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Abstract

We study the large-time behavior in all L? norms of solutions to an inhomogeneous
nonlocal heat equation in RY involving a Caputo a-time derivative and a power 8 of
the Laplacian when the dimension is large, N > 48. The asymptotic profiles depend
strongly on the space-time scale and on the time behavior of the spatial L' norm of
the forcing term.

Mathematics Subject Classification 35B40 - 35R11 - 45K05

1 Introduction and main results
1.1 Aim

The purpose of this paper is to give a precise description of the large-time behavior of
solutions to the inhomogeneous fully nonlocal heat equation

u+(—APu=f inQ:=RY x(0,00), u(-,0)=0 inRY, (1.1)
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in the case of large dimensions, N > 48, completing the analysis started by Kemp-
painen, Siljander and Zacherin [17]. Here, 3{, o € (0, 1), denotes the so-called Caputo
a-derivative, introduced independently by many authors using different points of view,
see for instance [2, 13, 15, 16, 20, 22], defined for smooth functions by

t J—
DU, 1) = —— 8zf ute, D) —ue,0)
F(l_a) 0 (t_-[)oz

and (—A)/3 ,with 8 € (0, 1], is the usual 8 power of the Laplacian, defined for smooth
functions by (=AY = F~1(| - P F), where F stands for Fourier transform; see for
instance [23]. Such equations, nonlocal both in space and time, are useful to model
situations with long-range interactions and memory effects, and have been proposed
for example to describe plasma transport [10, 11]; see also [3, 4, 21, 24] for further
models that use such equations.

Problem (1.1) does not have in general a classical solution, unless the forcing term
f is smooth enough. However, if f € L%.([0, c0) : L'(RN)), it has a solution in a
generalized sense, defined by Duhamel’s type formula

!
u(x,t):/ / Y(x —y,t —s)f(y,s)dyds, (1.2)
0 JRN

with ¥ = E)tl ~%Z outside the origin, where Z is the fundamental solution for the
Cauchy problem,

3u+ (—APu=0 inQ, u(-,0)=up inRY; (1.3)

see [14, 17, 19]. Throughout the paper, by the solution to problem (1.1) we always
mean the generalized solution given by (1.2).

The rate of decay/growth of the solution depends on the space-time scale under
consideration, the L? norm with which we measure the size of u, and the size of the
right-hand side f; see [7], and also [8] for the case of small dimensions. Our goal here
is to determine, under some assumptions on the forcing term f, the asymptotic profile
of the solution, once it is normalized taking into account the decay/growth rate. Let
us point out that even for the local case, « = 1, 8 = 1, such study is not yet complete;
see Sect. 1.4 below.

Notation. Let g, h : R4 — R,. In what follows we write g ~ h if there are constants
v, u > Osuchthatv < g(¢)/h(t) < pforallt € Ry,and g > hiflim;— % = 0.

1.2 The kernel Y. Critical exponents
Our proofs depend on a good knowledge of the kernel Y, which, as mentioned above,
is given by ¥ = 0, =97 Let Z = Z(w, t) denote the Fourier transform of the funda-

mental solution Z of problem (1.3) in the x variable. Then,

W Z(w. 1) = - Z(. 1), Z(w,0)=1.
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The solution to this ordinary fractional differential equation is
Z(,1) = Eq(~lo*1%),
where E,, is the Mittag—Leffler function of order «,
> sk
B = 2 T vk
k=0
Inverting the Fourier transform, we obtain that Z has a self-similar form,

_—NO _ 0 @
Ze,t) =t NFE), E=xt7? 6:= T (1.4)

with a radially symmetric positive profile F that has an explicit expression in terms
of certain Fox’s H-functions. Hence, Y has also a self-similar form,

Y(x,0) =1""G(E), E=xt7% o, =1—a+N6. (1.5)
Its profile G is positive, radially symmetric, and smooth outside the origin, has integral

1, and, in the case of large dimensions that we are considering here, N > 44, satisfies,
for all B8 € (0, 1], the estimates

GE) = [5¥", El<1,  (16)
GE = 05" V), IDG®|= 0" M) g =1 ()
We have also the limit
|S|N*4ﬂG(§) — k as |£] — 0 for some constant k > 0, (1.8)
which shows that the inner estimate (1.6) is sharp. The exterior estimates (1.7) are also
sharp if 8 € (0, 1). In the special case B = 1, both G and | DG| decay exponentially,
but we do not need this fact in our calculations. All these estimates, and many others,
are proved in [17, 18].
As a consequence of (1.6)—(1.7) we have the global bound
0<Y(x,t) < Ct 19 1x*¥=N in 0, (1.9)

and also the exterior bounds, valid if |x| > vi?, t > 0, for some v > 0,

0<Y(x,1) < Cpr? 1t x|~NF2P), (1.10)
IDY (x,1)] < Cypr?~ x| 7 (V254D (1.11)
18 Y (x, 1)| < Cpt?*~2|x|~N+20), (1.12)
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Notice that Y (-, £) € LP(RN) ifand only if p € [1, py), where py := N /(N —48).
Moreover,

1Y Ol ppeny = Ct™P) forallr >0 if p € [1, py),

N6
where o (p) 1= 0, — —. (1.13)
p

Observe also that o (p) < 1, and hence Y € Llloc([O, 00) : LP(RN)), if and only if
p €[1, pc), with p. := N/(N — 28). Since the solution is given by a convolution of
f with Y both in space and time, the threshold value that will mark the border between
subcritical and supercritical behaviors will be p., and not p,.

The self-similar form of Y, see (1.5), stemming from the scaling invariance of the
integro-differential operator, gives a hint of the special role played by diffusive scales,
lx] ~ 7. As we will see, there is a marked difference between the behavior in compact
sets and that in outer scales, |x| > vt? for some v > 0, with intermediate behaviors

in intermediate scales, |x| ~ @(t), with p(t) > 1, ¢(t) = o(1?).

1.3 Assumptions on f

We always assume, no matter the space-time scale under consideration, the size hypoth-
esis

IfC DI @wyy < C(+ t)”7 forsomey € Rand C > 0. (1.14)

This condition guarantees that the function u given by Duhamel’s type formula (1.2)
is well defined, and moreover, that u(-, 1) € LP(RY) for all r > 0 in the subcritical
range p € [1, pc), though not for p > p.. In case we wish to analyze the large-time
behavior of u when p is not subcritical, we will need some extra assumption on the
spatial behavior of f to force # and the function giving its asymptotic behavior to be
in the right space. The assumptions will depend on the scales, p, and y.

Notation. Given p > p., we define

Np € [1. 00)
—’ ’m’
(i 1267 FN p
QCP L N _
2[8’ p_oo'

COMPACT SETS. When dealing with the behavior in compact sets, if p > p. we will
assume that

there is ¢ € (gc(p), plsuch that || f(-, 1)l zax) < Cx(1+1)"7 foreach K CC RV,
(1.15)

On the other hand, if the time decay of the L' norm is not fast enough, namely,
if y < 1+ «, in order to obtain a limit profile we will need to assume that f is
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asymptotically a function in separate variables in the following precise sense,

there exists g € L' (RY) such that || (-, 1)(1 +1)” — gllpigyy = 0 ast — oo,
(1.16)

again with an extra assumption if p > p,

g € L (RY) for some g € (gc(p). pl,
I£C YA+ —gllpak) — Oast — oo if K cC RV, (1.17)

INTERMEDIATE SCALES. For intermediate space-time scales, unless they are fast (see
Sect. 1.5 for a precise definition) and y > 1, we have to assume that f is asymptotically
a function in separate variables, hypothesis (1.16). If y = 1 and the scale is not slow
(see Sect. 1.5 for a definition) we will require the tail control condition

Sup ((1 —+ t)V”f(, t)||Ll({|x‘>R})) = 0(1) as R — oo. (118)

t>0

Remark Condition (1.18) is satisfied, for instance, if | f (x, t)] < h(x)(1 +¢)7Y, for
some h € L' (RN).
Finally, if p > p. we assume moreover the uniform tail control condition

sup ((1+ 07 I1£ ¢, Ol el rY)

t>0

1
= O(RiN(l*E)) as R — oo for some ¢ € (gc(p), pl. (1.19)

Remark Condition (1.19) is satisfied, for instance, if | f(x, )| < Clx|™V (1 4+ )7
for some C > 0.

OUTER SCALES. For outer space-time scales and y < 1, we assume the uniform tail
control condition (1.19) if p is subcritical, and

sup (L+ D" 1 £ GOl Laqxi=r))

t>0

1
= o(R_N(l_E)) for some g € (q.(p), plas R — oo (1.20)

otherwise.

Remark Condition (1.20) is satisfied, for instance, if | f(x, )| < h(x)(1 +t)™7 with
h(x) = o(lx|™™).

We do not claim that the above conditions are optimal; but they are not too restrictive,
and are easy enough to keep the proofs simple.
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1.4 Precedents

A full description of the large-time behavior of the homogeneous problem (1.27) for
a nontrivial initial data ug € L' (RN) was recently given in [5, 6]; see also [17]. The
first precedent for the inhomogeneous problem (1.1) is [17], where the authors study
the problem in the integrable in time case y > 1 and prove, for all p € [1, oo] if
1 < N < 28, and for p € [1, p.) otherwise, that

Jim 7P 1) — Moo .0l Loy = O,

o0
where My, := / f(x,t)dxdr < o0. (1.21)
0 RN

This result is also known to be valid for the local case, « = 1, 8 = 1, if p = 1; see
[1, 12]. In this special local situation ¥ = Z is the well-known fundamental solution
of the heat equation, whose profile does not have a spatial singularity and belongs to
all L? spaces. But a complete analysis for« = 1, 8 € (0, 1] is still missing, and will
be given elsewhere [9].

The above result (1.21) cannot hold when N > 48 if p > p., even if we impose
additional conditions on f to guarantee that u(-,t) € L” (RN) and y > 1, since
Y (-, 1) ¢ L?(R") in that range. On the other hand, in the subcritical range p € [1, p.),
the result does not give information on the shape of the solution in inner regions, that
is, sets of the form {|x| < g(#)} with g(z) = o(t?), since 1Y OllLeqxi<gy =
o(t=°P)) in that case. We will tackle these two difficulties along the paper.

A first step towards the understanding of the large-time behavior of solutions to (1.1)
in different space-time scales and for all possible values of p was the determination of
the decay/growth rates under the above assumptions on f. This was done in [7] for the
case of large dimensions that we are considering here, and in [8] for low dimensions.

1.5 Main results

As we have already mentioned, the decay/growth rates of solutions and their asymp-
totic profiles depend on the space-time scale under consideration.

COMPACT SETS. Given u € (0, N), and & satisfying suitable integrability assump-
tions, let

E () =x|"N, LIhl(x) = /RN h(x = y)E,(y)dy. (1.22)

The large-time behavior in compact sets will be described in terms of Ig[g] and
14 F], where g is the asymptotic spatial factor of the forcing term f, and

F(x) = /00 f(x,s)ds. (1.23)
0
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Remark Let ¢, := I'((N — p)/2)/("N/22"T (1/2)). Then ¢, 1,[h] is the j-Riesz
potential of 7, so that (—A)*/%(c,, I,,[h]) = h.

Theorem 1.1 Let f satisfy (1.14), and also (1.15) if p > pe. If y < 1 + a we
assume moreover (1.16), and also (1.17) if p > pc. Let u be solution to (1.1). Given
K CCRY,

[[¢minty 1+ y () — Ll ppxy — 0 ast — oo, where (1.24)
c2plplg] fy <l+a,

L= cphplgl +claglFl ify =14+a, withk asin(1.8), (1.25)
K 14p[F] ify >1+4+a.

Remarks (a) We already knew from [7] that |[u(-, t)|Izr(x) = O (r™inty. 14}y for any
K ccC R¥.Theorem 1.1 shows that this rate is sharp, ||u(-, Dllrr k) = gmin{y. 1+a},

(b) Under the hypotheses of Theorem 1.1, if in addition f(x, ) = g(x)(1+1)77, the
asymptotic profile £ simplifies to

r— cphplgl + 5 laplg]l ify =1+a,
ﬁl@g[g] ify >1+a.

(c) When the forcing term is independent of time, f (-, 1) = g € L'(RY) forallr > 0,
Theorem 1.1 yields

lu(-, ) — copaplglllLr(ky — 0 ast — oo (1.26)
for all p € [1, oo] (assuming also g € LfOC(RN) for some g € (gc(p), pl if
p > pc). Hence, the limit profile in compact sets is a stationary solution of
the equation. This convergence result cannot be extended to the whole space if
p € [1, pcl, since Iplg] ¢ L?(RY) in this range.

The convergence result (1.26) for forcing terms independent of time also holds for
solutions to

3u+(-MNPu=f inQ,  u(-0) =uy inRY (1.27)

for any initial datum ug € L' (R") (with the additional assumption uq € Lfoc (RM)
forsome g € (qc(p), plif p > pc). This follows from the linearity of the problem,
since the generalized solution v to (1.3) with v(-,0) = ug, given by v(-,t) =
Z(-,t) *x ug, satisfies [|[v(-, t)||Lrx) = t—¢ for every compact K CC RN see [5,
61,

(d) Under some integrability assumptions on /,

Lh] ~ (/RN h)Eu as |x| — oo;
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see Theorem A.1 in the Appendix for the details. Hence, the “outer limit”, |x| —
00, of the function describing the large-time behavior in compact sets is given by

as |x| — oo,

g min(y 1) £y A {t_VMOCZﬂEZﬂ()C), y <1l+a,
(1.28)

O Mk Esg(x), y > 1+a,

o0
where M) :/ g My :f / b
RN 0 RN

INTERMEDIATE SCALES. These are scales for which |x| >~ ¢(z), with ¢(f) > 1, ¢ =
o(t?). We will make a distinction among the different intermediate scales according
to their speed, measured against the value of the decay/growth exponent y. Thus, we
have

1 I+a—
y <liory =1 @) =o0("/log)¥): ory € (I, 1+a). o) =oft 7 );

(S)
y =1,00) = /(log )% ©1)
1+a—y
ye(l,l4+a), )=t 7 ; ©
y =1, ¢(t) = * /(log 1) (F1)
yel l4a), o) =1 3 ory > 1 +a. (F)

In slow scales, satisfying (S), the large-time behavior coincides with the outer limit of
the behavior in compact sets, being given in terms of E»g. Notice that when y < 1 all
scales are slow. In fast scales, satisfying (F) or (Fy), the behavior coincides with the
inner limit of the behavior in outer scales, and is given in terms of E4g. Notice that
when y > 1+ « all intermediate scales are fast. In the critical cases, (C1) and (C), the
large time behavior involves both E»g and E4g. In the cases (Cy) and (F;) (in both of
them y = 1; that is the reason for the subscript) a factor log ¢ is involved.
Let us recall from [7] that [[u(-, )| Lr (v<|x|/p@)<p)) = O(@(t)), where

if (S), (Cy), or (C),
¢(1) = {1~ og 1 o(t) T if (Fy), (1.29)

1+a— (r(p)

1=+ (1) if (F).
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It is worth noticing that o (p) < l ifand only if p € [1, p.),and o (p) < 1 + « if and
only if p € [1, px).

Theorem 1.2 Letp(t) = 1,9 = o(t?). Let f satisfy (1.14). We assume moreover (1.16)
if (S) or (C) hold, and both (1.16) and (1.18) if (Cy) or (F1) hold. When p > p. we
assume further (1.19). Let u be the solution to (1.1). Given 0 < v < u < 09,

. 1 . .
tl_l)rglo m”u(-, 1) — LOLrw<ixl/o@)<uy =0, with ¢ asin (1.29), and

77 MocrpEap if (5),
t_lM()Cz/gEzﬂ + U+ log ¢ M()KE4/3 if (Cy),
L(1) = {17 MocagEag + t~ 1% Mook Eag if (0),
=07 Jog t Mok E4p if (F1),
1~ Mook Eqp if (F).

Remarks (a) If Mo, Moo # O, then | L(t) || e ((v<|x|/o()<p) == ¢ (1) inall cases, since

1+a—o(p)

1—o(p)
NE28Lr (v<ixl/o)<p)) = @) 7 NEagllLrv<ix/o@)y<p) = @E) " 0
(1.30)

As a corollary, [|[u(-, )l Lr(v<|x|/o()<u)) = ().
(b) The behavior in “inner” intermediate scales is given by

17 MocogEap ify <1+a, MMk Es ify > 1+«

This coincides with the “outer limit” of the behavior in compact sets; see (1.28).

EXTERIOR SCALES. These are scales for which |x| > vi?, v > 0. We already know
from [7] that

tl—y—o(p), y <1,
G-, Dl Lo qpaoviyy = O (1)), where (1) = 177 logs, y =1,
t_C’(I’), y > 1.

(1.31)

The asymptotic behavior of u in such scales is given by a time convolution of Y (-, #)
with the “mass” of f at time ¢,

Myg(t) = ./RN f(x,t)dx.

Theorem 1.3 Let f satisfy (1.14). If y < 1, assume moreover (1.18) if p € [1, pc),
and (1.20) if p > pc. Then, given v > 0,

. 1 ! . .
tgngom“u(.,t)—/o Mp($)Y (-t = $)ds || poejney =0, with ¢ as in (1.31).
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Remarks (a) Notice that |x|(t — s)~? > vifs € (0,¢) and |x| > vt?. Therefore,
using (1.10),

1
< N )2 foralls € (0, 1).

Yt
e g LP({lx|>ve%}) —

On the other hand, (1.14) yields [M ¢(s)] < C(1 + )77, and we conclude easily
that

H -/(:Mf(s)Y(-,t—s)ds

LP({lx|>v1%})

t
< Ct*"‘*Ne(‘*%)/ (1+5)77 (@t —)2 1 ds = 0 (1))
0

Hence, [[u(-, D)l 1r(fx|> vty = O(P(1)).

(b) Assume that M(s)(1 +5)” > c or Ms(s)(1 + s)Y < —c for some ¢ > 0, a
condition that is satisfied, for instance, if f is of separate variables, f(x,t) =
gx)(1+1)~7,and fRN g#0.1IfB € (0,1),then G(§) ~ E_»5(§) for || > v >
0; see [17]. Therefore, for some constants ¢, > 0, which may change from line to
line,

H /Ot Mf(s)Y(~,t—s)ds‘

LP({lx|>v1%})

t
> ¢y ||E—2,3||Lp({\x|>v;9})/0 (1+5)77(t—s)* "ds

1 t
> ¢yt N0 / 1+ — )2 Vs ~ ¢ (1).
0

We conclude that

” fot Mf(s)Y(~,t—s)ds‘ =00,

LP({|x|>vt?
and hence we have the sharp rate ||u(-, t)||L,,({|x‘>v,e}) >~ ¢ (1).

When y > 1, we can avoid the time convolution in the description of the large
time behavior, which is now given by M (Ot~ *Y (-, 1), where M (¢) is the mass of the
solution u at time ¢,

M(t) = / u(x,t)dx.
RN
Let us remark that Fubini’s theorem plus the fact that fRN Y(x,t)dx = el yield
'
M) = / My (s)(t —5)* " ds.
0
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Hence, M (t) can be computed directly in terms of the forcing term f without deter-
mining u.

Theorem 1.4 Under the assumptions of Theorem 1.3, if y > 1, then

0 ast — oo.

t
f Mp)Y (ot —s)ds — MDY (-, z)’
0

50l

LP({|x|>v%})

As a corollary,

. 1 1—
zl—lfgo qb(_t)”u(.’ 1) =M@t YO L=y = 0

When y > 1 things simplify even further, since M ()' = has a computable limit.

Theorem 1.5 Lety > 1. Under the assumptions of Theorem 1.3, lim, _, oo M ()t 7% =
Moo. As a corollary,

tl_lfgota Pllu(, t) — Moo Y (-, e qix=veey) = 0. (1.32)

Remarks (a) The result (1.32) was already known when p € [1, p.); see [17].

(b) Since [[Y ¢, Dl Lo (x>vif}) = Ct=°P) (see Sect. 1.2),if y > 1 and My, # 0 we
obtain as a corollary that [[u(-, )l 1p (x| vef)) = t=°P) without assuming that f
is of separate variables.

(c) When y > 1, the inner limit, |£| — 0, of the outer profile is given by

Moo (x, 1) & Moot ™k E4g (&) =t~ Mook Eap (),

which coincides with the behavior for “outer” intermediate scales; see Theo-
rem 1.2, case (F).

The asymptotic limit can also be simplified when y = 1, at the expense of asking
f to be asymptotically of separate variables.

Theorem 1.6 Let y = 1. Under the assumption (1.16), M(t) = Myt*'logt(1 +
o(1)). As a corollary,

tU(P)
lim
t—00 log t

lu(- 1) = Mologt Y (-, )|l r(fx|>veey) = O-

Remarks (a) If My # Oand y = 1, we have the sharp decay rate ||u (-, t)||L,,({|x‘>U,e}) ~

t=7(P) Jog t assuming only that f is asymptotically of separate variables.
(b) If f satisfies (1.16) with y = 1, the inner limit, |§] — 0, of the outer profile is
given by

Mologt Y (x, 1) ~ Mot~ logt k Eag(£) = t~ 17 log t Mok E4p(x),

which coincides with the behavior for “outer” intermediate scales; see Theo-
rem 1.2, case (Fy).
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3716 C. Cortazar et al.

The purpose of our last result is to check that for y < 1 the inner limit of the
outer profile also coincides with the behavior for “outer” intermediate scales, given
by Theorem 1.2, case (S), when f is asymptotically of separate variables.

Proposition 1.1 Let y < 1. If f satisfies (1.16) and the hypotheses of Theorem 1.3,
then

t
/ Mp(s)Y (x,1 —s)ds = (14 0(1))7 MocogEap(x) if |€] = o(1) ast — oo.
0
Remarks (a) The limit behavior (1.8) for the profile G yields
Y(x, 1) = (kc + o(1))t "D Egg(x) if |£] — 0. (1.33)
Hence, M(1)t' =Y (x, 1) &~ M(t)t=>*k E4p(x) as |€| — 0. Therefore, if y < 1
the limit profile in outer regions, fé My (s)Y (-, t — s)ds, does not coincide with
M(t)t'=*Y (x, 1), in contrast with the case y > 1.

(b) Under the assumptions of Proposition 1.1, if Mp # 0 and § > 0 is small enough,
then

t
|/ Mf(s)Y(x,t—s)ds| ~ 17V Exg(x) if |x]t 7% < 6.
0

Therefore, if v < §, with § > 0 small enough, we have

H /Ot MY (ot —s)ds|

L ({|x|>v1%})

> | fot M ()Y (.t — s)ds

LP ({819 >|x|>vt?}))
~ g ~ v
>tV NE N o (16> xj vty =17 o),

We conclude that if y < 1, under suitable assumptions on f,

~ 17r=oP)if y s small,
LP({|x|>vt%})

H /0[ MY (ot =) ds|

and hence we have the sharp rate [[u (-, )|l 1p (fjx|>vf)) = tl=r=op),

2 Compact sets

The goal of this section is to obtain the large-time behavior in compact sets, Theo-
rem 1.1. We start by checking that, under the assumptions of that theorem, the functions
giving the large-time behavior are in the desired spaces.

Lemma2.1 (i) Let g € LY(RM). If p > pc, assume in addition that g € quOC(RN)
p

for some q € (qc(p), p). Then Iplg] € LIOC(]RN).
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(ii) Let y > 1. Let f satisfy (1.14). If p > pc, assume in addition (1.15). Then F
given by (1.23) satisfies 145 F] € LY (RN).

loc
Proof (i) We make the estimate |Ig[g]| < I+ 1I, where
1) = / 80— WIEsp()dy, T = / 10—yl dy.
lyl<l [y[>1

In order to estimate I we take

g=1itpell, pc), q € (gc(p), p]asin the hypothesis if p > p,

11 1
I+—=—+-. (2.1)
p q r

Notice that r € [1, p.). Then, using the hypotheses on g, we have

Mlzr k) < llgllLak+B) Il E28llLr(B)) < 0.

On the other hand, II(x) < ||g|l.1®~), hence the result.
(ii) Splitting the spatial integral as before, we have [I4g[ F]| < I+ 1II, where

1) = f / £ G = ) Ep(y) dyds,
0 lyl<1

() =/ f f (x — )| dyds.
0 |y|>1

Taking ¢ and r as in (2.1), and using (1.14), and also (1.15) if p > p,

[e¢]

o0
Wzrik < 1 Esglizr ey / 1G9 llockmy ds < C f (145)7 ds < 00,
0 0

since r € [1, py), and y > 1. On the other hand, using the size hypothesis (1.14),
II(x) < My, whence the result.
O

We now proceed to the proof of Theorem 1.1. As a first step we prove the result
substituting the constant c2g in the definition (1.25) of £ by the constant

1 G®) 1/°° N-1-28 7
— dé = — PG (p)dp, 2.2
GwN/RNIEIZﬁé ), ” (p)dp (22
where wy denotes de measure of SV ! := {x € RV : |x| = 1}, the unit sphere in

RN, and G(p) = G(p¢) forany £ € S¥~! (remember that G is radially symmetric).
We observe that the estimates (1.6)—(1.7) on the profile G guarantee that A is a finite
number.
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Proposition 2.1 Under the assumptions of Theorem 1.1, the convergence result (1.24)
is true with the constant cag in the definition (1.25) of L substituted by the constant A
given in (2.2).

Proof As we will see, the value of f at points that are far away from x will not
contribute to the behavior of the solution at that point. Hence, we estimate the error
as

[rminly ey e ) — L] < ™M (k1) 4+ T(x, 1)),  where

t
I(x,t):/o / |[f(x —y,t—5)|Y(y,s)dyds,
y|>L
t .
(x, 1) = \f f fx—y.t =Y (y,s)dyds — =™l £ |
0 Jlyl<L

with L > 0 large to be chosen later.
In order to estimate I, for every ¢ > 1 we splitit as I = I; + I, where

1
Ii(x,1) :/ / [f(x =y, t—s5)Y(y,s)dyds,
0 Jiy>L
t
Iz(x,t)=// [f(x =y, t—35)|Y(y,s)dyds.
1 Jlyl>L

We start with I;. Using the exterior bound (1.10) and the decay assumption (1.14),

Li(x,1) <C L dyd cir s 1d 1
1(X ) )|>L|f(x | |N+2ﬁ yds < LN+2'3 § <€

forallt > 1if L > 0 is large enough.
In order to estimate I, we use now the global estimate (1.9), and again the decay
assumption (1.14) to obtain, for all > 1,

t
Iz<x,t>sc/ / G — 30t — )5~ Eyg(y) dyds
yI>L

Ct™V /t/2 Cct—U+e) pt

—(I+a) e

< s ds + (14+t—s)""ds
LN—4/3 1 LN—4/3 02

ctrv  Cr U+

07
< IN—4p + NP t/2(l+t s) Y ds.
Since
1—
‘ (1=t r, y <1,
/(l—l—t—s)*”ds:/ (I4+s)7Vds <Cyqlogt, y =1, 2.3)
£ 0
1, y > 1,
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for any A € (0, 1), then I(x, 1) < Cer—min{y. 1+a} for every t > 1if L > 0 is large
enough.

It will turn out that the values of f attimes close to f only contribute to the asymptotic
behavior of # if y < 1+ «, while its values at times in the interval (0, ¢t /2) only matter
if y > 1 4 « (notice, however, that this interval expands to the whole R as t — 00).
Therefore, we make the estimate II < II; + II, + II3, where

[f(x —y,t —9s)|Y(y,s)dyds, y>1l+a,

ot

/ / fx—y,t—s5)Y(y,s)dyds —¢t~ VAIQﬁ[g](x) y<l+a,

0 (x, 1) = yl<L
\y|<L

z/2
a(r. 1) =/ / (= 3t — )Yy, 5) dyds,
ot |y|<L

t
/ / [f(x —y,t —5)|Y(y,s)dyds, y <1+«
M3(x, 1) = § /127 0I<L

]//Z/H T =t =Y G dyds =g Py = 14
t yi<

for some small value § € (0, 1/2) to be chosen later.
We start by estimating II; when y < 1 4+ «. We have I} < Z?: 1 IL1;, where

8t
II“(x,t):/ / [fx =yt =s)A+1—5)7 —glx =yl
0 Jlyl<L

x (14+1t—5)""Y(y,s)dyds,

Hu(x,t):/ |A+1—5)7" =1~ ”}/l ng(x—y)lY(y,S)dyds,

- Yy, s)
II ,t:t”/ —YIE / ds — A|dy,
HeN) BB [ s - aldy

Myg(x, 1) = t’VA/ lg(x — )| E2p(y) dy.
IyI>L

We take g and r as in (2.1). Using the L" norm of the kernel (1.13) if s < 1, and
the global estimate (1.9) when s > 1, together with the size assumption (1.16) on f
if p is subcritical or (1.17) otherwise, for all # > 1/5 we have

1
Iy1C, DllLrk) < Ct_V/O IfC.t—s)(A+1—5) —gllrak+By)

X[IY G, )l y) ds
ot

+CfV/ IfCot=s)A+1—5)7 —glrak+s,)
1

xs~ IO Eggllrr s, ds
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1 st
< Cet_y(/ s ds +/ s~ {1+ ds) < Cet™7.
0 1

Given ¢ > 0, there exists a small constant § = §(¢) > 0 and a time T, such that
[(14+t—85)7" -tV <et™ if0<s <dtandr > T,.

Therefore, taking g and r as in (2.1),

1
M2, OllLrky < St_y/ lglrak+BHIY ¢, ) LBy ds
0

8t
+ 8f_yf Iglzok+8)s ™" I EapllLrisy) ds < Cer ™.
1

As for IT}3, making the change of variables p = |y|s~? we get

8t o0
Y(y, 1
[ 0.9 4o = _/ pN—l—ZﬂG(lp) dp. 2.4)
o Ea(y) 0 Jiyi 600 [yl

Therefore, due to the definition (2.2) of A, for any fixed L > 0,

"Y(,s) . ,
‘ ———ds — A| =o(1) uniformlyin |y| < L.
o Exp(y)

Hence, taking ¢ and r as before,

3G, O llrky < o )IgllLak+B) | E2pllLr (B = 0t™7).
We finally observe that

A”g”L'(RN)t_y

e, 1) = — 55

<et™7”

if L > 0 1is large enough.
If y > 1 + « the estimate for II; is easier. Let ¢ and r be as above. Using the L?
norm of the kernel (1.13) if s < 1 and the global estimate (1.9) when s > 1, for all
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t > 1/8 we have, thanks to the assumptions on the size of f,

1
1L G D)l < / 1ot = )oY )l sy ds
0

st
+/1 Gt —$)ak+ps TN Eagllir s, ds

1 st
< C/ (1 +1t— S)_VS—U(F) ds +/ (1 - s)—}/s—(l-l-a) ds
0 1

1 St
< Cf”(/ s gs +/ s~ ds) <Ct77.
0 |

Now we turn our attention to II,. Taking ¢ and r as before,

t/2
ML )l ey < / 1f ot = zockssys~ N Eagllir sy ds
St

1/2 _
< c/ (A +1—s) Vs T gs < Cr77=% = o(¢~ minly. 14l
)

t

Finally, we turn our attention to II3. We start with the case y < 1 4 «. Using the
global estimate (1.9) and then the size assumptions on f we get, with ¢ and r as above,

t
3¢, Hlle k) < / IfCot =) ak+)s” T NEaglir s,
t/2

t
<cr MO [ (1 41—5)77ds,
/2

from where we get, using (2.3), that [z (-, t)|[r(x) =t~ min{y.1+e} (1) in this range,
as desired.

When y > 1 + « the estimate of II3 is more involved. We have II3 < Zl-szl 1I5;,
where

t
31 (x, 1) = / / Ifx =yt =Y (.5) — KE4,3(y)f<1+“)|dyds,
t/2 J]y|<L
-y
My (x. 1) = x/ / F G = yat— ) Eap() (s~ 0+ — =050 dyqs,
12 Jiyl<L

t
M33(x, 1) = x/ / If(x =y, 1 —5)|Eag(y) (s ~1T0 — 1 =(1+9)) qyqs,
=1 Jlyl<L
t o0
M) = x40 [ g [ pa- v sds- [T re- v asan
t/2 0

[yl<L

o0
Mys (x. 1) = et~ (1+) / / £ G — v, ) Eap(y) dyds.
0 [y|>L
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We first observe that

G(ys™)

1Y (, 8) — Kk E4p(y)s ™ 1HO| = 57O By (y) | ———— —«
P | p E4p(ys™%)

Therefore, thanks to (1.8), given ¢ > 0 and L > O there is a time 7" = T (e, L) such
that

Y (y,s)— KE4,3(y)s_(l+“)’ < ss_(1+“)E4,3(y) ifly| <L, t>T.

Hence, if r > T we have, for ¢ and r chosen as above, and using (2.3) and the size
assumptions on f,

t
031 (-, Dl e k) < Cet™H) / IfCot =) Lak+80ll Eagllier ) ds < Cer™ 1),
t/2

so that [[TI31 (-, H)||Lr k) < Cer—minty.(14+0)} a5 desired.
On the other hand, with ¢ and r as always, using the size assumptions on f,

(i

t
12 )l iy < Co ) / 1ot = ) zack sl Eagllir (s, s

t/2

< Ct*(]+ot) /
t/2

By the Mean Value Theorem, 0 < s~(+®) — ;=(+4@) < (1 4 )5~ CFO) (1 — ) if
s < t. Therefore,

*/; 1-y
(1+1—5)"ds < Ct Tz = o119,

t
IT33C, Ollrxy < Ct~FF Vs 1 fCot —s)lLak+B) | EagllLr s, ds

t—A/t

i
< CF(”“)\/?/ (145)7ds < Ct~ @ =12 _ 5 =(ta)y,
0

Now we notice that

t o0 o0
‘ f(x—y,t—s)ds—f fx—y,s)ds =’/ f(x—y,s)ds|.
12 0 /2

Therefore, for ¢ large enough,

o0
T34 (-, )| Lo (k) < Ct~ 1T / £ Co)rak+8,) | EapllLr s, ds
t/2

o0
< cy~(+a) (1+s)7ds < cr~ o+
t/2
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Finally,
Ct —(14a) .
35(x, 1) < TIN—4F / f |f(y,$)|dyds < et~ 1+
if L is large enough, and hence [|1l35(-, £)[| L (k) < Cet =179, 0

The proof of Theorem 1.1 will then be complete if we are able to show that A = ¢,
a somewhat surprising result that is interesting on its own. The idea to prove this fact
is to consider a particular forcing term for which the computations are “explicit”,
namely a stationary one, g € CSO(RN ), with g nonnegative. We expect the solution u
of (1.1) with such a right-hand side to resemble for large times the stationary solution
S := c2plplgl. Hence, we will study the difference, U = § — u. This function is a
solution (in a generalized sense) to (1.3), given by the formula U (-, ¢) = Z(-, ) * S.
To check this last assert it is enough to observe that S is a bounded classical solution
to (1.27) with f(-,¢) = g forall t > 0 and up = S. But bounded classical solutions
to (1.27) are unique, and represented by

t
u(x, 1) =/ Z(x =y, Nuo(y)dy +/ / Y(x —y,t—s)f(y,s)dyds,
RN 0 JRN

hence generalized solutions; see [14, 17, 19].
Our first aim is to prove that U vanishes asymptotically, so that u indeed resembles
S.

Proposition 2.2 Let U be the generalized solution to (1.3) with initial datum U (-, 0) =
c2lrplg] for some nonnegative g € CgO(RN). Then, U, t)||po@ny = o(1) as
t — oQ.

Proof Werecall that the kernel Z has a self-similar form; see (1.4). Its profile F belongs
to L”(RN) ifandonly if p € [1, pc); see, for instance, [17]. Hence, [| Z (-, 1) || 1p wy) =

crNe0-5 ) for p in that range. On the other hand, 0 < U (x, 0) < C(1+|x])~ V=28
(see, for instance, Theorem A.1 in the Appendix), so that U(-,0) € L?(RY) for all
p > pc. Let p > N/(28). This guarantees, on the one hand, that p > p,., since
N > 48, and on the other hand that p/(p — 1) < p.. Therefore, for any such p,
Young’s inequality implies

_ N8
U (-, t)”LOO(RN) < IIZ(, t)”Lp/(pfl)(]RN)”U('a O)HLP(RN) =Ct »r,
whence the result. O

We are now ready to prove the equality of the constants, and hence the validity of
Theorem 1.1.
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Corollary 2.1 The constant A defined in (2.2) coincides with c2g. Therefore, Proposi-
tion 2.1 implies Theorem 1.1.

Proof Let u be the solution to problem (1.1) with a non-negative and non-trivial right-
hand side g € CZ°(R) independent of time. Then, as mentioned above, U = S — u is
a generalized solution to (1.3). Thus, given K CC RN,

lcap — Allll2glg]llLoo k)
= |leoplaplg]l —u(,t) +u(-, t) — AbglglllLe k)
SNUC Doy + llul-, 1) — AlglglliLex)y — 0 ast — oo,

due to propositions 2.1 and 2.2, hence the result, since || 12g[g]llL k) # 0. O

3 Intermediate scales

In this section, we study the limit profile in regions where |x| >~ ¢(¢) with ¢(t) > 1
and ¢(1) = 0(t?) as t — oo.

Proof of Theorem 1.2 We want to show that u(-, 1) — L(t) = o(¢(¢)). It will turn out
that in these scales the large-time behavior at a point x comes in first approximation
from the behavior of f (-, r) at points that are relatively close to x, as compared with
|x|. Hence, we estimate the error as |u — £| < I + II + III, where

t
o= [ [ F =yt = )Y (. 5) dyds — LO),
0 Jlx—y|=t@®)l|x]|
t/2
II(x,t):/ / |f(x —y,t —9)|Y(y,s)dyds,
0 [x—y|>€(@)|x|

t
I(x, ) = / / |[f(x —y,t —s)Y(y,s)|dyds,
/2 J|x—y|>L()|x|

with £(¢) = o(1) such that £(¢) € (0, 1/2) for all # > O to be further especified later.

The times that are closer to ¢ will contribute with a term involving Eg in slow
and critical scales, while times which are closer to 0 will contribute with a term
involving E4p in fast and critical scales. Therefore, we make an estimate of the form
I <I; + 1 + 13, where
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fx =yt =5)Y(y,s)dyds — MoAt ™7 Exp(x)| if (S)/(C1)/(C),

lx—yl=t@®)lx|

12

/ / [f(x =yt =9)|Y(y.s)dyds if (F1)/(F),
L, =70 oviston)

1

1—p1=8(0)

b, 1) = / / [f(x =y, 1 =95)Y(y, s)dyds,
12 [x=y|=l®)|x]|

t
/ / [f(x =y, t—9)|Y(y,s)dyds if (S),
1—11730) Jx—y|<t(1)|x|

t
/ / fx—y,t=9)Y(y,s)dyds
1=11-50) Jjx—y| <t
— Mokt~ log tEqg(x)| if (C1)/(F1),

1
/ f FO =yt =Y (y,5)dyds — Mookt~ Egg(x)| i (C)/(F),
1—t1=80 J{x—y|<(n)|x|

L(x, 1) =

with 6(r) € (log2/logt, 1/2) to be further specified later. The lower bound for &(¢)
guarantees that 1/2 < — 179,

Since ¢(t) € (0,1/2), B < |y| < &L if [x — y| < £(1)]x|. Hence, the global
estimate (1.9) yields

0<Y(y,s) <Cs  MHELx), (v,5) €0, 3.1)

a bound that will be used several times when estimating I;, i = 1, 2, 3.

Let (F1)/(F) hold. If vp(?) < |x| < ne(t), for large times we have on the one hand
|x| # 0, since () > 1, and on the other hand (|x|/2)!/¢ < t/2 for large times, since
o) = o(t?). If s < (Ix|/2)"/% and |y| > % we have |y| > s?, and we may use
the exterior estimate (1.10) for the kernel. If s > (|x|/2)!/? we are away from the
singularity in time, and we may use the global estimate (3.1). Therefore, using also

the size assumption (1.14) on f, we obtain

(Ix|/2)1/¢
L6 <C / / 1 = yot — ) E_sp(y) dyds
0 |y|>]x|/2

t/2
e f f LG = yst = )15~ Eyg(y) dyds
(xl/2)V0 Jly|>|x|/2

/2

IA

(Ix1/2"*
ct™v (E_z,g(x)/ 521 ds + Eqp(x) s~ ds)
0

(Ixl/1/8

O(177)Eyp(x),

—o(p)

which combined with (1.30) yields |11 (-, )l Lr ((v<|x| /o) <p)) = O(Iﬂ’(p(t)%) =
o(¢ (1)) if (Fy) or (F) hold.

@ Springer



3726 C. Cortazar et al.

When (S)/(C)/(C) hold, we make the estimate I} < Z?:l 1;;, where

(Ix|/2)°
Ill(x,l‘)=/ / [f(x =y, t —s)(L+1t—s)
0 |[x—y|<€(t)|x|
—gx =L +1—=5)77Y(y,s)dyds,

t)2
112<x,z>=/ / =yt =)L+ 1 —5)
(Ix1/2)10 J|x—y|<t(t)|x]|
=8 =W+t —=97"Y(y,s)dyds,

8t
Li3(x, 1) = f [A+1—s)77 =177 lg(x — MY (y,s)dyds,
0 eyl <€(0)]x|
12
Tig(x, 1) =/ |A41—5)77 =177 lg(x — MIY (y.5)dyds,
5t le—yl<€@)lx]

I . Y (y,s)
15(x, 1) =t lg(x — WIE28(y) ds — A|dy,
x—y|<€@®)x| o Ep(y)

Lig(x. 1) = ,—yA/ 186G — MIIE2p () — Eap()|dy,
[x—yl<€(t)|x|

Li7(x, 1) =17V AEx(x) lg(x —y)|dy.

[x—y|=£(@)|x|

Since s? < |x|/2 < |y| in the region of integration of Ij;, we may use on the one
hand the exterior estimate (1.10) for the kernel, and on the other hand that E_54(y) <
CE_»p(x). Hence,

(Ix1/2)!/*
I(x, 0 =< Ct—Vv(t)E,zﬂ(x)/ s20=1 g,
0

with v(r) = sup,., ||f(-, (1 + )" — gl 1rw). But we know from (1.16) that
v(t) = o(1). Therefore, I11(x, ) = o(t ") E»5(x), whence, using (1.30),

1=o(p)

11 GOl e qu<ixljo@<pp = 0tV @@) 7 ) = o(¢(1)).

The region of integration in Ij> avoids the singularity in time. Hence, we may use
the global estimate (3.1) to obtain

/2
Lia(x, 1) < Ct ™7 v(t) E4p(x) s ds = 0(t77 ) Exp(x),
(|x1/2)1/¢

whence [|[L12(-, Dl Lr (v<ixl/ot)<u)) = 0(@(1)).
To estimate I3 we note that |(1 4+1 — )" — 77| < et™7 if s € (0, 8t) with §
small and ¢ large. Therefore, changing the order of integration,

Iiz(x, 1) < Cat‘V/

St
gCr — )| / Y (y, s) dsdy.
[x—y|<€()|x| 0
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St
But(2.2) and(2.4)yield/ Y(y,s)ds < AE»5(y). Hence, since Ezg(y) < CEpg(x)

0
for |y| > |x|/2, and using also the integrability of g,

Li3(x,1) < Cet™ VEzﬁ(X)/ lg(x — y)|dy < Cet™V Ezp(x),

lxl<lyl<3 x|

which combined with (1.30) yields [[T12(-, )| Lr (v <|x)/p() <)) = Cet™
Cep(t).

In the estimate of I;4 we may use once more the global estimate (3.1), since we are
away from the singularity in time, to obtain

t/2
Lis(x, 1) < Ct77 Eqg(x) s ds = O (7YY Eyg(x).
St

Thus, using (1.30) and also that () = o(t?), we arrive at

) = 0 (0).

_ I+a—o(p) _
I2CL OllLrqo<pelfom<ppy = O Y o)~ 7 ) = oft

As for 15, since |y| < 3|x|/2 in the region of integration, it follows from (2.4)
that

_3lxl

t/2 Y Pyswreray
| / Ty b 4] < / NG (e o = o).
0 EZﬁ(Y) [yl

Hence, using also that |y| > |x|/2 and the integrability of g, we get Ij5(x,1) =
o(t77)Ep(x), whence

_ —a(p)
L5 (o Ol L (<ixljo)<up = o(t™7 7 ) = o(p(1)).

If |x — y| < £(t)|x], then ||y| — |x|| < |x — y| < £(t)|x|. Thus, using the Mean
Value Theorem,

N —28)¢
|Es(y) — Eap(x)] < (1( PO b (x) < Cot) Erp ).

=tV

Thus, Iig(x, 1) = o(t77) Ezg(x), whence

) = 0 (1))

M6 (s Ol Lo (o<ixt/py<up = 0t

As for I17, if |x| > ve(t) with ¢(¢) > 1, taking £(t) > 1/¢(2),

/ g — )ldy < / g@)dz = (1) ast — oo,
[x—y|=£(t)]x]| [z|=L(t)ve(t)
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since g € LI(RN). Therefore, ||117(-, t)||L1’({U§|x\/(p(t)§u,}) =o0(¢(1)).
Summarizing, if £(¢) = o(1) is such that £(¢t) > 1/¢(¢), then

LG D Lr qusixl/on < 1} = 0(P(1)).

We now turn our attention to I. Using again (3.1) and the assumption (1.14) on the
time decay of f, we have, since s > ¢/2 in the region of integration,

_1-8®

L(x,1) < Ct™ <‘+“>E4ﬁ(x)/ (1+1—s)"7ds.

On the other hand (remember that §(r) < 1/2, so that t! %@ — o0),

t—t1=00) /2
[ (1+t—s)_yds:/ (1+s)77ds
1/2 (1-50)
o', y <1
= {log LH2: < Clog(t*V/2), y =1,
o(1), y > 1.

If §(r) > 1/logt, then 1°® — o0, and hence log(r’®/2) < Clogr®® =
Cé(t)logt = o(logt) if 6(t) = o(1). With these additional assumptions on 4(7),
we have then

a— a( ) —a(p)
Ot~ g(1) prage) ) =o(1™ 7).y <1,
)
L2 OllLeo<ixi/em<up = § ot~ logtga(t) =k ), y =1,
1+a— a(p)
(l‘ (1+ot)¢() )

, y > 1,

where we have used that () = o(t?) in the last equality of the case y < 1. This
estimate yields [[I2(-, )|l Lr (fv<|x| /o) <p}) = 0(¢ (1)) in all cases.

As for I3, if (S), we use once more (3.1) and (1.14) to obtain, since s > ¢/2 in this
case,

Li(x, 1) < E4,g(x)/ sTIHOQ 41 —5)7V ds

11-8()
t

< Cr MO Eyp(x) (I4+1—2s)"7ds

t—t1=80)

0113 1=1) = o(t1=7), y <1,
< Cr M B e(x) Y (1 = 8(r)) logt = O(logt), y =1,

o), y > 1
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where we have used that §(r) > 1/log to show that 1 %® = o(1) in the case y < 1.
From here it is easily checked, using also that ¢(r) = o(t?) when y < 1, that for all
the cases included in (S) we have

1—o(p)
4

3G, Ol e <ixl/pm <y = ot @) ) = o0(()).

If (C1)/(F1), we make the estimate I3 < le: 1 I3, where

t
I31(x, 1) = f / 1f(x =y, =Y (v, 5) — ks~ TFO Egg(y)| dyds,
=150 Jjx—y|<e(0)lx|

t
Ip(x,1) =« / / If(x =y, 1 —)ls ™I Egg(y) — Eqp(x)| dyds,
=178 Jix—y|<e()|x|

t
I33(x, 1) :KE4,s<x>f / If(x =y, 1t —)|ls~ T — =00 gyqy,
1=t1=80) Jix—y|<e(n)|x|

t
I34(x,1) = Kt_(l+°’)E4,3(X)‘ /

/ f(x—y,t —s)dyds — Mglog(1 +1t)|,
t—t1=30) JIx—y|<t()|x|

I3s(x, 1) = kMot~ 19 Egg ()| log(1 + 1) — log1].
Since |y| > |x|/2 and s > /2 in the integration region for I3y,

! _ G(ys™9)
131<x,z>=/ f 10—yt = )5~ 0 By ()| 205Dy
1=1130) Jpx—y <t ’ ‘E4ﬂ(y5‘9) |
t G k—@
scrtopyw [ =y =9l 2O ayas.
1—t1=8) Jix—y|<t@r)|x| Eqp(ys™")

But |y| < 3|x|/2 < 3ue(t)/2 and s > t/2 imply that |y|s~? < Ce()r™0 = o(1).
Hence, (1.8) yields

‘ G(ys™)

—K‘ =o0(l) ast — oo.
E4p(ys—9)

Therefore, since y = 1 in this case, using the assumption (1.14) on f,

t
Iy (x, 1) = o(t_(1+°‘))E4,3(x)/ (1+t—s)""ds = o(t71 logr) Eap(x).
t

180

By the Mean Value Theorem, since ||y| - |x|| < |x — y| < £(¢)|x| in the region of
integration of I3,

|Eap(y) — Eap(r)] < (I(N — 4P)LW)

0 —tyN—ap+1 Lap(0) = CLOEap(x)

there, since £(¢) < 1/2. Thus, using also the assumption (1.14),
t

Lo (x, 1) < CL() 1T Egp(x) (1+1—s)""ds = o(t " logr) Eag(x).
tftl_‘s(')
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In order to estimate 133, we apply the Mean Value Theorem to obtain that

|S—(l+0{) _ t—(l+0{)| < Ct—(1+a)t—5(t) — O(I_(l+a))

forall s € (r — t17%® ¢). Thus, using the assumption (1.14),
t

3(x, 1) = ot~ 1) Egg(x) (1+1—s)""ds = o(t """ logt) E4p(x).
)

PRSI0
As for I34, we observe that

(=60

134(’“):’“_(HQ)EM}(")‘fo /|| o’ 0P
yl<€(t)|x

t
—/ / gy +S)7] dyds‘
0 JRN

R0
—(l+a)
<«t E4p(x) /
po(

=8
+/ sup £ $)(1+5) = gll 1 gny (147" ds
OB )

A0
Hf('ss)”Ll(RN)dS+|‘g|‘L1(RN)/(; (1+s)7l ds

tl—S(t) '
+[ gl (147" ds + gl 1 N/ (497" ds).
y[>€)lx| 150 EED Jn-so

Notice that 15®) < t1=3®) since §(¢) < 1/2. From (1.16) we get that

sup [/, +5) = gll i@y, = o(1),

s>

since, due to the condition §(r) > 1/logz?, 0 5 50 as t — oo. Moreover, if
lx| = ve(1),

f g()]dy < / gl dy = o(D),
|y|=>£€(t)|x| [y|>£(t)ve(t)

since g is integrable and £(¢)@(t) — oo (remember that £(¢) > 1/¢(¢)). Therefore,
using also the assumption (1.14),

iy (x, 1) < Ct= M Eyp(x)(8(2) logt 4 o(1) log 1)) = o(t =1 log 1) E4p(x),

since §(1) = o(t).
It is immediate to check that

log(1+1) |

Is5(x,t) = KM()l‘iGJFa) logtE4p(x)
logt

' = o(t~ 1+ log 1) E4g(x).
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Summarizing, I3(x, 1) = o(t~!7% log ) E44(x), whence

I+a—o(p)
G )7

3G, Ol e qoeixl/om<wpn = ot~ log o(1)

from where it is easily checked that |13 (-, £) || Lr ((v<|x| /o) <p)) = 0(@ (1)) if (C1)/(Fy).
If (C)/(F), we make the estimate I3 < 21'6:1 I3;, withIs;,i = 1, 2, 3as for (C)/(Fy),

and

(180

La(x, 1) = Kt_(1+")E4ﬂ(x)/ / 7 G =y, =5}l dyds,
0 =yl <e())x]

t
Ls(x, 1) =kt~ O Eyp(x) / / |f(x — y,t —s)|dyds,
0 J]

x—y|>£@)lx]|

o(x, 1) =kt~ Egp(x) f h f |f(y, 5)|ds.
t RN

Reasoning as for the cases (C1)/(F1), we get (notice that now y > 1),

t
Iy (x, 1) = o) Egg (x) / (U +1—s5)""ds
1 g1=8()

= ot~ TN Egp(x), i=1,2,3.

On the other hand, using the hypothesis (1.14) on f,

(180
Laa(x, 1) < cr<1+“>E4ﬁ(x)/ (14+7—s5)7ds < Ct- VT Egp(x).
0

Finally, as f € L'(Q) and £(t) > 1/¢(1),

t
// F(r — vt — )] dyds
0 Jlx—y[>£(1)|x]

o0
< / / | f(y,s)|dyds = o(1) for |x| > ve(t),
0 Jyl>€@®)ve()

/ / £ (v )] dyds = o(1).
t RN

Therefore, I; (x, 1) = o(t"1H¥) Eqg(x),i = 1,6.
Summarizing, I3(x, t) = o(t’(1+°‘))E4ﬁ (x), whence

l+a;a(1)))

’

N3G O NlLrqu<ixl/o@)<ph) = 0(1_(1+a)<ﬂ(t)

from where it is easily checked that [|I3(-, )|l e (v<|x|/0() <)) = 0(@ (1)) if (C)/(F).
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Now we analyze II. We make the decomposition I = I + II, + II3, where

t/2
I (x, 1) = / /| ko LF G = yi 1 = )Y (v, 5) dyds,
X—

yI=£@lx|

k@)lxD/?
Ih(x,t) = / / b=k [ fGx =y, t—=8$)IY(y,s)dyds,

x—y[>£(@)|x]|

I(x. 1) = / / o |G = yot = )Y (v, ) dyds,
k(t)|xD/? Jx—

>|>€(t)\XI
with k(t) = o(1) such that k(¢) € (0, 1/2) for all + > 0 to be further especified later.

We estimate II; as Il < IIy; + II;5, where

t/2
Hl](X,l‘)=/ / | f(x —y,t—5)|Y(y,s)dyds,
0 |y|<min{k(t)|x],s?}

(k(@)lx)'?
II]Z(-X’t):/ / |f(x_y7[_s)|Y(yss)dyds
0 5O <|y|<k(®)|x|

Since k() < 1/2, |x — y| > |x|/2 > ve(t)/2. Hence, taking ¢ and r as in (2.1), and
using the global bound (1.9),

Iy 1 Gy O e u<ixl/o@) <w)

<

12
/0 If Gt = Lagqxr= oo 1Y G Lr g <mingukp).sty)) 98

_ t/2 —(1+ . 0 I+a—o(r)
< Cm(t)t™ / s~ (min{pk (D), sH ™ 7 ds,
0

where m(1) = sup._o I/, D + O lLaqx1> L) since [ Eagllirixj<ap =
Ca 7" . Thanks to assumptions (1.14) and (1.19),

m(t) = O(go(t)_N(l_é)) _ O(QO(I)W)

)

and hence, since k(1) = o(1) and o (r) < 1,

Myt G ONLp (v<ixl/o@) <u)

k(typp)/? teotr) t/2
<Cm@t™Y ( / 5700 ds + (k(t);up(t)) /
0 (

—(1+a) ds)
k(f)/uﬂ(t)))l/g

1-a(p)

lfo(r) 1- _
<k()"T O Vo) T )

=o(t™ ”(p(t) ) =0(¢(1)).
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As for 15, since |y|/s? > 1 in the integration range, we may use the exterior esti-
mate (1.10) for the kernel to obtain

(k()lx'/?
Ma(e, 1) < C / f (= vt — )12 E_yp(y) dyds.
0 s <|y|<k(t)]x]|

On the other hand, since k() < 1/2, |[x —y| > |x|/2 > ve(t)/2. Hence, taking g and
rasin (2.1),

LG, O Le (u<ixl/o@) <)

(k) -
< C/(; 1 Gt =)l acqix1> 30ons™ " NE-28ll L (g1x|>s0)) ds

(k(@)p(0)))/? o) o(p)
< Cm(t)t_V/ sT0ds <k(t) @ Ot V<p(t) 7o)

0
= 0(¢(1)).

In order to estimate II, we observe that in the region of integration s < k(@®)|x] <
|y|. Therefore, we may use the outer estimate (1.10), and hence

(k()lx)'/*
Ma(x, 1) < C/ / pest I fx =y 1= )%V E_55(y) dyds.
0 le—y]>£(0)Ix]

Therefore, taking ¢ and r as in (2.1),

M2 (-, DM Leqv<ixl/o@) <))

(k@) ol
< C/o 17 Gt = Laqxisveronns™  TE-28llLr (x|>s0}) ds

(k(t)p(1)))1/?
< Cn(t)t_yf s g5 =
0

where n(t) := sup,_o I f(, T + )7l La(qix|>vea)p@))- Thanks to the assump-
tions (1.14) and (1.19),

’

o()-0(p)
)

n(0) = 0((p@) N 0) = ey NP 0 (p (1)

1
whence, if £(1) satisfies £(t) = k()1 77/ NOU=3D) 5n addition to £(7) > 1/¢(1),

-N(-1

O(I go(t) (p))
) = 0 (1))

M2, DL (o<ixl/o@)<pp) = €(F)

= o(t_y
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To estimate 113, we use the global bound (1.9). Then, if |x| > ve(z),

12
M(x.1) < C / gt / ot 1 = yut = $)|Egs() dyds
(k(t)|x 170 [x—y|>£(t)|x|

< k()P N17V Eqp(x)

t/2
X sTUHHFOQ 4 — ) F Gt =980 dyds
/(.k(t)lx)l/" ( S VA MLt qrxisvewey 9Y
t/2
< Cok(®)* N Eqg ()™ / sTF) s
k(D) ]x )1/

= Co(k®) PNtV Eyp(x),

where v(#) = sup,_; o (1 + ) f, D11 gx>vewp@yy 1 @ bounded function,
thanks to the size assumption (1.14). Using (1.30),

1o (p)

I G, O Lr (o< ixl o) <)) = CoOkOP NtV ()7

Since v is bounded, in fast scales (F) we have, see (1.29),
IMI3C O e u<ixlfoiy<up = CHOKOP N4V 1) =2F .

On the other hand it is readily checked that in these scales t1+“_yg0(t)_2ﬁ =
o(1). Therefore, if we take k(t) > (tl“‘"‘_”(p(t)_Zﬂ)l/(N_zﬂ), we finally arrive at

I3 C, Ol L (u<ixl/o)<p)) = 0(@ (1)), as desired.
For the scales (S), (Cy), (C), and (Fy) we use assumption (1.16) to show that, since

€@ > 1/¢(),

u(t) < Sur/>2 1A+ fC 1) =8l uisvenremy T 18ILI(x1vempmy = o).
>t

Therefore, if we take k(1) > v()/V =28 we get

1—a(p)

I3 G, Ol e <ixl/o@<pp = ot @) 7 ) = o(¢(1)).

We now consider the last term, III. We have III = III; + III,, where

t
Iy (x, 1) = / Iyl<h()|x| |f(x =y, t—=s)|Y(y,s)dyds,
t/2 Jx—=y|>€()lx]|

t
IIIZ(-xvt) = / |y|>h(t)|x| |f(x_y,t_5)|Y(yaS)dde,
/2 J|x—y|>L@0)]x]|

with i(¢) = o(1) such that h(¢) € (0, 1/2) for all # > O to be further especified later.

@ Springer



Asymptotic profiles for inhomogeneous heat equations... 3735

Since h(t) < 1/2, |x — y| = |x]/2 > ve(t)/2. Hence, taking g and r as in (2.1),
and using the global estimate (1.9),

Iy (-, )| L (v<ix| /o) <))

t
< //2 IfCot = M Lacqxr= oo 1Y G L (xi<nyme@y ds
t

t
< Cm(t)t_(l+a)||E4ﬂ||L’({|x|<h(t)u<p(t)})/ (I+1—s5)"7ds,
)2

with m(t) as above. Then, since o (r) < 1 and h(t) = o(1), and using also (2.3), we
conclude that

I4+a—o(r) I+a—a(p) 4

I -, O Le (o<ixlfom <y < CtFOR@ ™7 @@t) o /2<1+r—s)‘7ds
t

I4+a—a(p)

=o(p) 7 )//2(1 +1—5)7"ds =o0(p1)).
t

To estimate III,, we use the global bound (1.9). Then, if |x| > ve(z),

t
M (x,1) < C / slenon 1=y, 0 —)|sTITD Egg(y) dyds
/2 J|x—=y|>€(t)|x|

< Ch)* N~y () Eap(x),
B

1/2
where w(t) = [0 ILf GO L (x> e)vp@)y 475 so that, using (1.30),

1+a—o(p)

I (-, )| e (< ixl o<y < CROP N w (@)= D@7 .

If y > 1, then w(t) = o(1). Hence, taking h(r) > w(r)/N =48,

1+a—o(p)

||IHz(wl)llLP({u<|x\/¢(z)<M})=0(f(]+a)<ﬂ(l) ),

whence it is easy to check that [[IIIz (-, £)||Lr({v<|x| /o) <pu}) = 0(@ (1)) in the scales
(S), (C), and (F) when y > 1.

If y < 1, something which only happens in the case (S), hypothesis (1.14)
yields w(r) = O(t'77). Remember that ¢(f) = o(t?). Hence, taking h(r) >
(@) /1) N3 = o(1),

_ o 1-o(p)
I (-, )| e (< ixl/or <)y < ChREOP N (@) /1)) 517 (1)

1-o(p)

=o(t™"p() 7 ) =o0(p(1)).
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If y = 1, the size hypothesis (1.14) yields w(t) = O(logt). If p(t) =
( /(logt)zﬁ) then, taking A (t) > (go(t)/(te/(logt)zﬁ))ﬁ(’\’ P = o0(1),

Lo
I (-, )| e (< ixl /o)<y = ChEOP N (@) /(1 /(log 1) )) a1~

) = o (1)),

= o(t_1

which completes the analysis of the case (S).

For the remaining cases with y = 1, namely (C;) and (F1), we require the tail control
hypothesis (1.18), that yields w(t) = o(log¢). Taking h(t) > (w(t)/logt)!/WNV=48)
for (F;) we have

w(t I+a—o(p)
M2 (-, DM Lrqu<ixl/e@n<pl) < Ch(l)w*N%f(Ha) logre@) 7 ’

= o(t_

) = 0(¢(1)).

1
and in the case (Cy), for which ¢ (1) ~ tg/(log 1)28,

_yw() _ 1
I, O Lr (o< pxljo) <y < Ch(@)* N@r Loy =

P :0([ q)(t)l U(p))

=0(¢(1)).

4 Exterior regions

This section is devoted to prove the results concerning the large-time behavior in
exterior regions, {|x| > vt?} for some v > 0, Theorems 1.3—1.6 and Proposition 1.1.

Proof of Theorem 1.3 We make the decomposition

t
|u(x, 1) —/ My()Y(x,t —s)ds| <I(x,1) +10(x, 1), where
0
t
I(x, 1) = / / l[fO, )Y (x —y, t —s)—Y(x,t —s)|dyds,
0 Jiyl<slx|
t
H(x,r>=/ / FOuIY (= yot —5)— Y(x. 1 — 5| dyds,
0 Jiyl>slx|

with § € (0, 1/2) to be fixed later.
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By the Mean Value Theorem, for each x, y, t and s there is a value A € (0, 1) such
that

Y(x =y, 1 =5)=Y(x,t =s)| =[DY(x =LAy, 1 = s)|[yl.

But, if |y| < 8|x| with 8 € (0,1/2) and A € (0, 1), with |x| > vt? and s € (0, 1),
then

Ix —Ay| > [x]/2,  Ix=ay|lt—9)"0>A=8)x|t7? > v/2.

Therefore, using the estimate (1.11) for the gradient of Y and the size assump-
tion (1.14),

t
I(x, 1) < C/ / | £ o)1 = )2 e — ry| VD |y dyds
0 Jiyl<slx|
t
< CSE_zﬁ(x)/ / [f(y, )|t —s)** "L dyds
0 Jlyl<dlx|
t
< C5E—2,5(X)/ (14577 —s)2* 1 ds.
0
Thus, since
IE—_2pl Lo (x> vieyy = Ct 0P 72F, .1

we get

LGS O Lo x> vef))
)2 '
< C1~0 P20+ (ﬂ“*‘ / A+ Vds+177 | =52 ds),
0 t/2

4.2)

which combined with (2.3) yields [|I(-, )|l p(fjx|> ¢y < C8¢ (7). From now on we
fix § € (0,1/2) sothat C§ < «¢.
We now turn our attention to IL. If p € [1, p), using (1.13),

t
LG DN Lp(ej>vieyy = C/ 1 G ptqx)=sveey (& — 5)7P) ds.
0
If moreover y > 1, then f € LI(RN x (0, 00)), and hence

12
/0 £ G =svepds = o(1),
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so that, using also assumption (1.14) to estimate the integral over (¢/2, t),

12
LG, Do (e ureyy < 170 /0 ILf G L ra>sveey ds
t
+Ct7 | -5 ds
t/2

=o(t™" ") + 0TI = 077" = 0§ (1)).

Still in the subcritical case, if ¥ < 1, using the tail control assumption (1.18) we
have

TG, Ol e gxysvoy = € SUIO) (L+ D71 C Ol e =s5v6)))
1>
t
X / A+ —s5)"°Pds
0

t/2
= o(z—“@) / (A14s)Vds+Ct™7 /
0 t

/2
_ o=y <1,
o @ logr) y =1,

t

(1 = 5)77P ds)

and therefore ||II(, t)||LP({|x\>Utg}) = 0(¢)(t))
If p is not subcritical, we take ¢ and r as in (2.1). Then, since r is subcritical,
using (1.13),

t
LG Ol Lp (x> vy = C/ I Gl Laqep=sveey (& — S)io(r) ds.
0

)2 z
< CU(t)(t—f’(’) / A+ Vds+17 | =50 ds),
0 t/2

4.3)
where
_No(1-1
o0 = sup (1 + 5717 C s qugesuny) = 0600y, )
s>0
thanks to the uniform tail control assumption (1.20). Therefore
oIy y <1,
LG, O e (x> vefy) = ot~ logr), y =1,
0(!7"(1’), y > 1,
whence ”II(, t)||Lf’({\x|>vt6}) = 0(¢(t)) O
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Proof of Theorem 1.4 Take § € (0, 1/2). Using hypothesis (1.14) on the size of f, we
have

t
U My ()Y (x,t —s)ds — M)t ™Y (x, )| < I(x, 1) + TM(x, 1) + TI(x, 1),
0
where
8t
I(x,t):/ A4+9)77E -t =)%Y (x, 1 —s) — 7Y (x, )| ds,
0
t
II(x,t):/ A4+s)7VY(x,t —s)ds,
St

t
MI(x, 1) = 'Y (x, l‘)/ 14577 —s)* ds,
ot

for some 6 € (0, 1/2) to be fixed later.
By the Mean Value Theorem, for each x, ¢t and s € (0, ¢) there exists A € (0, 1)
such that

1t =)'V (v, t —5) — 17OV (x, )| = 5|8, H(x, t — As)|,
where H(x, 1) =t 7Y (x, 1).

From estimates (1.10) and (1.12), if |x|t‘9 >y, t > 0, for some v > 0, then
0:H (x, )] < Cot* ' E_pp(x).
But, if |x| > vt?, withv > 0, s € (0, 81), with § € (0, 1/2), and A € (0, 1), then
t—as>1/2, |x|(t—xrs)" > |x|t7% > v.
Therefore, we have
It =)'V (x, 1 —5) — 17V (x, 1)] < Cs(t — rs)* VE_p5(x) < C81YE_2p(x),

so that

8t
[(x,1) < C8t"E_op(x) | (1 —$)* "' +s)77ds
0

ot
< C8** VE_sp(x) | (1 +9)77ds.
0

Using (4.1), we finally get ||I(-, t)||Lp({‘x|>we}) < e¢(t) if we choose § € (0, 1/2)
small enough.
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Once the value of § is fixed, we have, using the exterior bound (1.10) for the kernel,

t
(x,1) < CE_g,g(x)/ (14577 —5)* Vds < Cr** 7V E_p5(x),
St

t
l(x, 1) < cﬂ“—lE,zﬁ(x)/ (145)77ds < Cr**VE_p(x),
St

so that [ILC, ) zpqx=veoyys TG O e qiej= vty = Ct'=7=o) = o(p (1)) if y =
1. O

Proof of Theorem 1.5 Let § € (0, 1/2) to be chosen later. We have

St
M)t~ — M| < z‘—“/o fRN £ o)I( —)* " =17 1) dyds

t
+r1—“// O 91 — )% dyds
5t JRN

+/ / £ (v, )] dyds.
St RN

Since, by the Mean Value Theorem, 0 < (¢ — s)‘)‘_1 — < s lifs e 0, é1),
using also the size condition (1.14) on f with y > 1 we conclude that

8t
M)t ™ — My <C8 | (14s)7ds
0

t o0
+ Crlmey (t—s)“_lds+/ / |7 (y,s)|dyds
8t 8t RN
o0
scs+cﬂ—y+/ / £ (ro9)l dyds <,
8t RN

if we fix § small enough and then take ¢ large. O

Proof of Theorem 1.6 We make the estimate |M (1) — Mor® ' log(1 + 1)| < I(r) +
1I(¢) + III(z), where

I(r) = /Ot(t —)* 7 (1 + )70+ )M s (s) — Mol ds,
1I(r) = | M| /0, [t — )T =271 +5)7  ds,
I(r) = | Mo|t* " log #
From assumption (1.16) we know that there is a time t. such that

I(l +9)Myp(s) — Mol < [(1+5)f(,8) —gllpiryy <& foralls > 7. (4.5)
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With this in mind, we make the estimate I(¢) < I;(¢) + I(¢), where
Te
00 = [ =9 A7+ M)~ Mol
0
t
(1) = e/ (t — )1 +5)"ds,
Te

valid for ¢ > 7. On the one hand, the size assumption (1.14) yields (1 +5)|M ¢ (s)| <
C, so that

Te Te
L) < c/ (t—5)"'A+s5""ds < Cgt“_l/ (1+s)""ds
0 0

= Cot® Mog(l + 1) < er* 'log(1 + 1)

if ¢ is large enough. On the other hand, from (4.5), for all large ¢,

t/2 t
L) < CE(;“—I / A+s)Vds 4+ | ¢ —5)] ds)
Te t/2
< Ce(t® log(l +1) + 1“1 < Cer* 'logt.

As for II, we estimate it as I1(z) < II;(¢) + lI»(¢), where
8t
I, (1) = |Mo|/ [t =)' =271 +95)7 ds,
0

t
(1) = | M| / [t =)t — (1 + )7 ds,
8t

for some § € (0, 1/2) to be chosen. Given ¢ > 0, there exists a small constant
6 = 6(g) > 0 such that

[t — )% ' =271 < e ifs € (0, 81).

We fix such §. Then, if ¢ is large enough,

8t
(1) < |M0|et°"]/ (1 +s5)""ds = |Moler® " log(1 + 81) < Cer* logs.
0

On the other hand, for  large enough,
t

I (r) < cﬂ/ (¢ =)+ 1% N ds < Cr* ! < et logt.
8t

Finally, since log % = o(l) = o(logt) as t — oo, we get immediately that
(1) = o(t* ! og ). o
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Proof of Proposition 1.1 Let § € (0, 1/2) to be fixed later. We have
13
‘/ Mp(s)Y (x, 1 — s)ds — 17 Mocap Eap ()| < 1(x. 1) +11(x, 1), where
0
8t
I(x,1) = ‘/ / f(y,t =Y (x,s)dyds — 77" Mocog Eap(x)|,
0 JR¥V
t
II(x, ) = / / |f(y,t —9$)|Y(x,s)dyds.
st JRN

We estimate I as I < I} + I, where

st
Ii(x, 1) :/ 1+t —s)fVY(x,s)/N [f(y,t —s)(1+1t—s5) —g(y)|dyds,
0 R

St
Lx.1) = ‘Mo (+1—5)"Y(x,5)ds — 177 Mocap Eap(x) .
0

Lete > 0. Since t — s > t/2 for s € (0, 6t), using hypothesis (1.16) we get

f fO =) A +1—9)" —g(y)|dy < e|Mo| fors € (0,61
RN

for ¢ large enough, how big not depending on &, so that

st
_ Y(x,s)
Li(x,1) < et™"|My| E> (x)/ ds.
4 o Epkx)
We recall now that
o0
Y
cap =f LS (4.6)
o Exp®)
Therefore, 11 (x, 1) < et |Molcog E2p(x).
Using again (4.6), we have I < I + Ip, where
8t Y(x,s)
i (x. 1) = | Mo|Ex (x)/ sy =7 2 g
g 0 Ezp(x)
o0
Lo (x, 1) = |M0|t_V[ Y(x,s)ds.
st
If s € (0, §t), then
1 1—96)t 141 — 141 1
stz I+e=s 1+ 1
t t t t
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so that |(1 +t—s5)"Y — t’VI < et~V if t is large and § small. Thus, using once
more (4.6),

Y(y,s)

———ds < &t7V|My|cag Erg(x).
Exp(y) P

St
It (x. 1) < 617 | Mo| Eap(x) /
0

Once we fix § as above, using the global estimate (1.9) for the kernel, if |&| = |x|r ¢
is small enough,

Io(x, 1)

IA

o0
CrVEgp) [ 570 ds = Colalr ™ Moleagt ™ Exp)
8t

IA

et~ |Mo|c2p E2p(x).

Similarly, using also the size hypothesis (1.14), if |§]| = |x]#~? is small enough,

t t
I(x, 1) < CE4,3(x)/ A+1—95) Vs I+ gs < c(;f“*a)aﬁ(x)/ (A41—s)"7ds
St St

< Cs(1x|t7)?P | Moleapt ™Y Eap(x) < 17 |Moleap Eap (x).
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Appendix

We study here the behavior at infinity of Riesz potentials, using only integral assump-
tions, a result of independent interest.

Theorem A1 Let u € (0, N). Let g € L'RN) and M = / g Ifp > py =
RN

N/(N — ) we assume in addition the tail control condition

_Na=1
lgllLaqx>ry = O(R ( ‘i)) as R — oo for some q € (q,.(p), pl,
N
ﬁ, pell,o0),
au(p) == 4P
—, p = oo.

m
Let E,, and I, as in (1.22). Then, if 0 < v < u < oo, for any p € [1, oo] we have
N(-3)
R P N8l — ME lLe(u<ixl/R<p)) — 0 as R — oo.

Proof We may assume withoutloss of generality that g # 0. Wehave |1, [g]-ME, | <
I+ 114+ I+ IV, where

I(x) E()/ Sl Llg(yId
X) = X T N—.  Hiswiay,
P i<y T — yINm
I(x) = E,(x) lg(dy,
[y[>ylx]|
_ 18I
M) = / yl> vyl |y — y|N-n dy,
[x =yl < 8lx]|
lg(y)I
Ve = f b=l T =y O
b = y1 > 8lx|
with y, § > 0 to be chosen later.
On the one hand, if |y| < y|x|, with y € (0, 1),
1 x|V =H x|V =H |x|N—H 1

< < .
(LN 7 (xl+ DV 7 fx = y[V1 7 (x| = [yDV# T (L= )N K

|XIN—;¢
lx—y| V=
¢E, (x), whence

Hence, — 1| < ¢/lIgllL1wn) if y is small enough, and therefore I(x) <

-N(1=-1)+
I Lrv<ixi/R<u)) < ENELllLru<ix)/R<u) < ER (1=3)+

for all values of R. From now on y is assumed to be fixed.
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Since g € LY(RN), gl 21 (qjxj>vry = €if R is large enough. Hence,

_N(1=1
Il Lr(u<ixl/R<pm)) < ENEullLrqu<ixl/R<p)) < R ( ")Jr“

if R is large enough.
To estimate III, we choose

g=1ifpell,pu), g € (qu(p),p]asinthe hypothesisif p > p,,
1 1 1
1+ —=—+-.
p q r
Notice that r € [1, p,,) in all cases. Then, using the integrability of g if p € [1, p,),
or the tail control condition otherwise,

L Lo (u<ixl/R<p)) < &ILadix|>yvRY I E LIl L (x| <51RY)

I 1
< CV)M/—N(I—Q)S—N(I—}HMR—N(l—;)_,_ﬂ'

Since r € [1, p), then —N (1 — %) + w > 0. Therefore, taking § > 0 small enough,

_ 17l
Il e (pu<ixl/R<pp < €R N(1=5) 4
Finally, once y and § are fixed, since
V@) = 6"V E, () lg()dy,
[yI>vix|

we have, using the integrability of g,

—N(1-1)4
IV Lr qu<ixl/R<py) < CsllgllLi x> yvrp I EpllLr(u<ix/r<s) < €R (1-3) ",

if R is large enough. O

Remark The tail control assumption in Theorem A.l is satisfied, for instance, if
lg()| < x|V,
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