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discussing its vacuum solutions, we present the Hamiltonian analysis. This implies the presence
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1. Introduction

Einstein’s theory of General Relativity (GR) cannot be formulated directly in 1 + 1
dimensions using either the Einstein—Hilbert action or the related field equations.
The Einstein—Hilbert action in 1 4 1 dimensions is topological, which means that the
Ricci scalar can be written as a total derivative. Consequently one cannot arrive at
nontrivial field equations. On the other hand, it is also well known that the
(14 1)-dimensional Ricci tensor satisfies the simple geometrical identity R,, =
Rg,,/2 which implies that the Einstein tensor G, := R,, — Rg,,/2 = 0 vanishes
identically. This follows from the more general formula which allows one to express
the Riemann curvature tensor via the curvature scalar, namely

1
Ruy)\p = §R(gu>\gll/) - gupgu)\)' (1)

This identity only holds in two dimensions.

Moreover, all two-dimensional manifolds M are conformally flat. This means,
since the metric tensor in two dimensions has three independent components and one
can make two coordinate transformations, that the metric only contains a single true
degree of freedom. In suitably chosen local coordinates (¢, z) the line element or the
metric can always be brought into the following form

ds® = exp [2®(t, x)](dt* — dx?), (2)

where ®(t,x) is the dilaton field.

All of this means that one has to introduce additional fields or an additional structure
in order to formulate nontrivial gravity models in two spacetime dimensions. A variety of
models and different approaches were discussed in Ref. 1 and references therein.?
In particular, we could mention the scheme based on Riemann-Cartan geometry, where
both curvature and torsion are dynamically incorporated into the gravitational action,
see Refs. 4, 5. Another approach is to consider a two-dimensional singular limit of a
higher-dimensional theory, see e.g. Ref. 6 which has found renewed interest in the con-
text of Gauss—Bonnet-type theories.” However, this has not been without criticism.® '°
Yet another framework has recently been suggested in Ref. 11 where the Ricci scalar was
decomposed suitably to also allow for a two-dimensional theory to be formulated.

A particularly fruitful approach goes back to Jackiw!'?!3
(JT), who proposed a theory of gravity in 1+ 1 dimensions whose dynamical

and Teitelboim!'* 16

equation in vacuum is simply
R—A=0. (3)

When conformally flat metrics of the form (2) are considered, the field equation (3)
becomes

A
0o = — 5 €XP [2¢], O=9"V,V,, (4)

“We can track allusions to 2D gravity to as far as the 1960s and 70s, see Refs. 2, 3.

2430001-2



Int. J. Mod. Phys. D Downloaded from www.worldscientific.com
by 181.166.214.30 on 08/19/24. Re-use and distribution is strictly not permitted, except for Open Access articles.

Teleparallel Jackiw-Teitelboim gravity

which is Liouville’s equation.!” Early works in the subject (see, e.g. Refs. 18.19)
showed that the theory admits black hole solutions with a consistently defined notion
of entropy, very much alike its 4D-counterpart, and that it represents a rich toy
model for quantum gravity.?’ Nowadays, the main interest in such a theory is linked
to string theory. For a modern perspective, consult Ref. 21.

While the theory is neat, an undesirable feature of the JT model is that its
dynamics cannot be derived from a variational principle whose (covariant) action
depends exclusively on the metric. As a matter of fact, Jackiw considered the co-
variant action

S ox /de\/—_gN(R —A), (5)

which yields Eq. (3) when varying the action with respect to the scalar field N. This
field plays the role of a Lagrange multiplier in the theory.

However, when varying with respect to the metric, action (5) produces the ad-
ditional equation

2V, V,N + Ag,, N = 0. (6)

In this way, Eq. (3) or (4) alone determine the metric’s only free function ®, while (6)
subsequently determines N with no restriction on g,, .

On the other hand, JT theory admits a Hamiltonian formulation similar to that of
higher-dimensional theories, with the main difference that the Lagrange multipliers
that accompany the super-Hamiltonian and the super-momentum — the lapse
function n- and shift vector n', respectively, defined below — are not variables to be
varied. That is, the super-Hamiltonian and the super-momentum are not constraints,
they generate the temporal and spatial deformations of the field configuration.'* 16
Teitelboim’s action, which is constructed entirely from the metric but is manifestly
noncovariant, reads

Soc [ @al(@y— 'y =0~ ' 0% - 2h0, + Ao 20l (1)

Here, the coordinates (2, 2!') are such that the metric is written as follows:

1)2 132 1

ngeXp[w]((”) +1(77) U ) ®
n -1

which reduces to (2) when the fixed external fields are chosen as n' = 0 and - = 1.

The fact that ' and 7" are not considered as dynamical variables is reflected in the

presence of a central charge in the algebra of the generators.

As already mentioned, the Einstein—Hilbert action in two dimensions becomes
trivial, however, when working in the teleparallel setting, one can construct non-
trivial terms for an action. This was recently done in Refs. 22 and 23, where several
points associated to the role played by the breaking of the Lorentz symmetry were

discussed. Here, we further examine this subject by performing a complete
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Hamiltonian analysis, which leads to a complete characterization of the additional
degree of freedom present in the theory. In particular, we see that JT gravity emerges
as a Lorentz invariant sub-sector of the 2D torsional action in consideration.

Our notation is as follows: Latin indices a,b,... denote tangent space indices,
Greek indices p, v, . .. denote spacetime indices. The tangent space metric is 7,,, the
spacetime metric is g,,,, we work with signature (+, —). For explicit tangent space
indices we use a,b,...=0,1,..., and drop the underline for spacetime indices.

2. Torsional Action and Field Equations
2.1. The action

Our first goal will be to show that JT dynamics can be obtained from a variational
principle formulated in a teleparallel framework. To do this, let us rewrite the dy-
namical equation in terms of the exterior derivative of the vielbein or coframe 1-form
E* = F;dX". In any dimension, one defines the torsion 2-form to be

T := dE* = T}, = 8,E% — 8,Ef = —T},. 9)

The vielbein has as its dual basis the frame vector fields e, = eﬁfaﬂ in the tangent

space. These satisfy the relations
elE, = 6b, eZEZ:(SZ, (10)
and are related to the metric tensor through
G = N ELED, & N, = guelier. (11)

In fact, the final relationship describes the orthonormality of the tangent space basis
{e,}. This framework is said to be teleparallel because T is the torsion of a zero (i.e.
curvatureless) spin connection, also called a Weitzenbock connection. If the spin
connection is zero, then the parallel transport of vectors become path-independent.
Thus the manifold M is endowed with an absolute notion of parallelism. While
Weitzenbock geometries are deprived of curvature, the torsion, instead, becomes the
geometrical quantity that describes gravity. Beyond the interpretation of dE® as a
torsion field, our interest is focused on rewriting the JT equation (3) in terms of
second derivatives of the diad or zweibein {E2, EL} note that in four dimensions one
generally speaks of a tetrad or vierbein.

For this purpose, we need to state the relationship between the curvature scalar R
of the Levi-Civita connection, which depends on second derivatives of the metric, and
the first derivatives of torsion 7'y,. As is well known, in any dimension this relation is
(see, e.g. Ref. 24)

R=-T+2E'0,(ET/), (12)

where T'= S)"Tf,, E = det E% = | det(g,,)|"/? is the determinant of the co-frame
components, and the torsion tensor in spacetime components is given by
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Tl = eqT},. The tensor S}, is defined by

1 1 - pu
wa =7 (T[L]V - T/fl/ + Tli),u) + 5 (6ZT01/ - 61€Ta,u) =-5)

: (13)

and is often referred to as the superpotential. Since S}, is antisymmetric in the last
pair of indices, in two dimensions the only independent components are S/,

1 1
Sp1 = 1 (Tyo1r — Tonp + Thop) + ) (90,9 Toix — 919" Tr0r)
1 1
1 (Tyo1 — Ty + Thop) + §T010(90pg00 + 91,9")
1 1. 1
=1 (Tyo1 — Tonp + Thop) + 5 5100, = 1 (=Tpo1 — T, + Thop)- (14)

Setting p = 0 gives —To91 — Thi9 + Th00 = Lo10 — Loro = 0, likewise for p = 1 we find
—Tior — Tor1 + Tio1 = —Tio1 + Tio1 = 0. Therefore, the superpotential vanishes
identically when working in two dimensions. Thus, in two dimensions Eq. (12) takes
the form

R=2E"'0,(ETY). (15)

As we mentioned previously, this takes the form of a total derivative when multiplied
by F as it does for the Einstein—Hilbert action, thus leading to trivial field equations.

Let us now go back to the JT equation (3), which will resemble an electromagnetic
equation if R is replaced by the divergence of the vector T.,”, so that

2E7'9,(ET,") — A =0. (16)

It should be noted that this field equation is linear in the first derivatives of the
torsion tensor. When field equations contain linear first derivatives, it is natural to
seek an action which is quadratic in the relevant variables, generally called the field
strengths. This is the case of electromagnetism, other Yang—Mills theories or elas-
ticity theory. This suggests to consider an action of the form"

S[EY =k / BT, T — A)da"dz' = k / E(T — A)dzdx?, (17)
where we have defined T = 7,1}, T b =T, T%", and k is an arbitrary constant
which one can think of as the two-dimensional coupling constant. This action will be
our starting point for what follows, it will lead to nontrivial field equations and a
gravitational toy model containing a true dynamical degree of freedom. This is a
particularity of the torsion tensor in two dimensions. It contains two free functions
and one can construct a unique scalar out of this quantity. Compared with GR and
its standard formulation, the Riemann curvature tensor only contains one free
function (determined by the metric) and we can again construct a unique scalar, the

" As an historical remark, we mention that (17) is the 2D version of the Einstein’s unified field theory, an
early tentative to unify gravitation and electromagnetism under the same geometrical setting. See Ref. 25
for a compendium of works in the field.
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Ricci scalar. It just so happens that this scalar can be written as a total derivative
term, hence making it unsuitable for an action principle.

2.2. Field equations — wvariations with respect to the diad
To vary this action with respect to the diad, we recall the identity

OF = EeldF;. (18)
Next, we consider the quadratic torsion term

6(T) = 6(77111)T;1])/Tb/m) - 5(nabT/?DT/3Ag/)ugyA)
= 20T, Tirg™ 9" + 20T 5, Tr g™ 69"
= 41,y T 0,6 B + 41, T3, T dele ). (19)
We will now rewrite the second term
Tﬁ,,nc‘iée Ze[} = T;M(Sﬁnc‘iéeZej} =T¢,elEinse Ze[}

pH
= - T/fuegn‘idel(feséEﬁ = TS elg” SE". (20)

I
Therefore, the complete variation of the quadratic term is

§(T) = Any T8 ,6 By, — dny T 5, T e 6 B (21)

Combining this with (18) we arrive at the result

T + Eel (T — A)|SEL, (22)

I

6S /[—46P(E7]HCT“””) — 4EngelT,

where we left out a boundary term. The vacuum field equations of the theory are thus

—40,(Ena T?) — ABnge Ty, T" + Eey(T — A) = 0. (23)
To show that these equations indeed contain the JT model, let us contract with E¢.
By doing so we compute the trace of the field equations, namely

—4B30,(En, T%) — 2E(T + A) = 0. (24)

Since in two spacetime dimensions we have T = 27,.0,E,;T", the trace turns out to
be

—40,(Eng ELT#) — 2EA = 0,
& 2E710,(EELTY) + A =0, (25)
& —2E719,(ET)) + A = 0.

As we had hoped, this is indeed Eq. (16), i.e. the JT model, derived from a natural
and well-defined variational principle.© Moreover, this did not require the intro-
duction of somewhat arbitrary Lagrange multipliers. By starting from an action that

“The A = 0 version of Eq. (25) was previously derived in Ref. 26.
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is not built from the metric but rather from the diad, we can provide a new approach
to this model.

The fact that we are working in two dimensions allows for further simplifications
in the dynamical equations (23). Let us consider the second term for each value of the
index v. For v = 0 one finds

—4En el Ty, T = —4Ben,THT"" = —2Ee,T, (26)
and similarly for v = 1. Thus the field equations (23) simplify to
48P(E77GCTCPV) + EEZ(T + A) = O (27)

The two equations v = 1 contain second time derivatives and can therefore be seen as
dynamic. Instead, the two equations ¥ = 0 constrain the initial values of the dy-
namical variables and their velocities.

2.3. Solving the field equations

We begin with the conformally flat form of the metric tensor (2), whose scalar
curvature is

R = —2exp (—29)0. (28)
Since the metric relates to the diad through Eq. (11), we can use the diad
EY = exp (®)dt, E! =exp (®)du. (29)

As the metric is invariant under local Lorentz transformations, there exists an entire
family of admissible diads. Let us consider a local Lorentz transformation (simply a
boost, in 1 + 1 dimensions), then the diads

cosho(t,x) sinh ¢(t, x) )

sinh ¢(t,x)  coshp(t, x) (30)

E* = A4(t,z)EY, A% = (
counstitute the entire set of diads giving the same conformally flat metric tensor (2).
Henceforth we denote by ¢ to the booston field. Note that the field equations (27)
govern both the dilaton and the booston fields. This follows since the action (17)
depends on the diad and not just on the metric.d
In particular, the dilaton field is directly obtained from the trace of the dynamical
equations (16). Recall that this trace equation is the JT equation and that it does not
involve the booston because the curvature scalar R depends only on the metric. The
JT equation, then, comes out from this formalism as the local Lorentz invariant
sector of the theory. The divergence E~'9,(ET") of the vector part of the torsion
tensor

T = TY = gelTs (31)

9The action is invariant under global Lorentz and conformal transformations.
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is also not sensitive to the booston, since both R and Ein Eq. (15) are invariant under
local Lorentz transformations of the diad.

Therefore, T” can only depend on the booston through a divergence-free term.
In fact, when computed from the diad (30) it results in®

0d  0¢ 0P  0¢
Py = -——— 42 — =
ET"9, ( 5+ &c)at + ( o at>a“ (32)

where we recall that E = exp (2®). Once the dilaton is found by solving the trace
equations, we will replace it in the rest of the equations to determine the booston.
Thus the action (17) provides dynamics to both of our variables: ® and ¢. The JT
equation (16) for any diad is

2exp (—29)0P + A = 0. (33)

It turns out to be convenient to solve this equation using null coordinates. These are
given by

t t—
u= J;x, v= x,édtz—dxgzéldudv. (34)
In these coordinates Eq. (33) becomes
PP A
= —— 29). 35
Budn — 5 P (29) (35)

Its general solution was given by Liouville in his seminal paper.'” It can be written in

terms of two arbitrary chiral functions, U(u) and V(v), such that
U'(u)V'(v)

[+ U@V’

exp (2@ (u,v)) = (36)
The freedom left in this solution does not reflect the existence of dilatonic waves,
since such freedom can be completely absorbed in a change of chart, without altering
the metric structure given in Eq. (2). In fact, by writing the obtained metric in
coordinates (U, V'), one obtains

audv

ds® = 4exp (2®)dudv = .
) (1+ 4 (U= U)(V - p))*

(37)

Here U, and V}; are two arbitrary constants which can be eliminated by changing the
origin of coordinates.

One has to be somewhat careful about the interpretation of ® as a true scalar field
invariant under coordinate transformations. If we simply view ® as the global pre-
factor of the metric tensor, then clearly it cannot be seen as scalar as the metric picks
up various contributions when making a coordinate transformation. This is clear

“The respective covector is Tydz* = —d® + xd¢. Besides, in action (17) we have
ETdz" Ada! =2 (dP — *d¢p) A *(dP — *d¢p). In two dimensions, the Hodge star operator is not sensitive
to the conformal factor; thus the dilaton is not present in *d¢.

2430001-8
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when considering the transformation (u,v) — (U, V), for the conformal factor has
lost the piece U'(u)V’(v), compare Egs. (36) and (37).f The conformal factor in the
new chart (U, V) implies that one should identify the dilaton as follows:

®(U,V) = —log {1 + % UV] : (38)

The coordinates (U, V) can be transformed into Cartesian coordinates (7, x) taking a
null-like form
dr2 — dv?
2 = Z S (39)
(14+4(72—x?)
where U = (1 + x)/2, V = (7 — x)/2. Metric (39) can also be associated with the
diad

R dr R dx

v m-— X 40
L+3(m2 = x?) 1+3(m2 = x?) o

or any other diad linked to the previous one through a local Lorentz transformation
% depending on the booston ¢(7,x). Once the diad E* = A% (¢)E® is substituted
into Egs. (23), the trace of the equations will be identically zero, since this diad is
already associated with a metric satisfying the JT equation.
The remainder of the field equations will determine the booston. It is useful to
write the diad (40) in the chart (U, V) which becomes

g _dU+V) . dU-V)

=—07’, E'=—/ 41
1+40V 1+40v (4D

By replacing E* = A% (¢)E® into the field equations (27), one obtains that ¢ must
satisfy the equations

(92¢ B a¢ 2 82(25 o 8¢ 2 82¢
auov " (aU> “ar == \av) tar (42)
These has the general solution
U()V - ﬂ
=log |[——— = 4
¢ = log wl —al (43)

with ug, vy, a and 3 being constants of integration.

If the integration constants u, and v, are chosen to be zero, then ¢ becomes a
global boost as it is now coordinate independent. In particular we find ¢ =0
whenever o = . No boost means that the solution is the diad (40)—(41). However, in
the general solution (43) the booston is zero only along the straight lines
ugU — a = £(vyV — ). Thus the integration constants represent the freedom to

fAccording to Eq. (2), ® is a scalar under local Lorentz transformations of the chart (¢,z). Instead,
O — @+ 1/2log |/ (U)v' (V)] under transformations u — w(U), v — v(V). Thus, ® does not change only if
w(U) = U, v(V) = e V.
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choose two (related) straight lines where the booston is zero.2 Along these lines the field
E* = A%(¢)E” coincides with the diad E* of Eq. (41). Therefore, the choice of the
integration constants characterizing the booston fixes a boundary condition for E®.
For instance, the choice a =0 = 3, uy = vy # 0, implies that E® will be equal
to (41) along the straight lines U = £V, this means on the axes associated with the
coordinates 7, x. According to (43) the function ¢ takes in this case the simple form

¢ = log

%y (44)

Using the two  well-known identities coshlogz=(2+27')/2 and
sinhlog z = (z — 27!) /2, the Lorentz transformation (30) takes the form

w 1/z4+2t z—271 vV
a/:2(z—z‘1 2—5—2‘1)7 U (45)

When this is put into the appropriate boosted diad, we find the following

1% U 1% U
Eg:ﬁdU+7dV El:UdU_VdV. (46)
1+40v 7 1+40v
In this case, the booston will cover the entire range (—oco, 00) in each quadrant of the
(U, V) plane. In the coordinates 7, x the diad (46) becomes
2+ x?)dr —27xd 2+ x?)dx — 27xd
e (TA+>§)72 T2X Xz , BEl= (TA+>§) XQ ZX 72 : (47)
(I+5(2=x)) (2 =x?) L+3( =X = x?)
Leaving aside the conformal factor, the basis is +(d7,dx) on the Cartesian axes
7 =0 and x = 0, while being singular on the light cone U = 0 or V = 0 which cor-
responds to (7+ x)(7 — x) = 0. The meaning of this solution can be more clearly
understood by computing the torsion vector (31). Note that the diad in the ac-
tion (17) can be seen as the potential of the field 7). The vector T” in two
dimensions has two independent components which matches the number of inde-

pendent components of the full torsion tensor 7. This property is unique to two
dimensions, one can see this as follows. In n dimensions the torsion tensor has n?(n —
1)/2 independent components, for this to be equal to n one has n(n —1)/2 =1 or
n? —n — 2 = 0, which has the unique positive solution n = 2.

Therefore the torsion vector is sufficient to capture the nature of the entire field. It
should also be noted that 77 is the dynamical field in the JT equation (16), which is
perhaps not surprising now. The solution (40)—(41), which satisfied ¢ = 0, gives the

torsion vector field

A 0 0

where we recall that T = 0 for Minkowski space using the trivial frame.

g, B and ug, v, cannot be absorbed into the coordinates U, V because the scale and the coordinate origin
were already fixed at the level of the dilaton.
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On the other hand, the solution (46)—(47) implies

1 A 0 0
) = ——— = — —
170, =~ 55 (14507 ) (Vo + V) (19)

The field lines of T” are radial with respect to the origin of coordinates, and 77 is
singular on the light cone U =0 or V =0. If «, 3 were different from zero, and
uy = vy = 1 to keep the slope of the lines fixed where ¢ = 0, all these field lines would
be centered at (U, V) = («, 3). This matches our previous discussion of the meaning
of the integration constants.

3. Hamiltonian Formalism

In the following we will perform the Hamiltonian analysis of the action (17) and
demonstrate that this theory contains a single dynamical degree of freedom. To
begin, we compute the canonical momenta

oL oL
mh = = , 50
AoEy) 0T, (50)

where L is the Lagrangian density, as implied by action (17). Making the time
derivatives explicit yields
L/k =EMmaTyT" — A) = 2En, Ty T — EA
=2E1,4T619% 9" Typ — EA
=2Bn,(9" 9" — 9" 9") T, T, — EA
= —2E7 ', T5, T, — EA. (51)

Since this Lagrangian does not contain the generalized velocity 9 Ef (E{ is deprived
of dynamics), two primary constraints will appear. The momenta (50) conjugated to
E§ are zero

GE}) =m0 =0. (52)

Due to the fact that the Lagrangian contains time derivatives of E{, we find that its
conjugated momenta are

W(lz = —%%bT& = _%Ta()l' (53)
This relation shows, in passing, that parts of the torsion tensor are the conjugated
momenta of this theory. This is of course expected since torsion contains the first
derivatives of the diads which are the dynamical variables of the theory. It also shows
that the torsion plays an important role in the Hamiltonian analysis of any tele-
parallel-formulated theory of gravity.
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The next step is to state the primary Hamiltonian density, which is given by
Hp =Hep + N7l) = 110y B} — L + Ao
=my(T + 1 E) — L+ N, (54)

where we used the definition of the torsion tensor in the final step. H is the ca-
nonical Hamiltonian, and the Lagrange multipliers A%(¢, ) account for the dynam-
ically undetermined velocities 9y E{. By substituting T, = —E/(4k)n®n} into (54),
the primary Hamiltonian density turns out to be

E
Hp = _@ndjﬁ};ﬂ}; + 0 B + KEA + Ny (55)

In the Dirac-Bergmann formalism for constrained Hamiltonian systems, the
primary constraints are subjected to be consistent with the evolution. Sometimes this
condition is achieved through a suitable choice of the Lagrange multipliers \%. If this
is not the case, additional (secondary) constraints should be imposed. The knowledge
of the complete constraint algebra allows the determination of the number of genuine
degrees of freedom and the gauge freedom of the system.

In the Hamiltonian formalism this consistency condition takes the form

G600 = A ) = il) = {sbiea). [ @b <0, 60

where {, } stands for the Poisson bracket defined by

o 5A(x) 6B(x')) 6A(x) 6B(z)
(. 5w} = [ dy(&E;xy) bri(y)  onl () 6Ez<y>>' 57

A dot above a quantity will denote its time derivative. Then
¢Vt z) = — / dyd(z — y)—— / da' Hp(t,z') = 0. (58)
- o) |

To be completely general, let us compute the variation of the Hamiltonian with

respect to each component EZ‘ According to Eq. (55), Hp depends on Ej through its

determinant E. We will use Eq. (18) to compute 6E/6E};. Moreover Hp depends on
¢ through the term 7}0; F{. Therefore we arrive at

6 ! /
5E5(y) /dm Hp(x)

~ LB g [ o' e) + 0 s [demi@)oi )

:/dﬁe”E( knd°7rd7r +kA> ¥ —y) + 6 /da: z)0,6(x" —y)

= {eﬁjE( lkn ol —|—kA> —66‘8176,} . (59)

Y
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Thus the consistency condition (58) for the evolution of tlhe primary constraints
forces the introduction of secondary constraints because G, does not vanish iden-
tically. Hence, we define G 9 to be

1
G? .= 82E<— S—knd“ﬂ}iﬂi + k‘A) — ot =0. (60)
We see that the secondary constraints are indeed a part of the Lagrangian dynamics,
Egs. (27) for v = 0. In fact, the field equations for v = 0 are

oL OL
Ol ==~ —— =0, 61
Y0(0,Ey) OB} (61
because JyFE{ is absent in L. Since the derivatives of the diad in L appear in the
antisymmetric combination dyE{ — 0, E{, one verifies that

0L oL

) S = -0y} 62
8@.F) | T a@Ey) (62)
In addition, by using results from Sec. 2 we obtain
oL
OET —kEeq(ny T)HT? + A) = —eq(L + 2kEA), (63)
0

which coincides with the second term in Eq. (60) once the momenta (53) are
substituted back into the Lagrangian (51). Thus the solutions of Sec. 2.3 satisfy the
constraints (60).

In electromagnetism, for example, the secondary constraint is Gauss’ law. In
teleparallel gravity the term OL/JFE{ additionally appears in the constraint (60).
This happens because teleparallel Lagrangians, even if they resemble the electro-
magnetic Lagrangian, depend not only on the derivatives of the vielbein but on the
vielbein itself. Nonetheless, we can recombine the two constraints GG ((12) to separate
Gauss’ law from the other contributions. Let us define G2 := E l‘ngQ), so that

1
GY? = 58E(—@ndcﬂ'}ﬂri + kA) — Eboyrl. (64)

In the above, G(()2) and G?) are, respectively, the super-Hamiltonian and the super-
momentum constraints, using the familiar ADM language. In particular, G 82) is equal
to

GY = He — 0, (E§rl). (65)

To complete the analysis, we need to check further consistency conditions.

3.1. Consistency of the secondary constraints

The Dirac-Bergmann algorithm is not complete until all the constraints are con-
sistent with the evolution. So, we have to impose the consistency of G((f), this means
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G ((12) must be zero at least on the constraint surface. We say it is weakly zero:
G;( )~ 0.

Before computing G o, let us investigate what the Lagrangian dynamics imply.
Consider the divergence of the Euler-Lagrange equations

oL oL
9,0, 9(0,50) -0, RYoT 0, (66)

where the first term is identically zero since the operator 9,0, is symmetric but the
dependence of L on 0,E) is antisymmetric. Then the solutions to the
Euler-Lagrange equations satlsfy the equations

oL oL oL

(67)

As was mentioned below Eq. (63), OL/OE§ = —G - d;7L. Moreover, on-shell we
have

oL oL oL 1
=0 =0, =07, 68
o] ~ % a0,E0) ~ N at,Ep ~ 0 (©3)
Therefore one can arrive at the desired result
0=—8,(G? +oyr}) + 0,0y} = 9,G? =0. (69)

We can conclude that the Lagrangian dynamics implies the consistent evolution of
the secondary constraints, meaning that no further constraints will appear.

Let us check that very same result using the Hamiltonian approach to compute
the time evolution @ 02 . We have

@ {G53>, / dx’Hc} + {Gfl / dx’wf?}- (70)

First we will consider the second Poisson bracket in Eq. (70) and check Whether the
Lagrange multipliers A will be determined by the consistency condition G ~ 0,
which gives

1
{G<> /dm Ao “} { "E( Sknd%r}ﬂriJrkA),/daz'xnf}. (71)

In two dimensions we have the simple identity
ehE = e ES. (72)

This implies the simple result {eE, 7} = ¢, .{F{, 74} = 0. Therefore, no Lagrange
multipliers are present in the consistency condition, which turns out to be

0~ {G?,/dx'ﬂc} - {eg(ﬂc — 30, E) — 817r(11,/dz’HC}, (73)
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where we have chosen for GéQ) a convenient form to compute the Poisson bracket,

since
{Hc,/dx/H(]} :0, (74)

and recall that H- does not depend on 71'3. The proof that Eq. (73) is satisfied on the
constraint surface is left to Appendix A.1, as the complete calculation is rather
cumbersome.

Consequently, the Dirac-Bergmann algorithm has terminated without deter-
mining the Lagrange multipliers \°(¢,x) taking part in the Hamiltonian Hp in the
terms of A7, This means that the evolution of the variables E{ is left undetermined
by the Hamiltonian Hp. Therefore these are pure gauge variables, similar to what
happens to the component A, of the electromagnetic potential. This also means that
the E§ in the solution of Sec. 2.3 has been gauge fixed.

3.2. Symmetries of the action

General relativity is covariant under coordinate transformation or diffeomorphisms.
When considering infinitesimal coordinate transformations, the metric transforms
according to g +— g+ Lgg, where L, is the Lie derivative along the infinitesimal
vector £. This form is a common feature for all the theories displaying an invariance
under reparametrizations.

In the Arnowitt—Deser—Misner (ADM) Hamiltonian formulation of GR, the
components g, are not canonical variables, they play the role of Lagrange multi-
pliers, the lapse function and the shift vector. The canonical variables are the d(d —
1)/2 components of the spatial block of the metric where d is the dimension of
spacetime. In standard GR one finds six canonical variables. The spacetime trans-
lations of (*~Dg are generated by the super-Hamiltonian and super-momenta con-
straints. These constraints are 1st class, each commutes with all constraints.

According to the Dirac-Bergmann formalism, 1st class constraints generate gauge
transformations, each one reveals the presence of a spurious degree of freedom (d.o.f.)
among the canonical variables. Since there are d — 1 super-momenta constraints plus
one super-Hamiltonian constraint, they eliminate d d.o.f. Therefore (—1) gi; contains
just d(d—1)/2 —d =d(d — 3)/2 genuine d.o.f. Thus, GR has no (local) d.o.f. in
d = 3, since the dynamical equations R, = 0 leaves no room for a nonzero Riemann
tensor. It is well known that the Riemann tensor in d = 3 is completely determined
by the Ricci tensor.

The teleparallel formulation of Jackiw—Teitelboim theory also displays the in-
variance under spacetime translations. Let us first notice that the Lagrangian (51)
can be written as follows:

1 e
L=kE (5 FofhMae — A), (75)
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where f(. are the anholonomy coefficients,
[ea: €] = fare.. (76)
Moreover, the supermetric M (f;fef is given by
M = 2. (77)
The brackets [] stand for skew-symmetrization over the indices. In fact, we have
fo = Ei{(egé)pebA — efape[’l\) = —Qegeﬁa[pEf\'] = —eZeb’\T/f,\, (78)
so that one can verify
fefirMeyt = eledThelie i Ty, 2nan ™’ = 0y TH Ty, 20 g P
= 20, T\T". (79)

It is easy to prove that the Lagrangian is (pseudo) invariant under spacetime
translations of the diad, namely

E" — E" + LE“. (80)
Using the previous result from Ref. 27, we have
0B = LE® = O fo = £70, fiey  0¢E = 0,(EE). (81)

We thus obtain that the change of the Lagrangian (75) is
v 1 a pb cdef v
bcL = KO, | B¢ 5 fi iy — A ) | = 0,0¢°L) (82)

Then, the Lagrangian is pseudo-invariant under spacetime translations of the diad.
By this we mean invariant up to a divergence. So, the field equations have a local
invariance, since the functions & (¢, x) are arbitrary, and the translation (80) maps a
solution into another solution for all infinitesimal vector fields £. Since any solution
has curvature scalar R equal to A, one concludes that the spacetime translations
preserve the geometry, at first order in £. This is expected since the two-dimensional
geometry is completely characterized by R. Therefore, the translated solution cor-
responds to the same geometry using a different diad, and we emphasize that the
chart is not being changed however the diad is. At this point we wonder whether the
theory can distinguish these two related solutions, or whether they differ in
pure gauge variables only. This means we are interested in understanding
whether or not those changes of the diad that do not change the geometry reflect
genuine d.o.f.

Before moving forward with this topic, let us explore the Hamiltonian counterpart
of the symmetry transformation (80). Just as in GR, the transformation (80) can be
regarded as generated by the constraints. While the super-momentum and super-
Hamiltonian constraints generate the transformation of the space sector of the diad,
the transformation of the (pure gauge) timelike sector of the diad is generated by the
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primary constraints. For this, let us compute
SE" = {E"’(t,x), / dx'(x’>G§”+f”G9>)}, (83)

which yields

B 0) = x*(1,), (54)
o () = [ dodlo—) [ |~ Lol — ) - €200 )|
E . a a v a
- _goﬂnmﬂ-i + ad:(gyEt/) = §0T01 + 81(6 EV)

={0,ET + E,0,8 = (LB, (85)

Therefore, the spacetime translation (80) is obtained if the parameters x* are fixed to
beh

X!(t, ) = (LE)o. (86)

To complete our understanding on how the spacetime translations act in the
phase space, let us now look at the transformation of the momenta:

o > Tq + 6T, = {m(t,x), / da' ("G + er))}. (87)

Note that we can ignore the first Poisson bracket even if x* were replaced by (86),
because it would be weakly zero. Then

1
6#2 ~ —&(t, x) (€2E<—§77d67(1z71'i + kA) — 817r}l> = —fOG((ZQ) ~ 0, (88)

so that m¥ remains zero after the transformation. Moreover we have

1
om,

Q

1
— (¢, w)eéE(—S—kndcﬁ}ﬂri + k‘A) + €4, m)@lﬂ';
= — ei'GY) + €, e b Efdim) ~ €, & By ). (89)

We are now ready to complete this discussion by considering the constraint algebra.

3.3. The algebra of constraints

Now that the complete set of consistent constraints has been established in Sec. 3.1,
we can continue and compute the algebra of constraints. This is needed for
the determination of the number of genuine d.o.f. We will make repeated use of
OE/OEj, = Eel; in the following calculations. The commutators between primary

"The E§-sector in Eq. (83) would be avoided if it were removed from phase space. This can be achieved by
promoting the E{ variables to the role of (nondynamical) Lagrange multipliers through a part integration
in the Lagrangian action, as used in the ADM formalism of GR (cf. Eq. (7)).
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constraints are zero,
{@V(@).a} @)} =0, (90)

while the commutators between the primary and secondary constraints are zero or
weakly zero. We have

1
(G@), 68} = {mb(a) 008~ gmiml 4 k) - Eloyel |

SE (1 SE?
=169 (—nd%}ﬂré — kA) +—20 Wé} 8(x,z")
[ SEg \8k P

1
=69 {62E<8—kndcw}ﬂri — kA) + 817r111] 6(z, ')

= —6%GP8(x, ). (91)

Thus the primary constraints G ((11) are 1st class, since they commute with all the
constraints. First class constraints generate gauge transformations. In our case
G ((11) = 7Y, so the gauge transformations they generate affect F¢. Thus E§ can be
chosen by means of a gauge fixing condition.

Let us now consider the algebra of secondary constraints. We might expect to
recognize the so-called algebra of diffeomorphisms.?® 2 However, if this is were the
case, not only would the primary constraints be 1st class, but the secondary con-
straints would be 1st class too. In that case no genuine d.o.f. would remain in this
theory. In fact, four 1st class constraints would imply four gauge freedoms, since this
theory has only four dynamical variables £, and all of them would be pure gauge
variables. Therefore the algebra of super-momentum and super-Hamiltonian should
evidence that they are instead 2nd class constraints. This will now be shown.

The commutator of the super-momenta constraints is

{67 (@). G (")} = {Bioynl, Efoiml)
= (0174, [ET) w00 8(a!, x) — [E],0,6(x, ) [0y 7L ]
=GP(2)0,8(x,2") — GP(2)0,.6(a', x), (92)
where [ |, stands for ‘evaluated at z’ (see Appendix A.2 for more details). As can be
seen, the super-momenta constitute a closed subalgebra, whose form is shared with

other theories of gravity.
The commutator between super-Hamiltonian constraints is

(GP (), a5 (')}

1 1
= {E<§ndc7r3ﬂri — kA) + Eloy ), E(anfew}ﬂi - kA) + Egalm%}
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_ 1 i de,1__1 E / a /
- {%E<8k7i TaTe — kA 4]€17 7T :E/(S(I 7'77) + [EO}:I:’aa:’(S(x ,1‘)

_ <[£€ naf’wl} Eé(:mx’) + [Efﬂﬁﬁ(m,m’)) [e E<8l<: nfemlnl kA)L o
(93)

Here we used that el E¢ = 6} = 0, again, for more details see Appendix A.2.
Finally, the commutator between the super-Hamiltonian and the super-momen-
tum is

(GP (@),

1
:{ ( kn 7T 7r kA) —&—ES@lﬂ'}l,Elfaﬁri}

1 .
- |:611> <8kn 7Td7r kA):| [ ll)]a:’am’é(x/ax)7Zk,nbb[Eﬂ'}:]ar[81772]1:’6(55,‘T/)
E{],0,8(z, 2 [0yl = G 0,6(x,2') — a (erlal)s(z, a).  (94)

In this calculation the first term is characteristic of the algebra of diffeomorphisms.
However, the second term prevents the closure of the algebra. Thus the super-
momentum and the super-Hamiltonian do not weakly commute, as would be
expected in higher dimensions, and hence they are 2nd class constraints (cf. the
central charge in Ref. 16). A pair of 2nd class constraints eliminates one d.o.f.; so a
genuine d.o.f. still remains. In fact, we started with four dynamical variables F,, two
of which are eliminated by the two 1st class primary constraints G ((11)7 and another
one is eliminated by the pair of 2nd class, secondary constraints G,(,Z)

3.4. Nature of the genuine degree of freedom

The fact that neither the super-momentum nor the super-Hamiltonian constraints
are 1st class means that spacetime translations are not gauge transformations in two
dimensions. This is true despite the theory being invariant under diffeomorphisms.
Thus translations map solutions to physically different solutions, that can be dis-
tinguished by the values the sole genuine d.o.f. takes at each such solution.! Con-
sequently, we should investigate the physical nature of this remaining degree of
freedom. It cannot be a magnitude related exclusively to Riemannian geometry, since
Jackiw—Teitelboim theory completely fixes the two-dimensional Riemannian geom-
etry by fixing the curvature scalar.) The d.o.f. manifests itself through the integration
constants of the booston field.

'In general relativity, instead, the result of the translation g — g+ L¢g does not yield a physically new
solution, rather it is the same geometry in different coordinates.

IThe teleparallel framework is not based on a Riemannian geometry, even though both can be linked by

means of the metric introduced in Eq. (11). Teleparallel theories focus on the vielbein as a potential for the
torsion field. Therefore, what we are really meaning in this sentence is that the genuine d.o.f. is not
(exclusively) related to the divergence of vector T” (see Eq. (15)).
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Let us examine the magnitude Q = n®rlimw} appearing in the central charge of
Eq. (94). @ does not belong to the pure gauge sector (E¢, 70) since it is constructed
using variables of the dynamical sector (E¢, 7). Moreover, @ is affected by space-
time translations, as implied by Eq. (89). Therefore, @ is a scalar quantity able to
distinguish physically different solutions. Consequently it has to be related to the
remaining d.o.f.

According to Eq. (53) we have

Q = n"rimy = 16k E-2n, TG T = —8K*T = —8K*T,T7, (95)

where the definition of T in Eq. (17) was used. It is becoming clear that the remaining
d.o.f. can be traced back to the Lagrangian density itself, see the action equation
(17). This is not surprising after all, due to the fact that T is sensitive (not invariant)
to local Lorentz transformations of the diad.

In the general solution we have shown in Sec. 2.3 — see Egs. (29), (30), (38) and
(43) — the pure gauge variables E{j have been gauge-fixed to be

Ej=Ef, Ej;=E}. (96)

On the other hand, the two dynamical variables E{ have been written in terms of the
two functions ® and ¢

E% = exp [®] sinh ¢, E% = exp [®] cosh ¢. (97)

In this form the volume F depends exclusively on ® since E = exp [2®]. The scalar @
takes the form

Q:16k2exp[—2¢>}[(a¢ 8—(1))2‘<8¢ %)2]

ot Oz dr ot
26— ®) (6 + D)
— 1612 _
= 16kexp [—2D] 50 Sy (98)
Using the general solution (38)—(43) we arrive at
Q — —16k2 (U[) + %OZV) (U[) + %ﬁU> (99)

(vV = B)(uoU — )

The sole genuine d.o.f. is expressed in @ through the different values that the inte-
gration constants «, 3, ug, vy can have in the solution (43) for the booston field.
Remember they represent the origin U = «/u,, V = /v, around which the booston
¢ performs its action, and the two straight lines of different slopes where the booston
is zero.

We note, by examining Eq. (94) that a nonconstant ) is responsible for the
nonclosure of the algebra in order for the d.o.f. to be active. Otherwise, the secondary
constraints become 1st class, and no genuine d.o.f. would be left. Thus, it is worth
exploring the case when @ is constant. This happens under the condition

2U()U() + aﬂA =0 = Q = 8]€2A (100)
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Then the momenta (53) for the solution (38)—(43) also become constant. In fact, let
us satisfy the condition (100) by choosing
uo = —sign(A) €'8y/2[AL, vy = e ay/2]A], (101)
where v is an arbitrary parameter. Thus the momenta 7. become
mo = sign(A)2k+/2|A| coshy, 7] = sign(A)2k+/2|A|sinh . (102)

Since the momenta 7} are constant they are not affected by spacetime translations,
as can be checked in Eq. (89), where one finds 67} & 0. More importantly, the second
term in the super-Hamiltonian,

2UOU0 —+ OéﬁA
(upU — a)(voV = B) (1 +40V)’

O (Ejmy) =k (103)
becomes zero if Eq. (100) is satisfied. Therefore the super-Hamiltonian is equal to the
canonical Hamiltonian density, which is typical of theories where the spacetime
translations return to be part of the diffeomorphisms. This conclusion seems to be
confirmed by the form the booston (43) acquires after using the substitution (101).
This gives

1—+/|A]|/2¢77Va/B . (104)
1+ sign(A)/|A|/2e7U B/«

Despite the apparent freedom associated with the choice of the integration constants
v, «/f3, the booston is completely determined, because these constants can be
absorbed by the only null-coordinate transformations we are allowed to make (see
Note 6 for details)

¢ = log

eUB/la—U, e Va/f—V. (105)

Therefore no genuine d.o.f. is left when @ is constant, since no free integration
constants remain in the booston, which is the result we wished to establish.

Note that @ will be null if and only if A = 0, in which case at least one of u or vy
must also be zero in Eq. (100). This is fulfilled not only by the global booston having
ug = v, = 0, but also by the in and out modes

dU +dV 1 dU — dV
gl - - g 0 =0,A=0), 106
T ey T rm gy L h o (106)
dU +dV 1 dU —dV

EL

— - @@ - = = A = . 1
out Q(UOU + a) ) out Z(UOU + O[) ) (vU 07 0) ( 07)

According to Eq. (95), the value of @ as coming from Eq. (100), implies T =0

(if A=0), or T= —A otherwise. In the first case, the on-shell action is identically
null, whereas in the second it becomes

S[E"] = k/ E(T — A)da'dz" = ka/EAdxodxl. (108)
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Because of the JT field equation R = A, the right-hand side of the previous action
can be understood in terms of the Euler characteristic of the manifold which is
defined by

1
=g | BVIlE (109)

so that our action takes the topological form
S[E"] = —8nkxE. (110)

Therefore, the absence of the degree of freedom, captured in the condition
@ = constant, is consistent with the fact that the action becomes purely topological,
regardless of the different values of the integration constants that can be combined to
satisfy the condition (100). This matches the standard discussions in GR where the
two-dimensional action is topological.

4. Conclusion

General Relativity is an intrinsically four-dimensional theory formulated using the
language of differential geometry. It gives 10 coupled nonlinear equations which
contain two propagating degrees of freedom which are associated with the two
polarizations of gravitational waves. Direct attempts at quantizing the theory have
not yielded success, which motivated the study of models in lower dimensions where
the equations are considerably simpler. Neither three-dimensional nor two-dimen-
sional gravity contain propagating degrees of freedom. 2D GR is well-known to be
topological and some extra structure needs to be introduced to make the theory
nontrivial.

We present a new approach to this problem by starting out from the Teleparallel
Equivalent of GR, known as TEGR. In three and four spacetime dimensions this
theory is completely equivalent to GR but is formulated using tetrads instead of
metric as the fundamental field, and employs the Weitzenbock connection instead of
the standard Levi-Civita one. When similar ideas are considered in two dimensions,
one arrives naturally at a nontrivial two-dimensional theory based on the torsion
produced by the Weitzenbock connection, which constitutes the first result reviewed
in this work. That this is indeed possible is a quirk of the torsion tensor and its
irreducible composition. In two dimensions, only a vector torsion part is allowed and
the norm of this vector can naturally be considered as the action of a gravitational
toy model, which, in general, has no direct link to a topological quantity.

We demonstrate, using the Hamiltonian constraint analysis, that the resulting
theory has one genuine degree of freedom, in general. We identify the corresponding
quantity Q = —8k>T and discuss some of its properties.

It is particularly interesting to note that the starting action is invariant under
arbitrary coordinate transformations and global Lorentz transformations, while the
Hamiltonian analysis shows that the spacetime translations are symmetries of the
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theory, but they are not gauge transformations (they are not 1lst class). Normally
they are incorporated into the general coordinate transformations, but the theory
here discussed seems to link the breaking of the local Lorentz invariance with the
appearance of translations mapping one solution into a physically different solution,
i.e. translations are not part of diffeomorphisms in two spacetime dimensions. This
finding, revealed through the Hamiltonian analysis, constitutes the core of our paper.

Our approach yields a theory that has close links with Jackiw—Teitelboim gravity.
In particular, our theory is naturally derived using a variational approach, something
that is lacking in the standard JT formulation. Since our action is quadratic in the
torsion vector, and recalling that the torsion vector contains first derivatives of
the tetrad fields, we are dealing with a Yang—Mills type theory. In such theories the
action always contains squares of field strengths, and field strengths are the first
derivatives of the potentials. JT gravity appears, then, as a local Lorentz invariant
sector of the torsion-based theory proposed here.

Given that our toy model contains a single d.o.f., it is rather natural to consider
generalized models based on the simplest one discussed here. The key quantity in the
action is the torsional scalar T. Consequently, as briefly mentioned in Ref. 22, one
can consider

Spox /f(T)Ede, (111)

which contains our model when choosing f(T) = T — A. One can now speculate that
this model will contain at least one additional degree of freedom due to the presence
of the function f. However, this is merely a lower bound for the following reason. Just
as in GR, in TEGR one finds two d.o.f., however, f(T) gravity in four dimensions®
has up to five d.o.f., which is considerably more than one might expect by simply
including a new function. This has to do with the fact that f(T), just as the par-
ticular choice f(T) = T — A here considered, also breaks local Lorentz invariance and
it becomes a nontrivial task to establish the number of propagating degrees of
freedom according to the Hamiltonian analysis. One can also relate this to the hardly
understood remnant symmetries, which are local Lorentz transformations leaving T
invariant up to boundary terms.??> Thus two-dimensional f(T) gravity is an excellent
toy model to be considered further.

Since the quantity T = T*T), is constructed from the torsion vector, one can also
consider other gravitational toy models using, for example, the symmetric matrix
F = F,5:=T,Tj. This is motivated by torsional Born-Infeld detrimental gravity
models, which are of the form

SBloc/[ det(I+2)\‘1F)—A}Ed2x, (112)

“We recall that T is the Weitzenbock scalar introduced in Eq. (12). For a review of many of the vast
number of results in the area, including some discrepancies in the counting of d.o.f., we refer the reader to
Ref. 31.
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see Refs. 33 and 34. Here I stands for the identity matrix and A is the Born-Infeld
parameter. Of course, one could consider arbitrary functions depending on the de-
terminant as an argument. As mentioned before, when considering such models it is
not clear how many d.o.f. such a theory will have. We can speculate that the lower
bound is again one, and remind the reader that the upper bound is four, the number
of independent components of the diad, which is the dynamical variable of the
theory.

It is rather remarkable that two-dimensional gravitational models based on the
teleparallel framework offer such a rich dynamical structure not seen in its GR
counterpart. This route to study such models has been largely overlooked and it is
hoped that this contribution will help to initiate some progress in the field.
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A. Additional Details for the Hamiltonian Analysis
A.1. Consistent evolution of Gt(f)

To prove the consistency of the evolution of the secondary constraints GELZ), we have
to compute the Poisson bracket

{esttc ~nlonrt) oyl [ artic, (A1)
which enters in Eq. (73). We will use e,E, = 6}, to obtain de{ /6L, this is
A e A c 6eZ "w_v
5€bE)\:*€b6E)\:> = —€p€.. (A2)
OEY, ’

Then, by using Eq. (59) we get
0~ {eS(HC — w0, Ef) — Oy, /dx’HC}

E [
R R A | = R ]

)

1
+ /dyé(m —1)eld, B} {eiE(— gnd%;ﬂri + kJA)]

Y

+ [dvo.be ) [e;E(— ekl 4 m)]
Y
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1, E
= —e}l’egE< Sknd’ﬁiﬂ';—l—kA)( " 7Td+81E0)

+ egei81E8E< — énd%}ﬂi + kA) + 0, {eéE( 81k; 77‘1‘7rd7r + kA)}
(A.3)

This result should be examined on the constraint surface where, according to
Eq. (64), it is

1
E< Ty nler el + kA) = EYo,mt, 0= E}ox). (A4)

In particular, we have
D1 = 83017y = (eaBg + ea B0y ~ e Egdimy.
Thus the first term in Eq. (A.3) is

E
— e eOanlwb ( 4k‘ ndc'f('llj + 81E6)

E
~ —e i) <—E77 Tyt 31E0)

SE];} 81(77‘16”171'(11) — e OV E. (A.5)
The second term in Eq. (A.3) is
egeéalESE( - 8—1k77d"'7r‘1177i + kA) ~eleld EYESO !
~eld  Ebonl = —Ebdeiogwl. (A.6)
The third term in Eq. (A.3) is

1
o1 [eiE(—S—kndcﬂ'}iﬂ'i + kA)}

E 1 .
= ——eloulnlnl) + <8k77d('7f(1177i + kA) Oi(eLE)

FE
~ - 8*6(11,31(77(1%1”}1) + Egalﬂ—;E_lal(e(le)

= 8Ekeu(91(77d°71'17'rd)+E0817Tb(61€ +ele’oE ) (A7)

Therefore, Eq. (A.3) is
0~ —eldynl0,Ef — Ef;ale,{ami + Egam;(ale; + eieZ@lEﬁ). (A.8)

To verify that these equations do not lead to new constraints but they are satisfied on
the constraint surface, let us contract them with EY:

0~ =630yl E§ — Eboel BSO wlt + BEYomi (ESOel + 61el0 ES).  (A9)
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For A = 0 we have an identity. For A = 1, one obtains
0~ — O wl0Ef — BYoel BSoyw) + ELo mi(ELoel + €40, ES)
~ — OO Bl + BYomiel0, Bl ~ —0, 70, ES + 0,710, B = 0. (A.10)

Therefore, the Poisson bracket (A.1) is weakly zero.

A.2. Commutators

The commutators {G ,<,2)(m), G ,(,2>(x’ )} in Sec. 3.3 are distributions antisymmetric in
(z,2"). They contain combinations of terms with the generic form

[ga]m[h(l}z’amé(ma LE’) - [ga]:ﬂ’ [ha]zrax’é(x/a iL’) (All)

To understand how this distribution works, let us apply it to a function f(z') to get
/dx/f(‘r/)([ga]r [ha]z’aré(xv :E,) - [ga]x’ [ha]zax’é(ljv SL'))

= [ga]zam/dl‘,[fha]x’é(xvx/) + [ha]z/dxlax’ [fga]xré(.’lll,l')
= [gaam(fha) + haax(fga)]m = [2guhaamf + faa:(ga,ha)]:z:' (A'12)
Therefore, it is licit to rewrite the distribution (A.11) as follows:
[g(l,].’l,‘ [ha]r’aré(xa SU/) - [ga]m’ [ha}ma’n’é(x/a x) = [gn,ha]:t’amé(xv 1,/) - [gaha]mam’é(xla (L’),
= [gaha].’vawé(x7 .13/) - [gaha]w’aw’é(x/7 J“)v

as can be easily verified by repeating the procedure to obtain the same result.
In the case of {G 512)(1‘), G E?(x’ )}, goh® is zero because it involves the factor
elEY = 85 = 0. Besides, {G(<]2>(:E), GEP(:{:’)} also contains a combination of the form

(9] [P0 0(x, ') — [ga)w [P].6(2, ), (A.13)
that results in zero when applied to an arbitrary function:

/ 02’ £ (') (ga)o (1), 6(, ) — [g,]o (1], 6(7, )
= gl / da' [ 6(x, o) — (1], / dx'[fgu)8(' x) = 0. (A.14)
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