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Abstract
In this paper we present a complete theoretical analysis of the oscillating photocarrier grating
(OPG) method, starting from the generalized equations that describe charge transport and
recombination under oscillating grating illumination conditions. The solution of these
equations allows us to implement a calculation reproducing the experimental OPG curves. We
study both experimentally and from our calculations the dependence of the OPG curves on
different external parameters, such as the applied electric field, grating period and illumination
intensity. We find that the response of the sample is linked to a characteristic time of the
material, which could be the dielectric relaxation time or the small signal lifetime depending
on the regime at which the experiment is performed. Therefore, the OPG technique provides a
simple method to estimate these parameters. In addition, we demonstrate that the small signal
lifetime provides information on the density of states of the material.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Photocarrier grating techniques are based on making
interference between two coherent light beams to form a
periodic pattern of light intensity on a sample surface. Areas
of high and low light level result in high and low carrier
concentrations, respectively. The non-uniform distribution
of charges in turn creates an internal electric field, which is
affected by the movement of charges by diffusion and drift.
When the photocarrier grating is static, the method is called
steady-state photocarrier grating (SSPG), and was proposed
by Ritter et al [1, 2]. This method is now widely used to
measure the diffusion length of minority carriers in materials
such as hydrogenated amorphous silicon (a-Si : H) [3, 4],
microcrystalline silicon [5, 6] and crystalline materials [2, 7].
Moreover, a procedure to extract the density of states (DOS)
from SSPG measurements has been proposed [8]. When
the photocarrier grating moves with a constant velocity, the
method is called the moving grating technique (MGT) and was
proposed by Haken et al [9, 10]. One of the applications of the

4 Author to whom any correspondence should be addressed.

MGT was to study electrical transport properties of a-Si : H and
its carbon alloys [11]. When the illumination is periodically
switched between uniform and with interfringes, the method is
known as the modulated photocarrier grating (MPG) technique
and was developed by Hattori et al [12]. This method has
been originally used to test the assumption of ambipolar
transport, while a recent analysis of this technique showed
that the DOS in the gap of a-Si : H can be estimated from MPG
measurements [13]. In this paper we describe another variation
of the grating techniques that we call oscillating photocarrier
grating (OPG), in which the light grating oscillates with an
angular frequency ω.

The grating techniques described so far have been used
mainly to characterize amorphous and microcrystalline silicon
thin films. However, the same sort of techniques have been
previously developed and applied to study photorefractive
materials [14–16]. In this field of research, the SSPG
technique is known as the ‘stationary holographic current’
technique, and the MGT as the ‘dc photo-electromotive force’
(dc photo-EMF) technique. A version of the oscillating grating
technique, called ‘ac photo-electromotive force’, has also been
developed at the I F Ioffe Institute in St Petersburg [17].

0022-3727/11/295103+12$33.00 1 © 2011 IOP Publishing Ltd Printed in the UK & the USA

http://dx.doi.org/10.1088/0022-3727/44/29/295103
mailto: fedevento@gmail.com
http://stacks.iop.org/JPhysD/44/295103


J. Phys. D: Appl. Phys. 44 (2011) 295103 F Ventosinos et al

Although mainly developed to study photorefractive crystals,
this technique has also been sporadically applied to study
a-Si : H samples [18–20]. In this dc photo-EMF technique, the
amplitude of the oscillations is chosen much smaller than the
grating period in order to be able to represent the illumination
intensity by a combination of sinusoidal patterns. The
variation that we propose here is to use spatial oscillations with
amplitude equal to half the grating period, as will be described
in the next section. By adjusting the phase shift between both
interfering beams, we achieve an oscillation of the interference
pattern consisting of a periodic movement with constant
velocity in each direction. Therefore, the OPG technique
described in this paper can be considered an ac version of
the MGT [9] or dc photo-EMF technique [16], allowing for
the utilization of synchronous detection and thus reducing the
influence of noise. The other difference of our treatment
from previous approaches is that we start our theoretical
analysis of the method from the DOS of the material, using
the multiple trapping model to describe recombination. This
way we avoid the use of phenomenological parameters such
as the recombination lifetimes introduced in [9] or [16].
Contrary to previous approaches [1, 2, 9, 10, 12] we distinguish
between free and trapped charges, achieving a more transparent
description of the physics involved. Moreover, we will show
that our approach eventually offers the possibility to obtain the
DOS of the material from OPG measurements.

This paper is organized as follows. Section 2 presents
details about the experiment setup and the preparation of the
samples. Section 3 deals with the basic equations that describe
the method. Section 4 describes preliminary experimental
results obtained from the implementation of this method. In
section 5, we discuss our results with the help of numerical
calculations that facilitate the interpretation of the physics
involved. Finally, section 6 presents the main conclusions of
this work.

2. Experimental details

The experimental setup used to implement the OPG experiment
is presented in figure 1. Two coherent light beams, linearly
polarized in the vertical direction, interfere on the sample
surface. One of the beams (of intensity I2) goes through an
electro-optic modulator (EOM) and impinges perpendicularly
to the sample, while the other one (of intensity I1) forms an
angle δ with the other beam. Therefore, an intensity grating
with spatial period � = λ/ sin(δ) is created, where λ is the
light wavelength (see the appendix). The EOM is positioned
so that the axes of the crystal are vertical and horizontal. In
this ‘phase modulation’ configuration, the output amplitude
and polarization remain unchanged, but the phase of the
wave (φ) is altered as a function of the signal applied to
the modulator. The calculation of the resulting illumination
intensity I impinging the sample, described in detail in the
appendix, gives I = I0 +δI cos[kx+φ(V )], where I0 = I1 +I2,
δI = 2

√
I1I2, V is the voltage applied to the EOM and

k = 2π/�. The phase shift of beam I2 causes the interference
pattern to move following the voltage applied to the EOM.
In the previously mentioned ac photo-EMF technique [16],
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Figure 1. Experimental setup for the experiment. A linearly
polarized laser beam is split by a beam splitter (BS) into two beams,
I1 and I2, which are made to coincide on the sample using the
mirrors (M). Beam I2, attenuated by a neutral density filter (NDF),
passes through an electro-optic modulator (EOM) used as a phase
modulator. These two beams interfere on the sample surface,
creating a grating that oscillates depending on the phase shift
between both beams. The lock-in amplifier measures the ac
photocurrent due to the oscillating grating.

a sinusoidal signal is applied to the EOM giving rise to an
illumination intensity I = I0 + δI cos[kx − � sin(ωt)], where
� is the amplitude of the oscillation. In that case, the only
way to recover a simple sinusoidal expression from this one
is to use small modulation amplitudes (� � 1) [16]. In this
paper, we show that information on the sample parameters can
also be extracted from an oscillating grating technique even
in the case when the amplitude of the oscillations is large.
Our proposal is to set V (t) applied to the EOM as a triangular
wave function of angular frequency ω (see the appendix). This
gives I = I0 + δI cos(kx ± ωt), where the plus sign is for
the first half of the voltage period and the minus sign is for
the second half of it. The result is an intensity grating that
moves with a constant velocity in one direction for the first
half of each period (therefore for half a grating period) and
then moves in the opposite direction for the second half of each
period. The movement of the intensity grating with a constant
velocity in alternate directions makes the OPG technique an
ac version of the MGT or dc-photo-EMF technique. The
non-uniform illumination leads to a spatially and temporally
modulated generation rate, given—for the case of uniform light
absorption—by

G(x, t) = ηI (x, t)(1 − R)

d hν
[1 − e−αd ],

where η is the quantum efficiency of generation of free carriers,
R is the reflectance, d is the film thickness, hν is the photon
energy and α is the absorption coefficient. Therefore, the
generation rate can be written as

G±(x, t) = G0 + δG cos(kx ± ωt) = G0 + �e[δGei(kx±ωt)],

(1)

where G0 and δG relate to the homogeneous and modulated
part of the illumination I0 and δI , respectively, i2 = −1,
and �e means the real part of the complex number. As will
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be shown in the next section this oscillating generation rate
results in an alternating current circulating in the direction of
the grating movement (for n-type conductivity) [9, 16]. This
current is amplified by a low-noise current amplifier with
a virtual ground input, thus any voltage drop occurs in the
sample. After going through the current amplifier, a lock-in
reads this signal as a voltage proportional to the peak value of
the first harmonic of the current.

An undoped, l µm-thick a-Si : H sample deposited on
a glass substrate was used in the experiments. The
deposition was performed by plasma-enhanced chemical
vapour deposition from a 3% SiH4/97% Ar gas mixture at a
total pressure of 0.3 Torr and a rf power of 2 W. The substrate
temperature during deposition was 175 ◦C. Evaporated Al
electrodes were deposited on top of the sample for electrical
contacts, disposed in a coplanar geometry with a separation
Lx = 1 mm between them. The ohmicity of the contacts
was verified. The sample was light-soaked for 8 h with a
He–Ne laser (632.8 nm, 100 mW cm−2) to minimize the effects
of light-induced changes in the transport parameters during
the experiments. To proceed with the measurements, the
intensity relation between the interfering beams was set to
I2/I1 ≈ 1/20. Each data point was the result of averaging
90 individual measurements with a delay of 1 s between them.

3. Basic equations

To write the basic equations of the technique we shall consider
for simplicity a material with monovalent states within the gap,
all with the same capture coefficients. The generalization to
different species of states having different capture coefficients
is straightforward. We will also write the equations for one
direction of the running grating; for the other direction we
just have to replace ω by −ω. The spatially and temporally
modulated generation rate given by (1) creates distributions
of free electrons and holes, n(x, t) and p(x, t), with the same
period and frequency. However, since electrons and holes have
different mobilities and lifetimes, the amplitudes and phases of
the two distributions will differ, generating an internal electric
field, ξint(x). The internal electric field is related to the local
charge densities via Poisson’s equation

d ξint(x, t)

dx
= q

εε0

{
p(x, t)

+
∫ Ec

Ev

[1 − f (E, x, t)]NDON(E) dE − n(x, t)

−
∫ Ec

Ev

f (E, x, t)NACC(E) dE

}
, (2)

where ε is the dielectric constant of the sample, ε0 is the
dielectric permittivity of vacuum, Ev is the energy at the
top of the valence band, Ec is the energy at the bottom of
the conduction band, f (E, x, t) is the occupation function,
NDON(E) is the density of donor states (neutral when occupied
and positively charged when unoccupied) and NACC(E) is the
density of acceptor states (neutral when empty and negatively
charged when occupied). The carrier concentrations n(x, t)

and p(x, t) are obtained by solving the continuity equations
for electrons and holes, which are

∂n(x, t)

∂t
= G(x, t) − Rn(x, t) +

1

q

∂

∂x
[jn(x, t)], (3)

∂p(x, t)

∂t
= G(x, t) − Rp(x, t) − 1

q

∂

∂x
[jp(x, t)], (4)

where q is the absolute value of the elementary charge, R(x, t)

is the recombination rate and j (x, t) is the current density.
Subscripts (n or p) refer to electrons or holes, respectively.
The recombination rates are given by

Rn(x, t) =
∫ Ec

Ev

{cnn(x, t)[1 − f (E, x, t)]

−en(E)f (E, x, t)}N(E) dE, (5)

Rp(x, t) =
∫ Ec

Ev

{cpp(x, t)f (E, x, t)

−ep(E)[1 − f (E, x, t)]}N(E) dE, (6)

where c is the capture coefficient, e(E) is the emission rate
and N(E) is the DOS. The current densities are the sum of the
drift and diffusion components

jn(x, t) = qµnn(x, t)ξ(x, t) + qDn

∂n(x, t)

∂x
(7)

jp(x, t) = qµpp(x, t)ξ(x, t) − qDp

∂p(x, t)

∂x
(8)

where µ is the extended-state mobility, D is the diffusion
coefficient and ξ(x, t) = ξext + ξint(x, t) is the total electric
field, sum of the externally applied electric field ξext and the
internally developed space charge field.

Under the low-modulation condition established when
I1 � I2, it is expected that the relevant physical parameters
vary sinusoidally as G(x, t) does. In general, however, there
will be variable phase shifts, and any quantity A can be
expressed as A(x, t) = A0 + �e[δA ei(kx+ωt)], where A0 is
the value under uniform generation rate G0, and δA is a
complex magnitude originating from the modulated term of
the generation rate δG. Introducing these expressions for
n(x, t), p(x, t) and ξ(x, t) into the differential equations (2)–
(8) linearizes them, giving rise to the following system of linear
complex equations:


[
1

τnn

+ k2Dn +
(1 + Q−)

τdn

− i(ω + kµnξext)

]

×δn +

[
1

τpn

− (1 + Q+)

τdn

]
× δp = δG[

1

τnp

− (1 + Q−)

τdp

]
× δn

+

[
1

τpp

+ k2Dp +
(1 + Q+)

τdp

− i(ω − kµpξext)

]
×δp = δG.

(9)
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The coefficients are given by

1

τnn

= cn

∫ [
1 − (cnn0 + en)τ

1 − iωτ

]
(1 − f0)N dE,

1

τnp

= cn

∫
(cpp0 + ep)τ

1 − iωτ
(1 − f0)N dE,

1

τpp

= cp

∫ [
1 − (cpp0 + ep)τ

1 − iωτ

]
f0N dE,

1

τpn

= cp

∫
(cnn0 + en) τ

1 − iωτ
f0N dE,

Q− = cn

∫
τ(1 − f0)

1 − iωτ
N dE,

Q+ = cp

∫
τf0

1 − iωτ
N dE,

τdn = εε0/qµnn0 is the electrons’ contribution to the dielectric
relaxation time, τdp = εε0/qµpp0 is the holes’ contribution
to the dielectric relaxation time. The integrals are evaluated
between Ev and Ec (the energy dependence is omitted for the
sake of clarity), and we call τ−1 = cnn0 + cpp0 + en + ep.
The subscript 0 is used to denote quantities under steady-state
equilibrium with the generation rate G0.

The total current density flowing through the sample will
be given by

j (t) = jn(x, t) + jp(x, t) + εε0
∂ξint(x, t)

∂t
, (10)

where the last term is the displacement current (the external
electric field is time-independent). If we integrate (10) through
the variable x along the interelectrode spacing Lx , we obtain

Lxj (t) =
∫ Lx

0
[jn(x, t) + jp(x, t)] dx

+ εε0
∂

∂t

∫ Lx

0
ξint(x, t) dx. (11)

The last term vanishes when integrated due to the potential
nature of the electric field and the periodicity of the quantities
[12, 16]. The integrals of the diffusion components of the
current densities also vanish due to the periodicity [12, 16].
Therefore, the only contribution to the experimentally
measured current comes from the drift component, which is
given by

j (t) = 1

�

∫ �

0
[qµnn(x, t) + qµpp(x, t)]

× [ξext + ξint(x, t)] dx = j0 + δj (t), (12)

where the integration can be performed over one period of
the interference provided the interelectrode spacing is much
larger than the grating period [12, 16]. The constant and
modulated parts of the current density are given by j0 =
q(µnn0 + µpp0)ξext and

δj (t) = 1

�

∫ �

0

[
qµnδn(x, t) + qµpδp(x, t)

]
ξint(x, t) dx

= 1

�

∫ �

0
jdr(x, t) dx, (13)

where jdr(x, t) is the drift component of the total current
density. From the solution of the system (9), analytical

expressions for δn(x, t) and δp(x, t) can be obtained. Inserting
them into (13), it is found that δj (t) has the following
expression:

δj±ω = 1
2�e(δσ± × δξ ∗

±), (14)

where the superscript * means the complex conjugate, δσ± =
q(µnδn± + µpδp±) and δξ± = (iq/kεε0)[(1 + Q−

±)δn± −
(1 + Q+

±)δp±]. The only time dependence comes from the
periodic change in the direction of circulation of the current.
The oscillating intensity grating results in a current density
that alternates between two constant values, δj+ω and δj−ω,
corresponding to the currents created by the grating moving
in each direction. This is shown in figure 2 for measured
and simulated data for the case of no external electric field.
Figure 2(a) is a photograph of the screen of an oscilloscope
that registers a signal proportional to δj (t). To visualize this
signal with the oscilloscope we had to amplify it quite a lot,
giving rise to bandwidth limitations. The signal of figure 2(a),
having a frequency of 2 kHz, was recorded with a gain of
109and a bandwidth of 7 kHz. Despite the noise blurring the
signal, it can be seen that the shape of the wave is not exactly a
square. However, this shape fits with the answer Vout expected
from a low pass second-order filter with a bandwidth of 7 kHz
to an input square signal Vin of 2 kHz frequency (figure 2(b),
dashed line). Therefore, we are confident that δj (t), the current
density created by the oscillating grating, is indeed a square
wave function of time (figure 2(b), solid line). Considering
that the lock-in amplifier measures the first harmonic of this
square wave signal, the distortion introduced by the current
amplifier should not affect the final reading of this instrument.
Therefore, we end up with a current density that we shall call
the OPG current density in the following:

δjOPG =
√

2

π
(δj+ω − δj−ω). (15)

4. Experimental results

Figure 3 presents the results of two OPG measurements
performed on the a-Si : H sample as a function of the external
electric field, keeping fixed the grating period (� = 8.6 µm)
and the generation rate (G0 = 3.9 × 1020 cm−3 s−1). The
frequency of the signal driving the EOM was varied between 1
and 90 kHz, meaning that the grating velocity varied between
0.86 and 77 cm s−1. A well-defined maximum for ω ∼=
1.7 × 105 s−1 can be appreciated, with a symmetric peak in
logarithmic scales. An electric field of 40 V cm−1 was applied
to the sample in one of the measurements (circles), while
the other one (diamonds) was obtained under short-circuit
conditions.

As can be seen, both curves are equal within the
experimental error, meaning that this relatively low electric
field does not alter the current that circulates through the
sample. The shape of the curve is similar to those obtained
using the MGT (or dc photo-EMF technique), as expected due
to the common origin of both techniques.

Figure 4 presents the results of a series of OPG
measurements performed as a function of the grating period,
keeping fixed the generation rate (G0 = 6.0 × 1020 cm−3 s−1)

4
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Figure 2. Measured (a) and simulated (b) current density that circulates through the sample as a function of time for a zero external electric
field. In (a) the square wave is slightly rounded due to the limited bandwidth of the current amplifier. A small external electric field would
shift the mean value without changing the amplitude of the signal.

Figure 3. OPG current density (δjOPG) as a function of the angular
frequency (ω) of the signal applied to the EOM, for zero external
electric field (diamonds) and for 40 V cm−1 (circles).

and the external electric field (short-circuit conditions). As can
be seen, the angular frequency that gives the highest value of
the current density (ωmax) does not change, but the maximum
value increases with a decrease in �. All the curves exhibit
the same shape, being only vertically displaced.

Figure 5 presents the results of a series of OPG
measurements performed as a function of the generation rate,
keeping fixed the grating period (� = 20 µm) and the external
electric field (short-circuit conditions). The three curves
present the same slope in the low-frequency region, with a
linear increase in δjOPG with ω. An increase in the generation
rate causes a displacement of ωmax to higher values. At the
same time, an increase in the maximum value of the current
density is also observed. These experimental observations will
be further explained in the next section.

5. Discussion

In this section we shall explain the origin of the OPG signal, and
the three main features of our measurements: that a moderate
external electric field does not alter the curves, that an increase

Figure 4. OPG current density (δjOPG) as a function of the angular
frequency (ω) of the signal applied to the EOM, for different values
of � indicated in the figure. The generation rate is fixed at
6.0 × 1020 cm−3 s−1 and the measurements are carried out in a short
circuit configuration. The lines and the arrow are guide to the eye.

in the grating period causes a decrease in the signal without
changing the position of the maximum, and that an increase in
the illumination intensity causes an increase in the signal and
a shift of the maximum towards higher frequencies. Finally,
we will outline a method based on OPG measurements to
obtain the DOS as a function of energy in the upper half of
the bandgap.

5.1. Illustration by means of numerical modelling

In order to have access to some quantities that cannot be
measured, we have performed a numerical simulation of the
experiment. The DOS that we have used, which is quite typical
for hydrogenated amorphous silicon, is shown in figure 6.
The characteristic slopes for the band tails are 55 meV for the
valence tail and 27.5 meV for the conduction tail, while the
maximum defect densities are 2 × 1016 cm−3 eV−1 for both
donor (Gaussian function centred at 0.85 eV, standard deviation
of 0.12 eV) and acceptor (Gaussian function centred at 1.25 eV,

5
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Figure 5. OPG current densities (δjOPG) obtained for different
values of the generation rate indicated in the figure. The grating
period was set as � = 20 µm and the measurements were
performed in a short-circuit configuration. The lines and the arrow
are guide to the eye.
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Figure 6. Typical DOS for a-Si : H used in our simulations.

standard deviation of 0.12 eV) distributions of states. We have
chosen standard values for the material parameters, such as
carrier mobilities µn = 10 cm2 V−1 s−1, µp = 1 cm2 V−1 s−1

and capture coefficients cn = cp = 4 × 10−9 cm3 s−1.
The system of equations (9) can be analytically solved for

each value and each sign of ω. We have developed a computer
code that numerically calculates the integrals defining the
coefficients of (9), and thus calculates δn and δp. Then, the
internal electric field and conductivity are computed and the
evolution of the OPG current with ω is calculated. The purpose
of the calculations is not to fit the experimental results, but to
follow the evolution of quantities that are not accessible from
the experiment. By doing so, we get a better understanding of
the physics involved.

We shall first explain the origin of the OPG signal and
the general shape of the δj versus ω curves. The grating
illumination creates a periodic spatial distribution of free and
trapped charge. In figure 7 we present a ‘picture’ of the
distribution inside the sample of different quantities at a given
time t∗, as obtained from our calculations for the light grating

Figure 7. Numerical calculations of (a) the distributions of free
electrons (δnfree(x, t∗)), (b) net trapped charge
(δptrap(x, t∗) − δntrap(x, t∗)), (c) internal electric field (ξ int(x, t∗))
and (d) the resulting drift component of the OPG current density
(δjdr(x, t∗)), as a function of the spatial coordinate x at a given time
t∗ while the illumination grating moves steadily to the right. The
dots correspond to the grating angular frequency that gives the
maximum OPG signal, the dashed line to a much lower frequency
and the solid line to a much higher frequency (see also figure 8).

moving in the positive x direction. The position of one
maximum of the light grating is shown by a vertical solid line.
Three different cases, corresponding to three ω values, are
displayed in each figure: the dots correspond to the grating
angular frequency that gives the maximum OPG signal, the

6
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Figure 8. Calculated OPG signal (δjOPG, left axis) and phase shift
between the free electrons and the internal electric field (ϕδn − ϕξ ,
right axis) as a function of grating oscillation angular frequency (ω).
The symbols correspond to the frequencies used to construct
figure 7. The inverse of the dielectric relaxation time is indicated by
a vertical arrow.

dashed line to a much lower frequency and the solid line
to a much higher frequency (these angular frequencies are
indicated in figure 8).

The distribution of free electrons δnfree(x, t∗) created by
the modulated illumination δG (calculated from (9)) can be
seen in figure 7(a). In the case of intrinsic amorphous silicon
the transport is dominated by electrons rather than holes,
so the distribution of free electrons will define the resulting
current. Figure 7(b) presents the corresponding plot for the
net trapped charge (difference between positive and negative
trapped charges δptrap(x, t∗) − δntrap(x, t∗)). As can be seen,
the curves for the lowest frequency (dashed lines in (a) and (b))
are almost in phase between them and with the illumination.
In a material like a-Si : H, with a large DOS in the band
gap, the trapped charge is usually much larger than the free
charge. Therefore, figure 7(b) can be considered a plot of
the total excess charge. According to Poisson’s equation (2),
the inhomogeneous charge density creates an internal electric
field even for the case of no external electric field applied to
the sample.

A straightforward calculation shows that this internal
electric field is 90◦ out of phase with the space charge, as
can be seen in figure 7(c). The drift component of the current
density, δjdr(x, t∗), is presented in figure 7(d). As shown in
section 3, it is the average of δjdr(x, t) over one spatial period
that defines the current measured in the OPG experiment. For
low frequencies, free charges and the internal electric field are
90◦ out of phase, and thus the current oscillates around zero
(dashed line in figure 7(d)). A static grating gives a current
whose mean value (calculated according to (13)) vanishes,
being the reason for the fact that all the OPG current densities
tend to zero for ω → 0.

When the grating oscillation frequency increases, charges
start to lay behind the light excitation (dots in figures 7(a)
and (b)). However, free charges can respond much faster than
trapped charges, and a phase shift between both distributions
arises. The internal electric field (dots in figure 7(c)), which is
determined mainly by the trapped charge, starts to be partially

Figure 9. Evolution of the values of the internal electric field (ξint ,
left axis) and free electrons (δnfree, right axis) as a function of the
angular frequency.

in phase with the free charges. As a result, δjdr(x, t) oscillates
in space around a nonzero value (dots in figure 7(d)). When
δjdr(x, t) is averaged over one period (equation (13)), the
resulting δj (t) does not vanish even for zero external electric
field. The value of δj (t) is constant as long as the grating moves
with a constant velocity in one direction (δj+ω), and changes
sign when the grating changes the direction of movement
(δj−ω, see figure 2).

For even higher frequencies (solid lines), the phase shift
between free and trapped charges increases further. At the
same time, the fact that trapped carriers cannot follow the
excitation causes a blurring of the charge distributions (see
figure 7(b), solid line). As a result, the internal electric field
tends to vanish (figure 7(c), solid line). Even when the internal
electric field turns to be in phase with the distribution of free
electrons, therefore δjdr(x, t) being always positive in this case
(figure 7(d), solid line), the steady blurring of the space charge
grating leads to a decrease in its amplitude. Consequently, the
OPG current tends to vanish for the highest frequencies.

The information presented for a given time t∗ as a function
of the position inside the samples in figure 7 can be considered
differently and presented as the amplitudes and phase shifts
of the different quantities, as in figures 8 and 9. In figure 8
we show the evolution of the OPG signal, δjOPG, and of the
phase shift between free electrons and the internal electric field,
ϕδn −ϕξ , as a function of ω. The points marked by symbols in
the figure correspond to the three angular frequencies presented
in figure 7. In this calculation we have used a generation
rate G0 = 1018 cm−3 s−1, a grating period � = 20 µm and
an external electric field ξext = 0. As can be seen, for low
frequencies the phase shift between the internal field ξint and
the excess of free carriers δnfree tends towards π/2 and δjOPG

towards zero, as we have already explained. For high enough
frequencies, ξint and δnfree get to be in phase, but δjOPG tends to
zero again. This is because ξint and δnfree both tend to decrease
when the frequency is increased.

Figure 9 presents this behaviour, from where it can be seen
that the decrease in δjOPG for angular frequencies larger than
∼1.6 × 105 s−1 (marked with a dot in figure 8) is coincident
with the sharp decrease in ξint and δnfree in figure 9.
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Figure 10. Calculated results showing the evolution of different
characteristic times with the generation rate.

Putting both facts together, we can understand the shape of
the OPG curves: at low frequencies, free and trapped charges
are in phase between them but out of phase with the internal
electric field, so there is low OPG signal despite the high values
of the charges. When the frequency begins to rise, free and
trapped charges begin to be out of phase due to their different
response times. The electric field begins to be partially in
phase with the free carriers, so the photocurrent increases.
This continues until the point when the trapped carriers can
no longer follow the movement of the light grating, causing
a blurring of the charge grating. From that point on, the
photocurrent begins to decrease due to the decrease in both
the electric field and electron concentration.

5.2. Characteristic times of the semiconductor

The angular frequency that gives the maximum OPG signal,
ωmax, is clearly related to some characteristic time of the
sample, which couples with the oscillation of the grating.
The different characteristic times that can be considered are
the free electron lifetime τn, the dielectric relaxation time
τdiel and the recombination time of the small excess of free
plus trapped electrons, that we shall call the small signal
electron lifetime τ ′

n in the following. This small signal electron
lifetime is defined as τ ′

n = (δntrap + δnfree)/δG = δntot/δG,
following the definition given in [21, 22]. The link between
these different characteristic times and the inverse of ωmax

is clarified in figure 10, where we present the calculated
dependence of τn (triangles), τ ′

n (stars), τdiel (circles) and ω−1
max

(squares) as a function of G0. The characteristic times were
calculated by numerically solving the continuity and charge
neutrality equations in the steady state. As can be seen, for
these particular ‘material’ parameters, a generation rate of
∼5 × 1019 cm−3 s−1 defines the limit between the relaxation
regime (τn < τdiel for G0 < 5×1019 cm−3 s−1) and the lifetime
regime (τn > τdiel for G0 > 5 × 1019 cm−3 s−1).

In the relaxation regime ω−1
max tends towards τdiel, which

is easy to understand since this time governs the formation
of the space charge field. The inverse of τdiel is marked by

1017 1018 1019 1020 1021

10-7

10-6

10-5

10-4

10-3

τdiel

[ωmax ] -1

C
ha

ra
ct

er
is

tic
 ti

m
e 

(s
)

G
0

(cm-3s-1)

Figure 11. Experimental result showing the evolution of the
dielectric relaxation time and of ω−1

max as a function of the generation
rate.

a vertical arrow in figures 8 and 9, and is roughly coincident
with the maximum in the OPG curve and the sharp decrease in
δn and ξint. This is expected since the generation rate used in
those calculations (G0 = 1018 cm−3 s−1) locates the sample in
the relaxation time regime. Therefore, τdiel can be obtained
from an OPG measurement performed with a low-enough
generation rate. Since τdiel can also be obtained from the
steady-state photoconductivity (σ0) as τdiel = εε0/σ0, we are
in a position to verify the results of our calculations. Figure 11
presents the results of measurements performed at different
generation rates, where τdiel (circles) and ω−1

max (squares) are
displayed as a function of G0. As can be seen, ω−1

max tends
towards τdiel in the limit of low generation rates, when the
sample is certainly in the relaxation regime.

On the other hand, figure 10 shows that in the lifetime
regime ω−1

max tends to τ ′
n. This can be understood since τ ′

n is
the characteristic time at which excess trapped charges relax,
giving rise to a blurring of the charge grating. Since we
are under small signal modulation conditions, the response
of the sample to an external perturbation is characterized
by the small signal lifetime τ ′

n. An OPG measurement
performed with a high generation rate would provide τ ′

n from
the inverse of ωmax. This is an important result, since it
is not easy to obtain τ ′

n in materials exhibiting dispersive
transport, such as a-Si : H. Transient methods fail to provide
a definite value, since the photocurrent decay is not a single
exponential [23, 24]. Therefore, the possibility to obtain τ ′

n

from a different experiment is stimulating.

5.3. Interpretation of the experimental results

We are now in a position to explain the behaviour of the
sample in the experimental tests. In figure 12 we plot the OPG
current as a function of ω, calculated for the DOS of figure 6
from the equations of section 3, for G0 = 1021 cm−3 s−1,
� = 40 µm and for different values of the external electric
field. The DOS of figure 6 is not chosen to fit the experimental
results; it is just a typical DOS for a-Si : H. For that reason,
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Figure 12. Simulated OPG current density (δjOPG) for different
values of the external electric field indicated in the figure. In this
simulation the grating period is � = 40 m and the generation rate is
G0 = 1021 cm−3 s−1.

Figure 13. Simulated OPG current density (δjOPG) for different
values of � indicated in the figure. The generation rate here is
G0 = 1021 cm−3 s−1 and the external electric field is zero.

the quantitative agreement between figures 12 and 3 is not so
good: the values of ωmax and δjOPG(ωmax) differ. However,
the qualitative agreement is excellent. Both in the experiment
and in the calculations, these relatively small external fields
produce no changes in the OPG signal and the curves are
perfectly superimposed. This can be understood since a small
electric field produces a vertical displacement of the curve
shown in figure 2(b), without changing its shape. The lock-
in amplifier used for the detection of the signal filters this
constant value, giving an output value independent of the
presence of a small external electric field. On the other hand,
for high external electric fields the shape of the OPG curves
changes completely, as can be seen in figure 12 for the case
of ξext = 500 V cm−1. This happens when ξext is no longer
negligible compared with ξint, introducing an asymmetry in the
grating movement. Although this is an interesting situation,
we will not enter into details in this work.

The simulated outcome of varying the grating period is
exhibited in figure 13. It is clear that the effect of decreasing �

Figure 14. Simulation of the OPG current density (δjOPG) for
different values of the generation rate indicated in the figure. The
grating period is set to 40 µm and there is no external electric field.

is an increase in the photocurrent, while the peak of the curves
is always located at the same angular frequency, in qualitative
agreement with the measurements of figure 4. As already
mentioned, the generation rate used in our measurements of
figure 4 (G0 = 6.0 × 1020 cm−3 s−1) and in these simulations
(G0 = 1021 cm−3 s−1) locates the sample in the lifetime
regime. As shown in figure 10, in this regime ωmax is related
to the inverse of the small signal lifetime, τ ′

n. Since a variation
in the grating period does not change τ ′

n, which is fixed by
the DOS and the generation rate, no shift in ωmax is expected.
On the other hand, a decrease in the grating period causes an
intensification of the internal electric field due to the shorter
separation between charges. This explains why the OPG signal
increases with the decrease in �. The value of ωmax in figure 4
is ≈2.5 × 105 s−1 for all the curves, corresponding to a small
signal lifetime τ ′

n ≈ 4 µs, a reasonable value for device-grade
a-Si : H [21, 25].

Finally, figure 14 shows what happens when the generation
rate is varied. In agreement with the measurements of
figure 5, an increase in G0 causes a shift of ωmax towards
higher values and an increase in the OPG current density.
When the generation rate increases we have a decrease in τ ′

n

(figure 10), since the splitting of the quasi-Fermi levels turns
more states into recombination centres, reducing the lifetime.
Recalling the inverse relationship between ωmax and τ ′

n in the
lifetime regime, the decrease in τ ′

n results in an increase in
ωmax. On the other hand, the increase in G0 also increases
the density of free carriers. This explains the increase in
the maximum OPG signal with the generation rate seen in
figures 5 and 14.

As can be seen by comparing figures 3–5 with figures
12–14, the trend of all the experimental results is well
reproduced by the simulations. The goal of these simulations
was not to perform a fit of the experimental results, but to gain
some insight into the physical processes involved. The fact
that a typical DOS for a-Si : H can reproduce the experimental
trends is a cross-validation of our experimental and theoretical
results.
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5.4. Outline of DOS spectroscopy based on OPG
measurements

In addition to providing the dielectric relaxation lifetime and
the small signal lifetime, the OPG experiment can also shed
some light on the DOS of the material, as we shall show in the
following. Indeed, the definition of the small signal lifetime
leads to

τ ′
n = ∂ntot

∂G0
= ∂n0

∂G0
+

∂ntrap

∂G0
. (16)

Taking into account the power-law relationship between the
free electron concentration and the generation rate, n0 ∝ G

γ

0 ,
a straightforward calculation leads to

∂n0

∂G0
= γ n0

G0
. (17)

On the other hand, we can write

∂ntrap

∂G0
= ∂ntrap

∂EFn

∂EFn

∂n0

∂n0

∂G0
, (18)

where EFn is the electrons’ quasi-Fermi level. The
concentration of trapped electrons is given by

ntrap =
∫ Ec

Ev

f0(E)NACC(E) dE. (19)

At low temperatures, the occupation function f0 falls off
sharply at EFn. If the temperature is such that kBT (where
kB is Boltzmann’s constant and T the absolute temperature) is
lower than the slope of the DOS between EFn and Ec, equation
(19) can be approximated by

ntrap ∼=
∫ EFn

Ev

f0(E)NACC(E) dE. (20)

Therefore, we have

∂ntrap

∂EFn

∼= f0(EFn)N
ACC(EFn). (21)

From the definition of the electron quasi-Fermi level we
have [26]

EFn = Ec + kBT ln

[
n0

Nc

]
, (22)

where Nc is the equivalent DOS at the conduction band edge.
Therefore

∂EFn

∂n0
= kBT

n0
. (23)

Substituting equations (21), (23) and (17) into (18), we obtain

∂ntrap

∂G0

∼= kBT γ

G0
f0(EFn)N

ACC(EFn). (24)

If we now substitute (17) and (24) into (16) we get

τ ′
n = γ

G0
[n0 + kBTf0(EFn)N

ACC(EFn)]. (25)

For undoped a-Si : H samples at low temperatures we have
n0 � kBTf0(EFn)N

ACC(EFn) and, since electrons are the
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Figure 15. Simulations of a DOS spectroscopy based on the
estimate of τ ′

n combined with simple steady-state photoconductivity
data. The simulation was performed at different temperatures from
100 to 460 K in steps of 10 K, with two different generation rates
displayed in the inset.

majority carriers, it can be demonstrated [26] that f0(EFn) ≈ 1.
Thus

NACC(EFn) ∼= G0τ
′
n

kBT γ
. (26)

Therefore, the knowledge of τ ′
n from the OPG experiment,

combined with very simple steady-state photoconductivity
results, opens the possibility of achieving DOS spectroscopy.
It is not the purpose of this paper to enter into a complete
investigation on the possibilities and limitations of this DOS
spectroscopy. Nevertheless, we shall illustrate the applicability
of (26) by means of a numerical calculation. Introducing the
DOS displayed in figure 6 into our computer code, we have
performed calculations of τ ′

n and γ at different temperatures
T , from 100 to 460 K in steps of 10 K, for two generation rates
of 1.3 × 1019 and 6 × 1020 cm−3 s−1. Then we calculated the
DOS according to equations (22) and (26), comparing with
the originally introduced DOS. The final results are presented
in figure 15 and one can see that the agreement between the
introduced DOS and the calculated one is quite good. Although
the slope of the conduction band tail is overestimated by∼20%,
the general shape of the curve is well reproduced. We are at
present working on the optimization of this DOS spectroscopy
to improve the agreement between the ’true’ DOS and the one
deduced from OPG measurements.

Again, it was not the purpose of this paper to test all
the possibilities offered by this new spectroscopy method.
However, it is clear that the OPG method can provide
information on important parameters of the sample, such as
the dielectric relaxation time and the small signal lifetime, as
well as on the DOS of the studied material when combined
with simple steady-state photoconductivity measurements.

6. Conclusion

In this work we have presented the general equations describing
the oscillating photocarrier grating technique and we have
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clarified through numerical simulations the origin of the OPG
signal. We have also implemented the experiment, applying
it to an a-Si : H sample. The typical OPG curves present
a peak for a characteristic frequency of oscillation of the
grating, ωmax. Our experiments and simulations show that
this peak is not affected by the presence of a small external
electric field; it changes its height but not the position when
the grating period is varied, and it changes both height and
position when the generation rate is varied. The general
agreement between experiments and simulations gives us
confidence on our understanding of the technique. We could
identify ω−1

max with a characteristic time of the sample, which
is the small signal lifetime if the experiment is performed
in the lifetime regime or the dielectric relaxation time if the
experiment is performed in the relaxation regime. Therefore,
the OPG method provides a simple and convenient way to
extract important information on these times characterizing the
response of the sample to an external perturbation. Moreover,
we have shown that the density of states at the electrons’ quasi-
Fermi level can be obtained from measurements of steady-state
photoconductivity and OPG performed in the lifetime regime.

Appendix

Figure A1 shows beams I1 and I2 entering the sample from
air. Both beams are polarized along the y-axis. The EOM
introduces a phase shift φ on beam I2 without changing its
polarization or intensity (figure 1), so the electric field vector
inside the sample can be written as

�E2 = E2 cos[�t + K ′
2z + φ]ĵ ,

where � is the angular frequency of the electromagnetic wave
and K ′

2 is the wavevector of beam I2 inside the sample. Beam
I1 forms an angle δ with the normal outside the sample and
an angle δ′ inside the sample, which are related by refraction’s
law nair sin δ = nsample sin δ′. The electric field of beam I1

inside the sample can be written as

�E1 = E1 cos[�t + K ′
1 cos(δ′)z − K ′

1 sin(δ′)x]ĵ .

The modules of both wavevectors are equal, thus K1 = K2 =
K and K ′

1 = K ′
2 = K ′, while the values outside and inside

the sample are related by K/nair = K ′/nsample. Therefore, we
have K ′ sin δ′ = K sin δ. The resulting electric field inside the
sample is

�E = �E1 + �E2 = E1 cos[�t + K ′ cos(δ′)z − K sin(δ)x]ĵ

+ E2 cos[�t + K ′z + φ]ĵ .

The time-averaged modulus squared is

〈| �E|2〉 = I (x, t) = I1 + I2

+ 2
√

I1I2 cos[K sin(δ)x + K ′(1 − cos δ′)z + φ].

In the x direction the grating has a spatial period � = λ/sin δ,
while in the z direction we have �z = λ/(nsample(1 − cos δ′)).
For the conditions used in our experiments, this grating in the
z direction can be ignored since it has a period much larger
than the sample thickness.

I1

I2

K1

K2

δ
δ’ K1’

K2’

air sample

z y

x

Figure A1. Schematic representation of the interfering beams going
through the air–sample interface.

V

t

VM

0
TT/2

Figure A2. Voltage applied to the EOM as a function of time.

The modulated part of the illumination can thus be
written as

δI (x, t) = 2
√

I1I2 cos

[
2π

�
x + φ(V )

]
,

where the voltage V is the difference between the voltages
applied to the two channels of the EOM. The resulting phase
shift is linear with this voltage, so that

φ(V ) = π
V

VM
,

where VM is the maximum voltage that can be applied to the
EOM, giving rise to a phase shift of π . To have a harmonic
variation of the intensity with time we need a linear dependence
of the angle φ with time, or a voltage applied to the EOM that
is a triangular function with period T (figure A2):

V (t) =




2VM
t

T
for 0 � t � T

2
,

2VM

(
1 − t

T

)
for

T

2
� t � T ,

giving φ(t) =




2π
t

T
for 0 � t � T

2
,

2π

(
1 − t

T

)
for

T

2
� t � T .

The result is

I (x, t) = I1 + I2 + 2
√

I1I2 cos

(
2πx

�
± 2πt

T

)
,
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where the plus sign is for the first half of each period and
the minus sign for the second half of each period. This is
an intensity grating that periodically moves with a constant
velocity in one direction for the first half of the period and in
the other direction for the second half of the period. Defining
I0 = I1 + I2, δI = 2

√
I1 I2, k = 2π/� and ω = 2π/T we

finally have

I (x, t) = I0 + δI cos(kx ± ωt).
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