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Computer simulation of adsorption on nanoparticles: The case of attractive interactions
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A lattice-gas model describing adsorption on nanoparticles of different sizes and shapes is proposed and the
adsorption thermodynamics is studied. The nanoparticle is modeled assuming different geometries, and Monte
Carlo simulations are performed in the grand canonical ensemble. Adsorption isotherms, differential heats of
adsorption, and other relevant thermodynamic properties are analyzed as a function of nanoparticle sizes. The
simulations cover a wide range of interactions, ranging from physical to strong chemical bonds.
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I. INTRODUCTION

In recent years, nanometric systems have become the
subject of numerous experimental and theoretical studies
because of their important implications for physical chemistry,
biology, and medicine, just to name a few fields [1–3]. The
special behavior of systems made of a relatively small number
of particles was recognized in the 1960s by Hill [4,5], who
described the basis of the thermodynamics that he called
“of small systems.” Hill described in a visionary way how
size could affect various thermodynamic properties of these
systems. Keeping the pace of “nano times,” this theoretician
extraordinarius [6] gave this area of study a new name; he
called it nanothermodynamics [5].

Since relative fluctuations are small in macroscopic sys-
tems, different ensembles can be chosen to deal with a given
problem, on the basis of mathematical or physical convenience.
However, this may not be valid for a nanosystem [7], so
it becomes necessary to specifically derive the equations
for each ensemble. Thus, if a joint approach to a given
problem involving theory, simulations, and experiments is
attempted, it is necessary that both the theoretical modeling and
the simulations reflect the experimental conditions. Another
remarkable feature of nanothermodynamics is that we have to
abandon the macroscopic concept of intensive and extensive
variables. In nanothermodynamics, some of the properties that
in the macroscopic limit did not depend on the system size
now will depend on it [4,5,7].

In the present work, the nanosystem in which we are
interested is a nanoparticle (NP) on which atoms (eventually
molecules) may be adsorbed from a source providing them
at a constant temperature and chemical potential. A NP is a
cluster of atoms that qualifies as a “small” system, in the sense
considered by Hill, because it is composed of a few hundred
(at the most a few thousand) units.

Among experimental studies, the use of electrochemical
techniques [8] has opened the possibility of controlling the
shape of Au NPs via the presence of other metallic adsorbates.
In electrochemical systems, the coverage degree of adsorbed
species may be controlled by straightforward application of a
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potential difference, which may be achieved by an electrode
or via a redox system in equilibrium with the NP [9]. Thus, the
interesting point about electrochemistry is that the adsorption-
desorption equilibrium may be established without the need
of application of high temperatures to the system, that would
otherwise change the properties of the NPs.

Computer simulations have been widely used to simulate
the generation of metallic and bimetallic NPs and to study their
thermodynamic properties [7,10]. As an example, bimetallic
NPs have been analyzed with a dynamic method to generate
NPs by collision [11,12] or for the study of the electrochemical
generation of core-shell NPs [13]. In these works, the thermo-
dynamics properties can be affected by factors such as size
and shape of the core, and chemical composition and under-
or oversaturation conditions. Most of these simulations involve
the use of many-body potentials and off-lattice models, which
are expensive from a computational viewpoint. An appealing
alternative to circumvent this problem may be the use of lattice
models, where the particles of the system may be assumed to
occupy a discrete position in space. This approach has been
used successfully in a number of studies of supported NPs
[14–17] to consider the change in the shape and surface mor-
phology of the NP under the influence of the reaction media.

The icosahedral morphology is frequently found in exper-
iments using the vapor condensation method with helium,
where the particles are supported [18]. Icosahedral clusters
have also been used to study melting of clusters by means of
molecular dynamics simulations [19], with the finding that this
structure is often stable up to the melting temperature.

The purpose of the present work is to study the thermody-
namics of monolayer formation on a NP of fixed size by grand
canonical Monte Carlo (GCMC) simulations in a lattice model
approximation. The paper is organized as follows. Section II
describes the lattice-gas model and some basic definitions.
Section III shows the results for the thermodynamic behavior
obtained from GCMC simulations. Finally, in Sec. IV the
conclusions and future perspectives are given.

II. MODEL AND BASIC DEFINITIONS

In order to consider the deposition of different particles on a
preexisting substrate (seed-NP), we define a lattice-gas model
emulating a substrate with given geometry, formed by atoms
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FIG. 1. (Color online) Representation of the lattice model used
in this work. The purple atoms correspond to the adsorbates. The
edge and vertices sites are marked in white solid lines in (a). Yellow
atoms correspond to atoms of the substrate. Gray atoms in (b)–(d)
correspond to atoms of the substrate that are coordinated with the
adsorbate particles. The straight broken white lines are drawn to
indicate the location of the edges. The circles drawn indicate the
adsorption site of a particle that corresponds to a vertex (b), an edge
(c), or a facet (d).

of type A on which the particles of type B are deposited. The
NP will be denoted by the numbers of constituting particles,
say NA and NB (NA/NB ). The NP is assembled in such a way
that each particle is linked to others if the distance between
them is less than (or equal to) 1.2 times the nearest-neighbor
distance of the bulk A species. The M adsorption sites for the
B adsorbates are located on the surface of the seed NP. We
note that M depends on the preexisting NP size and shape.

Taking into account the coordination with nearest neigh-
bors, different types of adsorption sites occur where the
particles can be deposited. Figure 1 shows a schematic view of
the different types of sites and their coordination numbers for
the particular case of icosahedral geometry. The adsorption
sites on the faces of the icosahedrons [Fig. 1(d)] are linked
to three atoms of the substrate, forming a triangular lattice
capable of coordinating with up to six lateral neighbors on
the surface. The adsorption sites on the edges [Fig. 1(c)],
are linked to two sites of the substrate and may coordinate
with up to six other adsorbate sites. Finally at each of the
twelve vertices [Fig. 1(b)], the adsorption site is connected
to one site of the substrate and with up to five lateral nearest
neighbors. Following these ideas we can consider two different
kinds of interaction energies. One between A-type and B-type
particles, denoted with wAB and another one corresponding
to the lateral interaction between B-type particles, say wBB .
Thus, the surface of the NP forms a heterogeneous substrate on
which foreign particles are deposited. Figure 1 illustrates the
different adsorption sites, along with the adsorption energies
according to the present model assumptions. Under these
conditions, the Hamiltonian for NB particles adsorbed on M

sites can be written as

H = wAB

∑
〈(i,j ),(i ′,j ′)〉

ci,j ci ′,j ′ + wBB

∑
〈(i,j ),(i ′,j ′)〉

ci,j ci ′,j ′ , (1)

where ci ,j is the occupation variable, which can take the
following values: ci ,j = 0 if the corresponding site i, j is

empty and ci ,j = 1 if the site is occupied. The first sum
corresponds to the atoms on the surface of the NP only, and the
second sum runs over the adsorbate sites. We consider only
nearest neighbors interactions. Multiple occupations are not
considered.

In a recent work [20] we have analyzed the problem of
many-body interactions in detail. These simulations involved
the use of many-body potentials and off-lattice models, which
are expensive from a computational viewpoint. There, we
have investigated silver deposition on gold NPs of truncated
octahedral geometry for three different sizes in the grand
canonical ensemble. A sequential deposition of adatoms on
different facets was found, even in the case of a full vibrational
picture. Remarkably, will see below that this problem may
also be addressed by lattice models using pairwise additive
interactions, obtaining qualitatively similar results.

The deposition process is simulated by a Monte Carlo
technique in the grand canonical ensemble using the typical
adsorption-desorption algorithm [21,22]. Thus, we consider
the system in contact with a particle reservoir at temperature
T and chemical potential μ. The Metropolis scheme [23,24] is
used to satisfy the principle of detailed balance. A Monte Carlo
step (MCS) is achieved when each of the M sites has been
tested to change its occupancy state. Typically, the equilibrium
state can be well reproduced after discarding the first 5 × 106

MCSs. Then, the next 2 × 106 MCSs are used to compute
averages. Evaluations of different thermodynamic quantities
follow standard procedures. The mean coverage, θ , is obtained
as a simple average:

θ (μ) = 〈NB〉
M

. (2)

The differential heat of adsorption, qd , is obtained from
[25]:

qd (θ ) = −∂u

∂θ
= 〈HN〉 − 〈H 〉〈N〉

〈N2〉 − 〈N〉2
, (3)

where u is mean energy per site. The differential heat of
adsorption is easily experimentally accessible by means of
thermal desorption spectra. The physical interpretation of
this quantity is the energy associated with the removal of a
particle from the surface at a given coverage. Thus, thermal
desorption spectra could be performed in order to check
some of the predictions of the present modeling. Finally the
thermodynamic factor, Tf ,

Tf (θ ) =
(

∂βμ

∂ ln θ

)
= 〈N〉

〈(δN )2〉 , (4)

can be obtained either via the differentiation of adsorption
isotherms [26] or via the normalized mean square fluctuations
both obtained in grand canonical ensemble. The thermody-
namic factor contains information on the fluctuation of the
number of particles deposited on the NP. It is related to two
experimental observables: the diffusion coefficient through the
Darken equation and the isothermal susceptibility, χ , via the
relationship Tf = θ/χ [27,28].

The thermodynamic factor and the adsorption heat are
quantities that emerge from the measurement of fluctuations
in the system. It is of primary importance that their values

061602-2



COMPUTER SIMULATION OF ADSORPTION ON . . . PHYSICAL REVIEW E 86, 061602 (2012)

yield results in line with those stemming from the adsorption
isotherms.

Different theoretical models available [29] allow the ana-
lytic estimation of adsorption isotherms on planar surfaces,
such as, for example, the detailed mean field approximation
(DMFA) and the effective substrates approximation (ESA)
[30]. These models are based on a local description of
the interaction between adsorbed particles and provide a
qualitative description of the system. However, the prediction
of quantities such as Tf (θ ) and qd (θ ) is not possible without
a previous computer simulation. The behavior of qd (θ ) has
been analyzed for different systems in the case of planar
surfaces [31], but their dependence on the shape and sizes
of NPs has so far not been analyzed.

III. DISCUSSION

In Sec. III A we consider the effect of the different
parameters of the model on the thermodynamic properties of
an icosahedral nanoparticle made of 1415 atoms, ICO(1415).
In Sec. III B the influence of icosahedra NP size is analyzed.
In Sec. III C we analyze the behavior of other NP geometries
and finally in Sec. III D we examine the spherical NP case.

A. Adsorption on ICO(1415)

We start the present analysis using a seed NP with
NA = 1415 with icosahedral geometry. We choose kBT = 1.0
(kB being the Boltzmann constant and T the temperature)

and we define the energy ratio δE as δE = wBB/wAB ,
where we arbitrarily set wBB = −2.85 (in units of kBT ) and
wAB is a parameter that will be given negative (attractive
interactions) values with the condition |wAB | � |wBB |. At
room temperature (kBT ≈ 0.023eV); the interactions selected
correspond to values lying in a range that is intermediate
between physical and chemical interactions. In Fig. 2(a), we
present adsorption isotherms where the surface coverage θ

is normalized according to Eq. (2) so that when θ = 1, the
surface of the NP is completely filled with B particles. For this
coverage value, we will state that a complete monolayer has
been formed. Two regimes can be distinguished to describe
the system for the present NP size: regime I for 0 < δE � 1/3
and regime II for δE > 1/3.

In regime I, the isotherm presents two well defined plateaus
and an inflection in between, which is marked with an ellipse
in Fig. 2(a). We note that the plateaus become wider as
the interaction of the substrate with the adsorbate become
relatively more important (as δE decreases). The case δE =
0.0 (not shown here) would correspond to the limiting case
where lateral interactions are null (Langmuir-like adsorption).
In this last situation only wAB and the coordination of the
adsorption site determine the heterogeneity of the adsorption
process.

As discussed in the previous section, different types of
adsorption sites are found on the NP. In the particular case
of the icosahedral NPs, we can differentiate the faces, the
edges, and the vertices, whose adsorption energies follow the
sequence Eface < Eedge < Evertex (see Fig. 1). Thus, adsorbing

(b)(a)

FIG. 2. (Color online) (a) Adsorption isotherms for several values of δE as indicated, at kBT = 1.0. Regime I is associated with the
occurrence of plateaus and regime II with a condensation. The ellipsoids show the onset of the second plateau. (b) Adsorption isotherm for
kBT = 0.5. The insets are snapshots of the states associated with each plateau. Black dots represent B particles, and green dots empty sites.
The lines denote the geometry. In all cases NA = 1415.

061602-3
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(d)

(c)

(b)

(a)

FIG. 3. (Color online) (a) Adsorption isotherms for δE = 0.2 in regime I for different kBT values, as indicated in the figure. (b) Differential
heat of adsorption versus surface coverage for the same conditions as in (a). Black arrows denote steps in the differential heat. (c) Regime II,
for different kBT values, as indicated in the figure, for δE = 1.0. The black line draws a possible diagram phase. (d) Differential heat versus
surface coverage for the same temperature values as in (c). The ellipsoids mark the discontinuities of the curves. In all cases NA = 1415.

particles prefer to first fill the faces, producing the first plateau.
Following these ideas, the intermediate inflection corresponds
to the filling of the edge sites. However, we note that this
feature is very weak at kBT = 1.0, becoming more evident
at lower temperatures. Thus, the plateaus and the inflection
denote different decoration types of the NP. At the beginning
of deposition, when the NP is empty, the particles are deposited
in a sequential manner, and they form nuclei for the growth
of big islands that cover each one of the twenty faces of
the icosahedron. In order to illustrate the previous deposition
sequence, we present in the Fig. 2(b) representative snapshots
of the configuration of the system at different stages of surface
coverage for δE = 0.2 and kBT = 0.5. Black and green
spheres correspond to occupied and empty sites, respectively;
the white lines are drawn to guide the eye. Inset (i) shows how
B particles are deposited on the faces in the first plateau. In
the second plateau, particles are deposited at the edge sites,
as illustrated in inset (ii). Only the atoms around the vertices
remain empty under these conditions. In the third plateau, the
empty sites around the twelve vertices are filled [inset (iii)],
and in a fourth plateau (not seen in the plot) the twelve sites at
the vertices are finally filled.

Coming back to regime II, under these conditions each
isotherm presents a discontinuity corresponding to the tran-
sition from an empty seed NP up to a fully covered surface
[see two isotherms on the right of Fig. 2(a)]. Unlike in regime
I, the deposition of B particles is not sequential in regime
II, because the only way to minimize the energy is through

full condensation. This behavior is typical for adsorption in
two-dimensional arrays with attractive interactions, denoting
the prevalence of the wBB interactions over the wAB ones.
In the present regime, the morphology of the NP does not
play a relevant role in determining the shape and position of
the adsorption isotherm. Under these conditions, the latter is
identical with that obtained for a (111) infinite surface.

Let us now analyze the temperature dependence of each
regime. In Fig. 3(a) we explore regime I, choosing δE = 0.2
and varying the temperature from kBT = 1.0 up to kBT = 5.0.
At high temperatures, the isotherms have the typical sigmoidal,
Langmuir-like behavior. In this situation the interaction energy
is less important than thermal fluctuations and the monolayer
is formed in a single smooth transition showing no evidence
of the energy topology of the surface. However, at low
temperatures, the plateaus begin to be evident and become
wider as kBT decreases, corresponding to the most noticeable
filling of the facets.

Another variable studied within regime I was the differential
heat qd as function of surface coverage, which was calculated
according to Eq. (3). We note that alternatively qd can be
interpreted as the derivative of the mean energy per site with
respect to surface coverage or as related with the fluctuation
of the number of B particles. In this latter definition, we note
further that qd has steps at the coverages where the plateaus
occur in the isotherms. This is more evident at the lower
temperatures as is shown in Fig. 3(b) with arrows. However,
as temperature increases, the steps begin to fade in the same
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way as the plateaus do in the isotherms. At kBT � 3.0 the
first step in qd can be barely noticed, and the second one
disappears completely, in agreement with the observations
made in Fig. 3(a) concerning the steps in the adsorption
isotherm.

Figure 3(c) presents results for the adsorption isotherms
in regime II. The condensation appears at different chemical
potentials for each temperature. This characteristic resembles
a first order phase transition between a surface phase with a
low density and another one with a high density. As is usual
for a first order transition, we can sketch the diagram phase
by drawing a line through the discontinuity points along the
isotherms. We can observe the typical symmetry of the diagram
at half coverage. This behavior suggests the existence of a
critical isotherm associated to a critical temperature, as in the
case of a first order phase transition in a two-dimensional flat
surface. At any temperature below this “critical temperature,”
the system prefers to condense in such a way that each adsorbed
particle presents its nearest neighboring sites occupied, in con-
trast with a sequential deposition. At very high temperatures
the isotherm becomes sigmoidal as before. Figure 3(d) shows
the differential heats in this regime. At high temperatures the
differential adsorption heat presents a smooth behavior as a
function of the coverage, but at low temperatures it presents
a discontinuity, as highlighted with an ellipsoid. Similarly
to the case of the isotherms, the jumps in qd depend on
temperature.

Since the interactions in the present model are attractive,
it is possible to assume a critical behavior at the formation of
the first plateau, corresponding to condensation on the faces
of the icosahedral NP. In order to analyze the isotherms at the
first plateau, we choose δE = 0.2 and vary the temperature
in Fig. 4. Like before, the isotherms show discontinuities
corresponding to the transition from an empty lattice to covered
faces. These jumps become more evident as temperature
decreases. A possible diagram phase is shown by drawing
a black line, presenting a maximum around θ ≈ 0.33, which

FIG. 4. (Color online) Adsorption isotherm, at different kBT

values as indicated in the figure. The jumps in the isotherms involve
the condensation in the faces of the NP. The black line reconstructs a
possible diagram phase.

corresponds to half of the full (111) facet coverage of the
icosahedral NP.

B. Adsorption on icosahedral NPs of different sizes

The next point we consider is how NP size affects
the thermodynamic adsorption variables, keeping its shape
constant. It is well known that size is a very important factor
affecting several processes in nanosystems. In Fig. 5(a), we
present adsorption isotherms for icosahedra of different sizes,
with NA ranging between 561 and 10 179, at kBT = 1.0 for
δE = 0.2. In the case where NA = 561, 923, and 1415, we can
observe the occurrence of the first and the third plateaus only.
The second plateau only becomes evident for NA � 2057.
The first plateau shows a remarkable size effect, because the
number of face sites depends on NA. It becomes broader as
NA increases; the black straight lines are drawn to guide the
eyes. The inset shows a closeup of the third plateau; it can be
observed that the width is the same for all sizes. This is not
unexpected, since the number of vertex sites do not depend on
NA. An interesting dependence of differential heat on coverage
is presented in Fig. 5(b). The process can be understood by
focusing our attention on the steps. The first step is associated
with the first plateau in the isotherm, where (111) faces are
filled. The second step is associated with the deposition at the
edges. It is remarkable that this step can be even observed
for NA = 561 (this is marked with an arrow), although there
is no evidence for the occurrence of this phenomenon in the
adsorption isotherm in Fig 5(a). The inset in Fig. 5(b) shows
the qd step related to the third plateau.

Another interesting variable that was examined is the
thermodynamic factor, which is useful to calculate diffusion
coefficients and is related to the second derivatives of the
free energy. Figure 6(a) shows plots of Tf [Eq. (4)] versus
surface coverage for different NP sizes with icosahedral
geometry at kBT = 1.0. The fluctuations in Tf have maxima
for coverages where the plateaus occur in the isotherms and
become enhanced as NP size increases. The most remarkable
result is the shift of the three maxima with NP size. This is
a typical “nano” effect, since in a macroscopic system all the
maxima should occur at the same coverage. The behavior of
a rounded maximum, corresponding to the second plateau,
is shown in inset (i). Inset (ii) shows a closeup of a peak
corresponding to the third plateau in θ , where we observe a
behavior similar to the first one.

The effect of temperature on the behavior of Tf is shown
in Fig. 6(b) for icosahedral NPs with NA = 1415 and δE =
0.2. The sharp Tf maximum observed at relatively low
temperatures becomes wider as temperature increases and
finally disappears at kBT = 5.0, as happened with the plateaus
in the adsorption isotherms. These results show that at low
temperatures, the lateral interactions at the faces are more
intense than thermal fluctuations. The inset of Fig. 6(b) shows
Tf in the coverage region corresponding to the third plateau.

From the analysis of the adsorption isotherms in Fig. 5(a),
we observe that the coverage corresponding to the first and the
second plateau, say θ1 and θ2, increase their value with NA,
moving towards the value of the third, say θ3. Is there a limit for
this shift? To answer this question, we can use the recurrence
relations for the icosahedral geometry. With these relations we
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(b)(a)

FIG. 5. (Color online) (a) Adsorption isotherms for different nanoparticle sizes NA, as indicated in the figure. The inset shows a closeup
of the third plateau. The black lines are a guide to the eye to show the change of the width of the plateaus. (b) Differential heats for the same
conditions as in (a). The inset shows the step related to the third plateau. In all cases kBT = 1.

(b)(a)

FIG. 6. (Color online) (a) Thermodynamic factor (Tf ) versus surface coverage at kBT = 1, for different nanoparticle sizes NA as indicated
in the figure. A peak occurs at each coverage degree where the plateaus are found in the isotherms. The inset shows two closeups of the second
and third plateaus, respectively. (b) Temperature dependence of Tf . The maxima become sharper as the temperature goes down. The inset
shows the Tf maxima corresponding to the third plateau.
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TABLE I. Recurrence relations for the icosahedral geometry.

Vertex
(Nv) Edges (Ne) Faces (Nf ) Bulk (Nb)

12 30(n − 1) 10(n2 − 3n + 2) 1
3 (10n3 − 15n2 + 11n − 2)

can obtain the quantity of adsorption sites for each site type
according to Table I:

In Table I n is a natural number that denotes the member
of the icosahedral family to which the particle belongs. For
example, for n = 1 we get NT = 13, the smallest size for this
kind of NP shape. Using the previous equations, the number
of adsorption sites at the surface can be written as

NB = 2(5n2 + 1), (5)

so, for the first, second, and third plateau the values of surface
coverage can be calculated from

θ1 = Nf

NB

= 5(n2 − 3n + 2)

(5n2 + 1)
,

θ2 = Nf + Ne − 5Nv

NB

= 10n2 − 70

10n2 + 2
,

θ3 = Nf + Ne

NB

= 10n2 − 10

10n2 + 2
. (6)

In θ2 we have subtracted 5Nv sites, which correspond to
the five nearest neighbors of the vertex sites. To check these
expressions, we plot the coverage at which the three plateaus
occur in the isotherms as a function of NA in Fig. 7. The
symbols correspond to the coverage of the plateaus from
the simulations; the lines are the analytic expressions. All
the analytic expressions present an asymptotic behavior. We
observe a good agreement with the values of the simulation.
The inset shows the surface coverage versus n. The third

FIG. 7. (Color online) Coverage at the plateaus as a function of
NA. The symbols and lines represent the coverage from Monte Carlo
simulations and theoretical expressions [Eq. (6)], respectively. The
inset shows the coverages as a function of the index n defined in the
text.

FIG. 8. (Color online) Adsorption isotherm for different values
of δE at T = 300K (kBT = 0.025). The inset shows a closeup of the
third plateau. In all cases NA = 10179.

plateau appears for all values of n > 1. On the other hand, the
first and second plateau appear only for n > 3 (NA > 147).
This is because at n > 3 there are more than one site on the
faces. For small values of n the curves never cross, so that
the plateaus always remain separate. However, at n ≈ 40 the
plateaus become close, and are difficult to separate from each
other. Thus, the analytical expressions given above allow us
to know the positions of the maxima in Tf versus NA, as
well as the location of the steps in the differential heat for all
icosahedral NP sizes.

Now, we analyze the application of our model in a regime
strictly valid for metallic interactions. Using the same defini-
tion for δE as before, we consider a NP with NA = 10 179,
setting kBT = 0.025 (T = 300 K). In a first exploration we
consider wBB = −1.0, and vary the wAB values in such a
way that δE is in the range 3.0 � δE � 1.0. Under these
conditions, the system presents characteristics similar to those
found in regime II where the isotherms show discontinuities
(these results are not shown here), resembling the behavior of
an infinite surface. In a second exploration we set wAB = −1.0
and vary the wBB values in such a way that δE is in the
range 1/3 � δE � 1.0, with the resulting isotherms shown in
Fig. 8. For all values of energies we observe the occurrence
of the third plateau. The inset shows a closeup in the third
plateau region. At δE values close to 1, the isotherm present
“jumps” and there is no evidence of others plateaus, but as δE

approaches 1
3 the others two plateaus begin to appear. In fact,

in the isotherm corresponding to δE = 1
3 three plateaus are

evident. Their coverages are in agreement with the analytical
values estimated above.

C. Adsorption on NP with different geometries

In the following we analyze the adsorption process on
NP with different geometries. Figures 9(a)–9(c) shows the
geometries considered in the present section: (a) truncated
octahedron (TO), cuboctahedron (CO), and tetrahedron (TH).
Other geometries like cubes, decahedra, and dodecahedra have
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(a)                                                            (b)                                                                (c)                                                  (d)  

FIG. 9. (Color online) Representation of the different geometries of NP used in this work. The purple and yellow atoms correspond to the
adsorbates and substrate, respectively. The edge and vertices sites are marked in white solid lines. (a) Truncate octahedral, (b) cuboctahedral,
(c) prism, and (d) spherical.

been analyzed, but their qualitative behavior may be inferred
from those mentioned above. For this reason we do not present
these results. Figure 10(a) compares adsorption isotherms for
ICO (blue) and CO (red) NPs for different δE values and
kBT = 1. For each member of the family, ICO and CO NPs
present the same number of atoms, distributed in a different
geometrical arrangement. In both cases, the plateaus in the
isotherms become better defined as the interaction between
A and B increases. The novel feature in the CO geometry is
the occurrence of a fourth plateau, at more negative chemical
potentials. The reason for this is the existence of (100) facets
in the case of the CO NPs. The other three plateaus in CO NPs
correspond to the phenomena already discussed for ICOs, that
is, the filling of (111) facets, edges, and vertices. The latter
two processes are advanced (occur at lower μs) in the case of
ICOs, since the adsorption sites at edges and vertices exhibit
a larger coordination than in COs.

Figure 10(b) shows that whatever the geometry of the NP
(ICO, TO, CO, or TH), the filling sequence always presents
the same behavior. In this case, for δE = 0.1 and kBT = 1,
the filling proceeds in the sequence (100) facets, (111) facets,
edges, and vertices.

The general conclusion that we may draw from these
simulations is that selective decoration of the different facets
may be achieved, by choosing a suitable temperature, that
obviously will depend on δE.

D. Spherical nanoparticles

Nanoparticles with perfect geometries as discussed in the
previous sections are seldom found in experiments. On one
side, sometimes it is found that different geometries are found
within the same set of nanoparticles synthesized. On the other,
domains with different crystallinities may be present in the

(b)(a)

FIG. 10. (Color online) (a) Adsorption isotherms for several values of δE as indicated, at kBT = 1.0 for cuboctahedra (black) and icosahedra
(red) NP. (b) Adsorption isotherm for δ = 0.1 and kBT = 1.0 for different geometrical NP. Black: icosahedra, red: truncated octahedra, green:
cuboctahedra, and blue: tetrahedron.
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(c)

(b)

(a)

FIG. 11. (Color online) (a) Adsorption isotherms for several values of δE for spherical NP; wBB = −2.0, wAB = −2.0, − 2.66, − 4.0,
− 5.0, − 6.0, − 7.0, − 8.0, − 10.0, − 12.0, − 15.0. (b) Adsorption isotherm for δ = 0.5 for different spherical size NPs. (c) Isotherms for
spherical (black) and icosahedral (red) NPs. In all cases kBT = 1.0.

same nanoparticle. Generally speaking, it is found that when
the atomic arrangement of a real NP is compared with those
given by perfect geometries (ICO, OT, CO, TO, etc.), the
former presents a larger number of surface defects as extra
borders, adatoms, vacancies, etc., where even these defects
may assume different characteristics. Thus, the analysis and
extrapolation of the theoretical predictions to a real NP is
far from being straightforward. For example, if we assume
a spherical shape for a NP, there is no definite recurrence
relationship such as that given in Eq. (6) or similar. For this
reason, in the following discussion we will choose the diameter
as relevant parameter. The present choice to design a spherical
nanoparticle was made on the basis of a bulk Au fcc structure,
where different concentric spheres of radius R were employed
to draw its limits. For example, a NP made of NA = 826
atoms was constructed by choosing the atoms lying within a
sphere of 2.42 nm diameter, which is a size of the order of
those of the smallest ones of the NPs analyzed above. The
next member of the spherical NPs was given a radius of 3.0
nm, which corresponds to the addition of a nearest neighbor
distance between Au atoms, yielding a NP made of NA = 1376
atoms. The difference NB = 550 between both NPs defines the
adsorbate lattice.

Figure 9(d) illustrates an image of the geometry discussed
in the previous paragraph. Using the same methodology, we
constructed six NPs with spherical geometry whose compo-
sition (NA/NB) is given by: 826/550, 1376/818, 2194/1054,
3248/1362, 4610/1618, and 6228/2066.

Figure 11(a) shows the adsorption isotherms for a 1376/818
spherical NP at different δE values at kBT = 1. As in the

case of the NPs with perfect geometries, depending on the
relative interactions given by δE, there is a displacement of
the curves towards more negative potentials and the plateaus
turn to be better defined as the substrate-adsorbate interaction
becomes stronger, δE → 0. The last plateau, θ = 1 in this
figure, corresponds to the deposition of adsorbates on other
previously adsorbed particles and would not be observed in
experiment, since the related chemical potential region would
correspond to the formation of the B bulk phase.

Figure 11(b) shows adsorption isotherms for spherical NPs
of different sizes with δE = 0.5 and kBT = 1. In contrast
with the observation made in the case of NPs with a perfect
geometry [Fig. 5(a)], no definite trend is found with NP size
for the height step and plateau width, as it was, for example,
for the case of Fig. 5(a).

Figure 11(c) compares isotherms for truncated octahedral
(black) and spherical (red) NPs for the same values of δE and
kBT . In the first one, we can observe the steps corresponding
to (100) facets, (111) facets, edges, and vertices. In the second,
two new plateaus are evident at more negative chemical
potentials. These correspond to the decoration of sites with a
coordination of the substrate that is larger than 4. The analogies
of these imperfections in planar surfaces are vacant sites, some-
times denominated zero-dimensional defects [32]. Thus, the
results presented in Figs. 11(b) and 11(c) lead to the conclusion
that the choice of a spherical shape for a nanoparticle leads
to a relationship between sites of different coordination that
remains relatively unaltered for different sizes.

In summary, our results show that the study of the deposition
on NPs is a complex problem. The understanding and the
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establishment of general rules in terms of the interaction
between their constituents requires the consideration of NPs
with different sizes and shapes. NPs with a perfect geometry
such as icosahedra, octahedra, etc., present a more or less
straightforward predictable behavior, which can be analyzed
in terms of adsorption on sites with different coordinations. In
contrast, spherical NPs do not present a clear-cut trend as a
function of their size. Even more, adsorption isotherms appear
to be rather size independent. The question is, what is the
behavior expected in a real experiment? To answer this, we
may think in terms of the two limiting cases considered in this
work. A real NP will seldom have a perfect geometry, but it will
have fewer defects than a spherical NP. Thus, the measurement
of their properties will yield results between these two cases.
The degree of approximation to one or another case could
deliver an idea of how close the real system is to each of them.

IV. CONCLUSIONS

We have formulated a lattice model that can be used to study
the thermodynamics of adsorbate formation on nanoparticles.
This consists in a lattice gas that can be trivially extended to
different geometries. The study of its properties was carried
out through MC simulations in the grand canonical ensem-
ble. The key parameter of the model was δE = wBB/wAB ,
that is, the ratio between the adsorbate-adsorbate and the
substrate-adsorbate interactions. The properties calculated
were adsorption isotherms, differential heats of adsorption,
and thermodynamic factors. Depending on the values of the
parameters, different types of behavior were found:

(1) In the case of icosahedral NPs for kBT = 1 and δE �
1/3, three plateaus in the adsorption isotherm occur that
characterize the different deposition stages. Each plateau

corresponds to configurations where sites of different types
(faces, edges, and vertices) are filled. For δE > 1/3, the
isotherm presents a discontinuous behavior, corresponding to
the transition from an empty icosahedral NP to a fully covered
one. Other geometries show an increased number of plateaus
(associated with different coordination of the adsorbates with
the substrate) but exhibit the same qualitative behavior.

(2) Studies performed at different temperatures show
smooth transitions or jumps in the isotherms, the latter
corresponding to the transition from an empty NP to the full
decoration of the NP. This behavior is a condensation, which
resembles a first order phase transition in the case of infinite
systems. The present results encourage a more detailed study
on the critical behavior of the system.

(3) The effect of NP size on the thermodynamics variables
was analyzed. Qualitative and quantitative aspects of shapes
of the adsorption isotherms can be understood in terms of
the geometry of the system. This is also valid for spherical
NPs, where the shape of the isotherm is determined by
the contribution of sites with different coordinations to the
energetics of the system.

(4) When the ratio of adsorbate-adsorbate interactions to
substrate-adsorbate interactions and the temperature is such
that steps are observed in adsorption isotherms, the sequence
of decoration depends on the coordination of adsorption sites,
no matter what type of NP geometry is considered.
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