 5) exhibit a

wide range of entropic values (0.1 � H � 1) and FIM values lying

between 0� F � 0.5. A smooth transition in the planar location is

observed in the passage from uncorrelated noise (k = 0 with H ∼ 1

and F ∼ 0) to correlated one (k > 0). The correlation degree grows

as the k value increases. From Fig. 1 we gather that, for stochas-

tic time series with increasing correlation-degree, the associated

entropic values H decrease, while Fisher’s values F grow in a fash-

ion that converges to the planar location (0.105,0.492). Note that,

for the present time series’ length M = 215, the planar location for

those time series with 5 < k � 8 always remains in the vicinity of

the “convergence point” previously mentioned. Thus, this behavior

can be associated to the specific TS-length chosen by us.

Fig. 1. (a) Localization of the different chaotic and stochastic (noises) systems in the

information Shannon–Fisher causality plane, for D = 6 and τ = 1. (b) Enlargement

near the point H = 1, F = 0.

As for the planar location for fractional Brownian motion (1 <

α < 3), one finds entropy values lying between 0.5 � H � 1 with

low Fisher information F < 0.3. The persistent fBm behavior (2 <

α < 3) – long memory processes – displays higher FIM values than

its counterpart fBm anti-persistent one (1 < α < 2) – short mem-

ory ones – which places the FIM as a memory-quantifier for such

kind of processes. On the other hand, fractional Gaussian noise

(−1 < α < 1) exhibits higher entropy values (0.96 < H < 1) while

its Fisher information ranges between 0 � F � 0.03. Note that

these Gaussian noises (0 < |α| < 1) exhibit similar values for both

informational quantifiers. In the causality H × F information plane

(see Fig. 1(b)) both fBm and fGn are encountered lying below the

position attained by noises with f −k PS. We associate this fact to

the Gaussian nature of the respective processes. The white Gaus-

sian noise for α = 0 reaches maximum entropy and minimum

Fisher information, as expected. Note that its location is lower than

that pertaining to the case k = 0 of f −k-noise.

The causality Shannon complexity plane, H × C , is based only

on global characteristics of the associated TS-PDF (both quantities

are defined in terms of Shannon entropies [2]), while the causality

Shannon–Fisher plane, H × F , is based on global and local charac-
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teristics of the TS-PDF. In the case of H × C the variation range

is [0,1] × [Cmin,Cmax] (with Cmin and Cmax the minimum and

maximum statistical complexity values, respectively, for a given H-

value [36]), while in the causality H × F the range is [0,1]× [0,1].
This range-modification clearly facilitate the distinction between

deterministic (chaos) and stochastic dynamics (in a sense, there

is “more room”). At first sight, when one compare the present

H × F -results (Fig. 1) with those obtained for the H × C-plane (see

Fig. 1 in [2]) a qualitatively agreement is discerned. Both planes

afford a good distinction between deterministic and stochastic dy-

namics. However, important improvements are obtained when the

FIM-associated local characteristics are incorporated to the picture,

especially when system parameters vary and thus give rise to dif-

ferent dynamical regimes.

Look at the planar behavior of the Schuster map when the pa-

rameter z is changed. In the H × C-plane the corresponding points

are localized very close to the curve of maximum statistical com-

plexity, Cmax independently of the value of z. In fact, this kind of

behavior in this plane, is typical for all chaotic dynamics studied

(even for chaotic maps [2,37], as well as, in continuous chaotic

systems [38]). That is, chaotic dynamics present near maximum

statistical complexity. When local aspect of the TS-PDF are in-

cluded, clear variations in FIM values are observed, facilitating in

this way the identification of the different dynamical behavior of

the system (see Fig. 1).

As second example, consider the logistic map’s planar repre-

sentation (control parameter range 3.8� r � 3.87) which includes

a mixture of order and chaos (the corresponding bifurcation di-

agram is presented in Fig. 2(a) [5,13]). A period-three attractor

arises through a saddle-node bifurcation at r1 ∼= 3.82842 (tangent

bifurcation) till r2 ∼= 3.8415 (flip bifurcation). The chaotic dynam-

ics that prevails before reaching r1 is called Chaos 1. As r grows

beyond r2, the period-three solutions experience a new sequence

of period-doubling bifurcations that end up in a totally chaotic

dynamics at r3 ∼= 3.84943. The chaotic attractor consists of three

narrow disjoint segments with several periodic windows, referred

to as Chaos 2 with periodic window. At r4 ∼= 3.85681 (interior crisis)

this chaotic attractor is again replaced by another one denomi-

nated Chaos 3, which “lives” in a wider region that includes the

three sectors of the previous attractor. In Figs. 2(b) and 2(c) the

two causality planes, H × C and H × F are depicted. From these

plots one can conclude that a more clear distinction between the

different regimes associated to the control parameter variation is

provided by the causality H × F -plane that we are advancing in

this communication.

5. Conclusions

In this work we have presented an extensive series of numer-

ical simulations/computations. On that basis, we suggest that the

following conclusions may reasonably be gathered. In the present

communication we have contrasted the characterizations of de-

terministic chaotic and noisy-stochastic dynamics, as represented

by time series of finite length. The pertinent characterizations

can be successfully achieved with reference to an information

plane (its two coordinate axis being different information quan-

tifiers). One just has to look at the different planar locations of

our two dynamical regimes. In point of fact, the plane is de-

fined by i) the Shannon entropy, responsible for global features

and ii) the Fisher information measure, accountable for local at-

tributes. The two quantifiers are evaluated using Bandt–Pompe’s

ordinal patterns-probability distribution function (PDF). Such PDF

can adequately take into account the causal time ordering present

in the time series. Our present results are in agreement with those

obtained some time ago with the causality Shannon complexity

plane and complement the pertinent results by adding a differ-

Fig. 2. Results for the logistic map, as a function of the parameter 3.8 � r � 3.87.

(a) Bifurcation diagram (�r = 0.0006). The vertical lines represent the different dy-

namical windows described in the text. (b) Causality H × C -map with D = 6 and

τ = 1, �r = 1 × 10−5. The continue lines correspond to the minimum and maxi-

mum complexity. (c) Causality H × F -map with D = 6 and τ = 1, �r = 1× 10−5.

ent perspective. When is the H × F more recommendable than

other related planar representations? This is so for those cases in

which the characterization of different dynamical regimes associ-

ated to system’s parameter-changes are the focus of interest. This

allows us to conclude that causality information planes do con-
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stitute a useful new tool for the analysis and characterization of

time series. Moreover, these planes are able to reveal subtle dif-

ferences between noise and chaos, that are related but different

phenomena.
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