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Local regularity analysis is useful in many fields, such as financial analysis, fluid mechan-
ics, PDE theory, signal and image processing. Different quantifiers have been proposed
to measure the local regularity of a function.

In this paper we present a new quantifier of local regularity of a signal: the pointwise
wavelet leaders entropy. We define this new measure of regularity by combining the
concept of entropy, coming from the information theory and statistical mechanics, with
the wavelet leaders coefficients. Also we establish its inverse relation with one of the
well-known regularity exponents, the pointwise Hölder exponent.

Finally, we apply this methodology to the financial data series of the Dow Jones
Industrial Average Index, registered in the period 1928–2011, in order to compare the
temporal evolution of the pointwise Hölder exponent and the pointwise wavelet leaders
entropy. The analysis reveals that temporal variation of these quantifiers reflects the
evolution of the Dow Jones Industrial Average Index and identifies historical crisis events.
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We propose a new approach to analyze the local regularity variation of a signal and
we apply this procedure to a financial data series, attempting to make a contribution to

understand the dynamics of financial markets.
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1. Introduction

Singularities and irregular structures often carry essential information in a signal
or image. For example, in image processing, detecting the object contours is related
to finding discontinuities and singularities in the image.13 Another example is pro-
vided by electrocardiogram signals from which heart failure is associated with an
increasing irregularity of the signal.5

To characterize these localized singular structures it is necessary to quantify
the local regularity of a function f(x). Different quantifiers have been proposed to
measure the local regularity of a function.17,18 The simplest one is the pointwise
Hölder exponent which is defined in each x0 ∈ Dom(f) ⊆ R

d, f a locally bounded
function, as

Hf (x0) = sup
0≤α<+∞

{α : f ∈ Cα(x0)}, (1.1)

recalling that a function f : Rd → R belongs to the class Cα(x0) if there exists C > 0
and a polynomial Px0(x) of degree less than α such that, near the point x0, verifies

|f(x) − Px0(x)| ≤ C|x− x0|α. (1.2)

This exponent captures the regularity variation of f quantifying how rugous or
spiky is the graph of a function. A highly irregular point in a function is character-
ized by a low pointwise Hölder exponent, while the smooth portions of a function
have higher exponents. On 2004, Jaffard7 formulates a new characterization of the
pointwise Hölder exponent through the study of the decay of the wavelet leaders
coefficients, which are calculated from the local suprema of the wavelet coefficients
of a signal f ∈ L2(R), reconcentrating its information and reorganizing its structure.

Wavelet analysis gives a time-scale decomposition of f , reflecting its scaling
properties. Furthermore, the analysis of the decay of the amplitude and the local
modulus maxima wavelet coefficients also provides an appropriate tool for studying
topics from images and signals such as pattern recognition,23 denoising,13 edge
detection22 and other applications. Wavelet leaders exploits these properties to
reveal the local regularity of f . Moreover the wavelet leaders gives an effective
method for computing the spectrum of singularities or multifractal spectrum of
numerical series and natural signals.19,10 Analyzing multifractal features is closely
related to look into the local regularity variation because multifractal framework
provides a statistical description from the collection of local singularities. Indeed the
spectrum of singularities computes the Hausdorff dimension of the set of singular
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points {x0 ∈ R
d :Hf (x0) = H}, where H is a given Hölder exponent value taken

by a multifractal function f : Rd → R.
In this paper we propose a novel approach to analyze the dynamics of time series:

studying the evolution of their local regularity through a new measure, the pointwise
wavelet leaders entropy. For this purpose we define a discrete pointwise probability
distribution Px0 = {ρj : j = 1, . . . ,m}, for each x0, based on the computation of the
wavelet leaders coefficients of a signal given by 2m data and compute the entropy
formulated by Shannon21 to define the pointwise wavelet leaders entropy in x0.
An antecedent of combining the concept of entropy with the wavelet coefficients
can be found in Refs. 24 and 1 for describing electroencephalogram series. Our
new quantifier refines those formulated in these last references, where the entropies
are defined in non-overlapping intervals of a given size, limited by the length and
the frequency content of the signal. In addition, our new formulation is correlated
with the local regularity analysis. We prove that pointwise wavelet leaders entropy
takes values very close to the maximum when the pointwise Hölder exponent takes
values close to zero, indicating that this quantifier also detects the singularities of
a function.

Finally, we apply this methodology to the financial data series of the Dow Jones
Industrial Average Index, registered in the period 1928–2011. There is evidence
that signals from financial markets, such as stock indices, interest rates or com-
modities, follow scaling laws and have self-similar structures.15 Furthermore, there
exists models based on wavelet theory and self-similarity for approximating financial
signals4 and, in recent years, many efforts have been made to relate the inefficiency
of markets with the multifractal nature of these corresponding signals. These fea-
tures are closely connected to the local regularity analysis, thus in this view our
procedure is an interesting alternative for analyzing financial data series.

2. Local Regularity and Wavelet Leaders

The decay of the wavelet transform amplitude across the scales is related to the
local signal regularity. Measuring this asymptotic decay is equivalent to zooming
into signal structures at fine scales.

For studying the local signal regularity additional properties are required for the
real wavelet mother ψ. More precisely, we need an admissible orthogonal wavelet
mother ψ ∈ Cr, r ∈ N, with derivatives that have a fast decay, and ψ has r vanishing
moments, that is, ∫ +∞

−∞
xkψ(x)dx = 0, 0 ≤ k < r, k ∈ N. (2.1)

To measure the local regularity of a signal, vanishing moments are crucial. If
the wavelet has r vanishing moments, the wavelet transform can be interpreted as
a multiscale differential operator of order r. This yields a first relation between
the differentiability of f and its wavelet transform decay at fine scales.14 Also, if f
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is a nowhere differentiable function, there is a direct connection between its local
fractional differentiability and its local behavior.9

Using that F = {2j/2ψ(2jx− k)}j,k∈Z forms an orthonormal basis of L2(R) we
can write a signal f in the space of signals having a finite energy L2(R) as,

f(x) =
∑
j∈Z

∑
k∈Z

cj,kψ(2jx− k), (2.2)

where cj,k = 〈f, 2jψ(2jx − k)〉 are the wavelet coefficients of f , normalized in L1

instead of the usual definition.
In Ref. 6, Jaffard finds a direct correlation between the wavelet coefficients cj,k

and the pointwise Hölder regularity and proves that if f belongs to the class Cα(x0)
then for all j ≥ 0,

|cj,k| ≤ C2−jα(1 + |2jx0 − k|)α, (2.3)

for some constant C. Moreover, when f has a non-oscillating singularity in x0, like
a cusp point, the significance coefficients are “localized” near the point x0 and

|cj,k| ≈ C2−jα. (2.4)

But this is not the case when the function has oscillating singularities, like chirps.
Then, the maxima coefficients may be localized far from the singular point and the
last property fails. In this view, Jaffard7 gives a new formulation for this property,
characterizing the local regularity in terms of the local suprema of the wavelet
coefficients, the wavelet leaders. The notion of wavelet leaders were introduced in
Ref. 8, finding a formula which yields the upper box dimension of a graph of a
function.

We can suppose that ψ is essentially localized on the interval [0, 1], thus cj,k has
information about the signal related to the dyadic interval Ij,k = [ k

2j ,
k+1
2j ).

Then, wavelet leaders of a bounded function f are defined as follows:

dj,k = sup
Il,h⊂3Ij,k

|cl,h|, (2.5)

where 3Ij,k = Ij,k−1 ∪ Ij,k ∪ Ij,k+1 = [k−1
2j ,

k+2
2j ) is the dilated interval.

We denote Ij(x0) the unique dyadic interval Ij,k containing x0 ∈ R for the level
j. Then the wavelet leader for x0 in the level j is defined as

dj(x0) = sup
Il,h⊂3Ij(x0)

|cl,h|. (2.6)

Figure 1 illustrates this definition.
Then, concentrating the wavelet coefficients information in the wavelet leaders

Jaffard7 proved the following general result about the “leaders” coefficients decay.
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Fig. 1. A schematic illustration of the wavelet leaders coefficients definition.

Theorem 2.1. Let f be a bounded function in Cα(x0), α > 0. Then for all j > 0,

dj(x0) ≤ C2−jα, (2.7)

for some constant C. Furthermore, if f is uniformly Hölder, the pointwise Hölder
exponent of f can be computed using

Hf (x0) = lim inf
j→+∞

log(dj(x0))
log(2−j)

. (2.8)

Remark 2.1. A function f is uniformly Hölder if condition (1.2) takes place for
all x0 with the possibility of choosing C uniformly, i.e. for 0 < α < 1, f is uniformly
Hölder if there exists C such that,

|f(x) − f(y)| ≤ C|x− y|α ∀x, y ∈ R.

Remark 2.2. This property is independent of the wavelet mother election as long
as ψ has the required conditions, ψ ∈ Cr with r vanishing moments and fast decay
derivatives ψ(n), 0 ≤ n ≤ r, with r > α.

3. Wavelet Leaders Entropy

Entropy is a concept that arises from the thermodynamics and is reformulated by
the information theory and the statistical mechanics.2 It plays a central role in
information theory as measure of information, choice and uncertainty. If X is a
source of information which produces a sequence of symbols {x1, . . . , xm} whose
probabilities of occurrence are {p1, . . . , pm} then the quantity

S = −
m∑

i=1

pi log2(pi) (3.1)

is the Shannon21 entropy of the discrete probability distribution {p1, . . . , pm}. If
pi = 0, it is defined pi log2(pi) = 0.

The quantity S has properties which further validate it as a reasonable measure
of choice or information.
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• S = 0 if and only if pi = 1 and pj = 0 for all j �= i. Thus, only when we are
certain of the outcome, S vanishes. Otherwise S is positive.

• S is a maximum and equal to log2(m) when all the pi are equal. This is also
intuitively the most uncertain situation.

To define the pointwise wavelet leaders entropy we determine a discrete proba-
bility distribution Px0 , for each x0 ∈ Dom(f) and a resolution level m, as:

Definition 3.1. Let f be a bounded function and m a resolution level. It is defined
Px0 = {ρ1, . . . , ρm} such that:

ρi =
d2

i (x0)
m∑

j=1

d2
j(x0)

if di(x0) �= 0 and ρi = 0 otherwise, (3.2)

for i = 1, . . . ,m and recalling that di(x0) is the wavelet leader coefficient for x0 in
the level i defined in Eq. (2.6).

From these concepts:

Definition 3.2. Let f be a bounded function and let m a resolution level. The
pointwise wavelet leaders entropy for x0 ∈ Dom(f) is:

Sf (x0) = S(Px0) = −
m∑

i=1

ρi log2(ρi). (3.3)

If ρi = 0, it is defined ρi log2(ρi) = 0.

If the highest resolution level j concentrates the higher wavelet coefficients in
a neighborhood of x0 then the wavelet leaders coefficients for x0, across all levels,
are equal and therefore Sf (x0) is maximum and equal to log2(m). On the other
hand, Sf (x0) = 0 if the wavelet coefficients in a neighborhood of x0 are zero except
perhaps at the lowest resolution level j.

The following proposition proves an inverse relation between this new quantifier
and the pointwise Hölder exponent.

Proposition 3.1. Let f be a bounded function and let H = Hf (x0) be the pointwise
Hölder exponent in x0 ∈ Dom(f) ⊆ R and a > 1. If f ∈ CH(x0) and f is uniformly
Hölder then there exist a resolution level m ∈ N such that :

4−(ma−1)H log2(m4−(ma−1)H) ≤ Sf (x0). (3.4)

Proof. Without loss of generality we can assume the resolution level m ∈ N ver-
ifies that wavelet leader coefficient dm(x0) > 0. Since (di(x0))i∈N is a decreasing
sequence, the probability distribution Px0 defined in (3.2) verifies

1 > ρ1 ≥ ρ2 ≥ · · · ≥ ρm.
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So that

mρm log2

(
1
ρ1

)
≤

m∑
i=1

ρi log2

(
1
ρi

)
= Sf (x0). (3.5)

Using (3.2), we can write

mρm log2

(
1
ρ1

)
= m

d2
m(x0)

m∑
j=1

d2
j (x0)

log2




m∑
j=1

d2
j (x0)

d2
1(x0)


.

In addition, md2
m(x0) ≤

∑m
j=1 d

2
j(x0) ≤ md2

1(x0) then

d2
m(x0)
d2
1(x0)

log2

(
m
d2

m(x0)
d2
1(x0)

)
≤ mρm log2

(
1
ρ1

)

or,

(
dm(x0)
d1(x0)

)2

log2

(
m

(
dm(x0)
d1(x0)

)2
)

≤ Sf (x0).

Since Eq. (2.7) and f ∈ CH(x0) there exists C > 0 such that dj(x0) ≤ C2−jH

for all j > 0. On the other hand, given that f is uniformly Hölder, Eq. (2.8) in
Theorem (2.1) holds and it implies that for a > 1 there exists an infinite number
of levels j such that

C2−jaH ≤ dj(x0). (3.6)

By choosing a level m such that

C2−maH ≤ dm(x0) ≤ C2−mH ,

we have(
C2−maH

C2−H

)2

log2

(
m

(
C2−maH

C2−H

)2
)

≤
(
dm(x0)
d1(x0)

)2

log2

(
m

(
dm(x0)
d1(x0)

)2
)

or

4−(ma−1)H log2(m4−(ma−1)H) ≤ Sf (x0).

Corollary 3.1. If Eq. (3.4) holds, it follows that : Sf (x0) takes values close to its
maximum log2(m) when H = Hf (x0) takes values close to zero.

Remark 3.1. The use of the constant a > 1 in Eq. (3.4) is due to a technical issue
to prove the theorem. It has no relevance to deduce the Corollary 3.1.
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Remark 3.2. If the wavelet leaders coefficients verifies the equality

di(x0) = C2−iH ∀ i = 1, . . . ,m,

then it can be computed Sf (x0) =
∑m

i=1 ρi log2(
1
ρi

), recalling the definition in
Eq. (3.2) as:

Sf (x0) = log2


 m∑

j=1

(4−H)j


+

2H
m∑

i=1

i(4−H)i

m∑
j=1

(4−H)j

.

Since 4−H < 1,

Sf (x0) ≤ log2

(
4−H

1 − 4−H

)
+ 2H

4−H

(4−H − 1)2

(4−H)m+1 − 4−H

4−H − 1

= log2

(
4−H

1 − 4−H

)
+

2H
(1 − 4−H)(1 − 4−Hm)

≤ −log2(1 − 4−H) − 2H +
2H

(1 − 4−H)2

≤ −log2(1 − 4−H) + 2H
(

1
(1 − 4−H)2

− 1
)
.

Then Sf (x0) satisfies

Sf(x0) ≤ −log2(1 − 4−H) + 2H4−H

(
2 − 4−H

(1 − 4−H)2

)
.

In this case Sf(x0) is near to zero when H = Hf (x0) is large enough.

4. Numerical Examples

To illustrate the inverse relation between the pointwise wavelet leaders entropy and
the pointwise Hölder exponent we compute the pointwise wavelet leaders entropy
to a synthetic signal whose Hölder exponent is predetermined. For this purpose, we
consider the generalized Weierstrass function3:

F (t) =
+∞∑
k=0

3−kc(t) sin(3kt), (4.1)

which has exactly Hölder exponent c(t) at every point, for c(t) a continuous function
such that 0 < c(t) < 1.

We generate two numerical series data by computing the generalized Weierstrass
function generated by different functions c(t). In both cases the length of the series
is 215 data points.
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In the present study, an orthogonal decimated discrete wavelet transform and
a multiresolution analysis scheme is applied to compute the wavelet coefficients.
Among several alternatives we select an orthogonal B-cubic spline function, with
three vanishing moments, as mother wavelet. It combines in suitable proportion
smoothness with numerical advantages.25 We propose the following algorithm for
estimating the pointwise wavelet leaders entropy:

Algorithm

(1) Via the Mallat algorithm,12 compute the wavelet coefficients for the resolution
levels j = 1, . . . , 14, considering the data series F (t) at the highest level.

(2) From the definition (2.6), estimate the wavelet leaders coefficients
(dj(t))j=1,...,14 using

dj(t) = sup{|cl,h| : Il,h ⊂ 3Ij(t), 1 ≤ l ≤ 14}.
The last definition indicates that to compute dj(t) we consider the data series
F (t) is localized on the dyadic interval Ij(t) = [ k

2j ,
k+1
2j ) and the indexes l, h

such that:

2l−j(k − 1) ≤ h ≤ 2l−j(k + 2) for each l ≥ j − 1 and l ≤ 14.

(3) Calculate the pointwise wavelet leaders entropy SF (t) for the resolution level
m = 14, using the formulas (3.2) and (3.3),

SF (t) = −
14∑

i=1

ρi(t) log2(ρi(t)),

with ρi(t) = d2
i (t)

P14
j=1 d2

j(t)
if di(t) �= 0 and ρi(t) = 0 otherwise.

We obtain the first time series data by estimating the generalized Weierstrass func-
tion generated by c(t) = 1

4π (t + 2π), t represents 215 regularly spaced values in
the interval (−2π, 2π) (Figs. 2 and 3). The pointwise wavelet leaders entropy is
displayed in Fig. 4.

−6 −4 −2 0 2 4 6
−4

−2

0

2

4

6

t

F
(t

)

Generalized Weierstrass Function

Fig. 2. Generalized Weierstrass function, c(t) = 1
4π

(t + 2π).
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Pointwise Hölder Exponent 

Fig. 3. The theoretical pointwise Hölder exponent HF (t) = 1
4π

(t + 2π).
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Fig. 4. The pointwise wavelet leaders entropy SF (t).
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Generalized Weierstrass Function

Fig. 5. Generalized Weierstrass function, c(t) = 2
100

(49 − t2).
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Pointwise Hölder Exponent 

Fig. 6. The theoretical pointwise Hölder exponent HF (t) = 2
100

(49 − t2).

−6 0 6
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3

3.5

4
Pointwise Wavelet Leaders Entropy

t

S
F
 (

t)

log2(14)

Fig. 7. The pointwise wavelet leaders entropy SF (t).

For computing the second synthetic data series we use c(t) = 2
100 (49 − t2), t

represents 215 regularly spaced values in the interval (−2π, 2π) (Figs. 5 and 6). The
pointwise wavelet leaders entropy is displayed in Fig. 7.

We can observe how the pointwise Hölder exponent evolution captures the reg-
ularity variation of the generalized Weierstrass function. The lower exponents char-
acterize the spiky portions of the function, while the less irregular portions have
higher Hölder exponents (Figs. 3 and 6). Also, the pointwise wavelet leaders entropy
captures this regularity variation, in an inverse sense (see Figs. 4 and 7).

5. Application to a Financial Data Series

The Dow Jones Industrial Average (DJIA) is a price-weighted average of 30 blue-
chip stocks that are generally the leaders in their industry in United States of
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Fig. 8. Temporal evolution of the DJIA. (A) October 1, 1929; (B) September 1, 1939; (C) August
15, 1974; (D) November 3, 1987; (E) September 2, 2008.

America (USA). It has been a widely followed indicator of the stock market since
October 1, 1928. The data were collected from the CME Group Index Services
database (http://www.djindexes.com). We employ an average between the high
and the low DJIA daily price beginning on October 1, 1928 and ending on May 12,
2011, obtaining 20,719 observations (Fig. 8).

We estimate the regularity quantifiers using appropriate numerical methods
for calculating wavelet leaders coefficients, as in Sec. 4. These computations are
performed under the hypothesis of a self-similar underlying structure of the ana-
lyzed series. This hypothesis is based on the evidence of the existence of scaling
phenomena on stock market variations (see Ref. 15 for a deeper analysis in this
topic).

Let x(t) be the DJIA daily average price on a time t, the equity index returns
rt are calculated as its logarithmic difference, rt(t) = log(x(t+ 1)/x(t)). Using
the same algorithm as in Sec. 4 we compute the wavelet leaders coefficients
(dj(t))j=1,...,14, associated with the data series rt, and estimate the temporal evo-
lution of the pointwise wavelet leaders entropy Srt(t) (Fig. 10).

Also, we suppose

log(dj(t)) ≈ log(C) +Hrt(t) log(2−j), j = 1, . . . , 14 (5.1)

and use a linear regression to estimate the pointwise Hölder exponent Hrt(t)
(Fig. 9). There are several techniques to estimate the pointwise Hölder exponent
and this one is an efficient alternative, see Refs. 20 and 11 for developing this topic.

Values of the pointwise wavelet leaders entropy near the maximum log2(14) indi-
cate an irregularity in the signal, otherwise values of the pointwise Hölder exponent
near zero indicate this fact.
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Fig. 9. (A) October 1, 1929; (B) September 1, 1939; (C) August 15, 1974; (D) November 3, 1987;
(E) September 2, 2008.
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Pointwise Wavelet Leaders Entropy

log2(14)

Fig. 10. (A) October 1, 1929; (B) September 1, 1939; (C) August 15, 1974; (D) November 3,
1987; (E) September 2, 2008.

From the temporal evolution of these regularity quantifiers we can identify his-
torical crisis events as: (A) The stock market crash of 1929; (B) The beginning
of the Second World War; (C) The 1973–1974 decline market compounded by the
outbreak of the 1973 oil crisis; (D) The stock market crash of 1987, beginning at
the end of October 1987 in Hong Kong and spreading west to Europe and USA;
(E) The global financial crisis of 2008.

Observing Figs. 9 and 10, we can also conclude that DJIA regularity variation
is not related with the daily price index magnitude (Fig. 8).

Although the computations performed in formula (5.1) and Step (3) of the
algorithm in line 9 to estimate these quantifiers have different features, the inverse
relation between the pointwise Hölder exponent Hrt(t) and the pointwise wavelet
leaders entropy Srt(t) is also displayed in Figs. 9 and 10 and zooming into those
figures (see Figs. 11 and 12).
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Fig. 11. Pointwise Hölder exponent evolution in global financial crisis of 2008.
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Fig. 12. Pointwise wavelet leaders entropy evolution in global financial crisis of 2008.

Both methods are appropriated for detecting the singularities of the DJIA data
series but pointwise wavelet leaders entropy is more accurate than pointwise Hölder
exponent for recognizing the crisis events from their graphical representations. The
pointwise wavelet leaders entropy (Fig. 10) displays sharp peaks, distinguishing
crisis events in the higher maxima points, while the pointwise Hölder exponent
values (Fig. 9) are concentrated in the interval [0.25, 0.42] taking on a few val-
ues close to 0.6 and a few values close to 0, indicating the crisis events in the
lower minima points. This visual impression of the distribution of data is exhib-
ited in both DJIA regularity variation histograms (Figs. 13 and 14). From these
histograms we can notice that crisis events are related on the lower frequency
rectangles in both cases, but the pointwise Hölder exponent histogram also has
low frequencies for values larger than 0.5 which are not connected with the crisis
events.
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Fig. 13. Pointwise Hölder exponent histogram.

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
0

400

800

1200

1600

Pointwise Wavelet Leaders Entropy

F
re

qu
en

cy

Fig. 14. Pointwise wavelet leaders entropy histogram.

6. Summary and Conclusions

• In this work we present a new estimator, based on the concept of entropy and
wavelet leaders coefficients, to quantify the regularity signal variation and we
prove its inverse relation with the well known regularity exponent, the pointwise
Hölder exponent.

• We apply this methodology to the DJIA index data series, registered in the period
1928–2011. The analysis reveals that the temporal evolution of the pointwise
wavelet leaders entropy accurately detects historical financial crisis events. This
fact is evidenced from its higher maxima points which do not depend on the
daily price index magnitude and volatility. According with information theory,
entropy is maximum in the most uncertain situation which it may be interpreted,
in this context, as an indicator of stock market instability. We also exhibit that
pointwise wavelet leaders entropy is sharper than pointwise Hölder exponent for
distinguishing historical financial crisis events from the DJIA data series.
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• In summary, this is an interesting alternative for studying the transitions of a
signal, through the regularity variation of the data. In future works we hope to
find new applications for this methodology.
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