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We study a semilinear second-order ordinary differential equation for a complex valued
function Q which describes the evolution of a generalized RLC system over an interval
[0,T ]. We solve the Dirichlet and periodic problems under appropriate conditions.
Moreover, we give conditions in order to ensure that any solution satisfying an initial condition
Qð0Þ ¼ Q0, Q

0ð0Þ ¼ I0 is defined over [0,T ].

Keywords: RLC-systems; Fixed point methods

1991 Mathematics Subject Classifications: 34B15; 34C25

1. Introduction

In this article we study the semilinear second-order ordinary differential equation

LðtÞQ00ðtÞ þ RðtÞQ0ðtÞ þ FðCðtÞ,QðtÞÞ ¼ EðtÞ ð1:1Þ

for a complex valued function Q describing the evolution of a generalized RLC system
over an interval [0,T ]. The coefficient L2Cð½0,T �,Rþ

Þ is the inductance, the friction
term R2Cð½0,T �,Rþ

Þ is the resistence, and C2Cð½0,T �,RÞ the capacity. The function
F : R� C ! C generalizes the linear case for an RLC system, where FðC,QÞ ¼ QðtÞ=C.

The forcing term E(t), often a T-periodic function, corresponds to an external electric
field. We recall that usually the line integral of E over the circuit gives the electromotive
force of the system [1–3].
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We study equation (1.1) under Dirichlet conditions, namely:

Qð0Þ ¼ Q0, QðT Þ ¼ QT ð1:2Þ

or periodic

Qð0Þ ¼ QðT Þ, Q0ð0Þ ¼ Q0ðT Þ ð1:3Þ

(1.1)–(1.3) represents the case in which the charge and the current are coincident at the
initial and final times. The corresponding boundary value problems for the real case are
studied by several authors (see [4–6]).

Moreover, we give conditions in order to ensure that any solution satisfying a
Cauchy condition for the initial charge Q0 and the initial current I0 is defined over
[0,T ]. This ensures the nonexistence of resonant type effects.

In the second section we make a brief review of the RLC model. In the third
section we establish the basic assumptions and results concerning the Dirichlet problem
associated to (1.1).

In the fourth section we define a fixed point operator in order to solve the periodic
problem. From the physical point of view, the existence of a periodic solution of (1.1)
implies that the action of the external force compensates the effect of the dissipative
term. This fact is reflected in the condition ðE=LÞ ? p, where the real function p is
constructed uniquely from R.

Finally, in the last section we prove, for fixed Q0, that the set of complex values I0
such that a solution of (1.1) under the initial conditions Qð0Þ ¼ Q0, Q

0ð0Þ ¼ I0 is defined
over the interval [0,T ] is a simply connected subset of C. More precisely, there exists at
least one solution defined over [0,T ] if and only if the equation  ðsÞ ¼ I0 is solvable,
where  : C ! C is a continuous function depending on Q0. Furthermore, if F is locally
Lipschitz on ½0,T � � C then the disjoint union over Q0 of the sets fQ0g �Rangeð Q0

Þ

is an open domain of C2.

2. Brief review of the model

If two coils of wire are placed near each other, a changing current in one will induce an
electromotive force (emf ) in the other, and according to Faraday’s law, the emf induced
is proportional to the rate of change of flux passing through it. When considering an
isolated single coil of N turns (or solenoid), we will find that a changing current passing
through it will produce a changing magnetic flux inside the coil, and will induce an emf.
This induced emf opposes the change in flux (Lenz’s law). Defining the self-inductance
L ¼ ðN�=I Þ, where � is the magnetic flow, and I the current, we can conclude from
Faraday’s law that the emf induced can be computed as:

E ¼ �L
dI

dt

Any inductor will have some resistance, so it will be represented by its inductance L and
its resistance R. When a DC source of voltage V is connected in series to the LR circuit,

1412 P. Amster et al.

D
ow

nl
oa

de
d 

by
 [

U
Q

 L
ib

ra
ry

] 
at

 0
2:

38
 1

4 
N

ov
em

be
r 

20
14

 



the emf ’s in the circuit are the battery V and the emf E ¼ �LðdI=dtÞ in the inductor,
and applying Kirchhoff ’s loop rule to the circuit, we obtain the following differential
equation for the current I:

L
dI

dt
þ RI ¼ V

More generally, in any electric circuit there can be three basic components: resistance,
capacitance (C ), and inductance. If we consider an LC circuit, at any instant, the
potential difference across the capacitor will be V ¼ ðQ=C Þ, (where Q is the charge
on the capacitor at that instant), and it will be equal to that across the inductor, so:

Q

C
¼ �L

dI

dt

The current I is due solely to the flow of charge from the capacitor and so
I ¼ ðdQ=dtÞ. We can conclude that the charge Q will be determined from the differential
equation:

d2Q

d2t
þ

1

LC
Q ¼ 0

This is the differential equation for harmonic motion, with frequency given by:

! ¼

ffiffiffiffiffiffiffi
1

LC

r

This LC circuit is an idealization, taking account of the resistance R, we obtain the
following differential equation:

L
d2Q

d2t
þ R

dQ

dt
þ

1

C
Q ¼ 0

Thus the RLC circuit will correspond to the damped harmonic oscillator. In more
realistic models, we also have that L, R, and C will not be constant anymore.

3. Basic assumptions and unique solvability of the Dirichlet problem

Let � ¼ ð0,T Þ and S : H2ð�,CÞ ! L2ð�,CÞ be the semilinear operator given by

SQ ¼ Q00 þ
R

L
Q0 þ

1

L
FðC,QÞ

We shall assume throughout the article that F is continuous and satisfies the growth
condition

(F1) There exists a positive function � such that

�

L
Re

FðC,QÞ � FðC,PÞ

Q� P

� �
þ

~�0

2
� c < �1

A general RLC system with complex values 1413
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for any C2R and Q 6¼ P2C, where ~� ¼ �0 � ðR=LÞ� and �1 is the first eigenvalue
of the problem

ð��Q0Þ
0
¼ �Q, Qj@� ¼ 0

Writing SQ ¼ Q00 þ ðR=LÞQ0 þ ð1=LÞFðC,QÞ, a simple computation shows that (F1)
implies, for any Q,P2H2ð�,CÞ such that Q¼P on @�:

Z T

0

�jQ0 � P 0j2
� �1=2

�

ffiffiffiffiffi
�1

p

�1 � c
k�ðSQ� SPÞkL2 ð3:1Þ

THEOREM 3.1 Assume that (F1) holds. Then the Dirichlet problem

LðtÞQ00ðtÞ þ RðtÞQ0ðtÞ þ FðCðtÞ,QðtÞÞ ¼ EðtÞ in �

Qð0Þ ¼ Q0, QðT Þ ¼ QT

(

is uniquely solvable in H 2ð�,CÞ for any E2L2ð�,CÞ, Q0,QT 2C.

Proof Let us consider A ¼ ½0, 1� � BM, where BM �H1ð�,CÞ is the open ball of
radius M centered at 0, and T : A ! H1ð�,CÞ given by Tð�, Q̂Þ ¼ Q, with Q the
unique solution of the linear problem

LðtÞQ00ðtÞ þ � RðtÞQ0ðtÞ þ FðCðtÞ, Q̂ðtÞÞ
� �

¼ EðtÞ in �

Qð0Þ ¼ Q0, QðT Þ ¼ QT

8<
:

As (3.1) holds for the operators S�Q ¼ Q00 þ � ðR=LÞQ0 þ ð1=LÞFðC,QÞð Þ, it is
immediate that T is compact. Moreover, T0 ¼ Tð0, �Þ is constant and for Tð�, Q̂Þ ¼ Q̂
we have that

kQ̂� T0kH1 � ~c�
�

L

R

L
T 0

0 þ
1

L
FðC,T0Þ

� �����
����
L2

� K:

Hence, choosing M large enough we conclude that Tð�, Q̂Þ 6¼ Q̂ for any Q̂2 @BM.
By definition of the Leray–Schauder degree (see [7]),

degLSðid� T0,BM, 0Þ ¼ degBðid� T0jX,BM \ X, 0Þ

where X ¼ spanfT0g, and hence degLSðid� T0,BM, 0Þ ¼ 1 for M > kT0kH1 . By
homotopy invariance, we conclude that degLSðid� T1,BM, 0Þ ¼ 1, proving that
Tð1,QÞ ¼ Q for some Q2BM. g

THEOREM 3.2 Assume that (F1) holds. Let E2L2ð�,CÞ and denote by
Tr : S �1ðEÞ ! C

2 the restriction of the usual trace function, i.e. TrðQÞ ¼ ðQð0Þ,QðT ÞÞ.
Then Tr is an homeomorphism.

1414 P. Amster et al.

D
ow

nl
oa

de
d 

by
 [

U
Q

 L
ib

ra
ry

] 
at

 0
2:

38
 1

4 
N

ov
em

be
r 

20
14

 



Proof From the previous theorem,Tr is bijective, and its continuity is clear. Conversely,
if ðQ0Þn ! Q0 and ðQTÞn ! QT set Qn ¼ Tr�1ððQ0Þn, ðQTÞnÞ,Q ¼ Tr�1ðQ0,QTÞ and then

0 ¼

Z T

0

ðSQn � SQÞðQn �QÞ ¼ ðQ0
n �Q0ÞðQn �QÞ

��T
0
�

Z T

0

jQ0
n �Q0j2

þ

Z T

0

R

L
ðQ0

n �Q0ÞðQn �QÞ þ

Z T

0

1

L
ðFðC,QnÞ � FðC,QÞÞðQn �QÞ

Then

Z T

0

jQ0
n �Q0j2 �

���ðQ0
n �Q0ÞðQn �QÞ

��T
0

���þ Z T

0

R

L
ReðQ0

n �Q0ÞðQn �QÞ

þ

Z T

0

1

L
Re

FðC,QnÞ � FðC,QÞ

Qn �Q

� �
jQn �Qj2

As

Z T

0

R

L
ReðQ0

n �Q0ÞðQn �QÞ ¼
1

2

R

L
jQn �Qj2

��T
0
�

Z T

0

R

L

� �0

jQn �Qj2
� �

,

by (F1) and Poincaré’s inequality it suffices to prove that jQ0
n �Q0j is bounded

on @�. As

kQ00
n �Q00kL2 �

R

L
ðQ0

n �Q0Þ þ
1

L
FðC,QnÞ � FðC,QÞð Þ

����
����
L2

it is easy to conclude that Qn �Q is bounded in H 2ð�,CÞ and the result follows. g

4. Applications to the periodic problem

In this section we apply the previous results to the periodic problem (1.1)–(1.3):

LðtÞQ00ðtÞ þ RðtÞQ0ðtÞ þ FðCðtÞ,QðtÞÞ ¼ EðtÞ in �

QðT Þ �Qð0Þ ¼ Q0ðT Þ �Q0ð0Þ ¼ 0

�

Let F satisfy (F1). By Theorem 3.1, for any z2C we may define Qz as the unique
solution of the problem

LðtÞQ00ðtÞ þ RðtÞQ0ðtÞ þ FðCðtÞ,QðtÞÞ ¼ EðtÞ in �

Qð0Þ ¼ QðT Þ ¼ z

�

By Theorem 3.2, C ¼ fQz : z2Cg is an embedded curve for the H 2-norm. Clearly C

is unbounded for k � kL1 .

A general RLC system with complex values 1415
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Remark 4.1 Let us note that there exists a unique (up to a constant factor) positive p
such that

p0 ¼
R

L
p� k, pð0Þ ¼ pðT Þ

for some constant k.
Indeed, from the equation p0 ¼ ðR=LÞp� k we obtain that

pðtÞ ¼ c0 � k

Z t

0

e
�
R s

0
ðR=LÞ

ds

� �
e

R t

0
ðR=LÞ

Without loss of generality we may assume that pð0Þ ¼ c0 ¼ 1, and as pð0Þ ¼ pðT Þ we
deduce that

k ¼
e

R T

0
ðR=LÞ

� 1R T

0 e

R T

s
ðR=LÞ

ds

As k > 0, if p vanishes in � there exists t0 2� such that pðt0Þ ¼ 0 and p0ðt0Þ � 0. Then
k ¼ �p0ðt0Þ � 0, a contradiction.

In particular, if ðR=LÞ ? 1 then pðtÞ ¼ e

R t

0
ðR=LÞ

, and if ðR=LÞ is constant then p � 1.
Let Int : H2ð�,CÞ ! C given by IntðQÞ ¼

R T

0 ð p=LÞFðC,QÞ. Then we have:

THEOREM 4.1 Let F satisfy (F1) and E2L2ð�,CÞ. Then the following statements are
equivalent:

(i) (1.1)–(1.3) admits at least one solution
(ii) There exists Q2C such that IntðQÞ ¼

R T

0 ð p=LÞE

Proof By construction of p it holds that Q2C if and only if

ð pQ0Þ
0
þ kQ0 þ

p

L
FðC,QÞ ¼

p

L
E

and Qð0Þ ¼ QðT Þ. Integrating over �, we obtain that

pQ0
��T
0
þ IntðQÞ ¼

Z T

0

p

L
E

and the result follows since pð0Þ ¼ pðT Þ ¼ 1. g

Remark 4.2 By the previous theorem, solutions of (1.1)–(1.3) may be regarded as the
zeroes of the continuous mapping  : C ! C given by  ðzÞ ¼ IntðQzÞ �

R T

0 ðp=LÞE.
Thus, if we define Q�

z as the unique solution in zþH2 \H1
0ð�Þ of the equation

Q00 þ �
R

L
Q0 þ

1

L
FðC,QÞ

� �
¼

E

L
,

we may use a degree argument in order to obtain solutions of (1.1)–(1.3).

1416 P. Amster et al.
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THEOREM 4.2 Assume that (F1) holds, and let a ¼
R T

0 ðp=LÞE and

T0ðzÞ ¼

Z T

0

p

L
FðC, zþ ’Þ

where ’ is the function given by

’ðtÞ ¼

Z t

0

Z s

0

E

L
ds�

t

T

Z T

0

Z s

0

E

L
ds

Further, assume that there exists a bounded set A� ½0, 1� � C such that

A� :¼ fz2C : ð�, zÞ 2Ag

is nonempty for every � 2 ½0, 1�, and that

IntðQ�
z Þ 6¼ a

for any z2 @A�. Then, if

degBðT0,A0, aÞ 6¼ 0,

the periodic problem (1.1)–(1.3) admits at least one solution with Qð0Þ 2A1.

Proof Let T : ½0, 1� � C ! C be the continuous mapping given by

Tð�, zÞ ¼ IntðQ�
z Þ

A simple computation shows that Q0
zðtÞ ¼ zþ ’ðtÞ, which implies that Tð0, �Þ ¼ T0. As

Tð�, zÞ 6¼ a for any z2 @A�, the result follows from the homotopy invariance of the
Brouwer degree. g

COROLLARY 4.3 Let (F1) hold and assume, using the notation of the previous theorem,
that degBðT0,BMð0Þ, aÞ 6¼ 0 for M large. Then (1.1)–(1.3) is solvable in the following
cases:

(i) a¼ 0 and

	 lim infjzj!1 jReðFðC, zÞÞj þ lim infjzj!1 jImðFðC, zÞÞj > 0
	 lim supjzj!1 ðjFðC, zÞjÞ=Ljzj < ðinft

ffiffiffiffiffiffiffiffiffi
�ðtÞ

p
ð�1 � cÞÞ=

ffiffiffiffiffiffiffiffi
�1T

p
k�kL1

(ii) a 6¼ 0 and

lim sup
jzj!1

jFðC, zÞj <
jajR
ð p=LÞ

Proof From (3.1) we have, for any � 2 ½0, 1�:

kQ�
z � zkL1 �

ffiffiffiffi
T

p

inft
ffiffiffiffiffiffiffiffiffi
�ðtÞ

p Z T

0

�jðQ�
z � zÞ0j2

� �1=2

�

ffiffiffiffiffiffiffiffi
�1T

p

inft
ffiffiffiffiffiffiffiffiffi
�ðtÞ

p
ð�1 � cÞ

����
L
ðE� �FðC, zÞÞ

���
L2

A general RLC system with complex values 1417
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Hence in both cases we obtain, for jzj ¼ M large, that

jQ�
z j > �M� �

for some positive constants �, �.
Using (i), we obtain

jReðFðC,Q�
z ÞÞj � r > 0 or jImðFðC,Q�

z ÞÞj � r > 0

This proves that IntðQ�
z Þ 6¼ 0 ¼ a.

On the other hand, if (ii) holds, for large M it follows that

jIntðQ�
z Þj 6¼ jaj

and the proof is complete. g

THEOREM 4.4 Let (F1) hold, and assume that there exists a constant M>0 such that

Re
	
F ðC, zÞ � EðtÞ



sgnðRe zÞ < 0 if jRe zj � M,

Im
	
F ðC, zÞ � EðtÞ



sgnðIm zÞ < 0 if jIm zj � M

Then, if E ? ð p=LÞ, (1.1)–(1.3) has at least one solution Q with jReQj, jImQj � M.
In particular, if

ReF ðC, zÞsgnðRe zÞ, ImF ðC, zÞsgnðIm zÞ ! �1 as jzj ! 1

then (1.1)–(1.3) has at least one solution for any E ? ð p=LÞ.

Proof With the previous notations, assume that Re
	
QzðtÞ



> Re z for some z with

Re z � M. We may suppose that t is a maximum, and then

Re pQ00
z ðtÞ

	 

¼ Re

p

L

�
EðtÞ � FðC,QzÞ

�� �
> 0,

a contradiction. It follows that Re
	
QzðtÞ



� Re z, and hence

Re
	
Q0

zðT Þ


�Re

	
Q0

zð0Þ


� 0

In the same way, if Re z � �M we have that

Re
	
Q0

zðT Þ


�Re

	
Q0

zð0Þ


� 0,

and a similar result holds for Im z. By the generalized intermediate value theorem
there exists z with jRe zj, jIm zj � M such that Q0

zðT Þ �Q0
zð0Þ ¼ 0, and so completes

the proof. g

1418 P. Amster et al.
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5. Some results concerning the initial value problem

In this section we study the behavior of the solutions of the initial value problem

LðtÞQ00ðtÞ þ RðtÞQ0ðtÞ þ FðCðtÞ,QðtÞÞ ¼ EðtÞ in �

Qð0Þ ¼ Q0, Q0ð0Þ ¼ I0

�
ð5:1Þ

As in the previous section, for every z2C we define Qz 2H 2ð�,CÞ as a solution of a
two-point boundary value problem. In this case, we may consider ’zðtÞ ¼ ztþQ0 and
Qz the unique solution of

LðtÞQ00ðtÞ þ RðtÞQ0ðtÞ þ FðCðtÞ,QðtÞÞ ¼ EðtÞ in �

Qð0Þ ¼ Q0, QðT Þ ¼ ’zðT Þ

�

Then we have:

THEOREM 5.1 Let (F1) hold and consider  Q0
: C ! C given by

 Q0
ðzÞ ¼ zþ

Z T

0

1

L
ðE� RQ0

z � Fð�,QzÞÞ
� � T

T
d�

Then (5.1) admits a solution defined over � if and only if I0 2Rangeð Q0
Þ.

Proof Let Q2H 2ð�,CÞ be a solution of (5.1) and let z ¼ ðQðT Þ �Q0Þ=T. Then

QzðtÞ � ’zðtÞ ¼

Z T

0

1

L
E� RQ0

z � Fð�,QzÞÞGðt, �
	 


d�

where G is the Green’s function given by

Gðt, sÞ ¼

tðs� T Þ

T
if s � t

ðt� T Þs

T
if s � t

8><
>:

By simple computation we obtain that Q0
zð0Þ ¼  Q0

ðzÞ, which proves that
I0 2Rangeð Q0

Þ. Conversely, if I0 ¼  Q0
ðzÞ, then the corresponding Qz is a solution

of (5.1). g

COROLLARY 5.2 Let (F1) hold and define

IðQ0Þ ¼ fI0 2C : ð5:1Þ admits a solution in H2ð�,CÞg

Further, assume that F is locally Lipschitz on �� C with respect to Q. Then IðQ0Þ is a
simply connected open subset of C.
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Proof It follows immediately from the previous theorem that IðQ0Þ is simply
connected. Moreover, if  Q0

ðz1Þ ¼  Q0
ðz2Þ then Q0

z1
ð0Þ ¼ Q0

z2
ð0Þ, and by uniqueness

we conclude that z1 ¼ z2. Then  Q0
is injective and hence  Q0

ðCÞ is open. g

THEOREM 5.3 Let (F1) hold and assume that F is locally Lipschitz on �� A, where
A is an open domain of C. Then

[
Q0 2A

fQ0g � IðQ0Þ

is an open domain of C2.

Proof Let SA ¼ fu2H2ð�,CÞ : SQ ¼ ðE=LÞ,Qð0Þ 2Ag, and consider the continuous
mapping � : SA ! C

2 given by �ðQÞ ¼ ðQð0Þ,Q0ð0ÞÞ. As F is locally Lipschitz, � is
injective, and hence � 
Tr�1ðA�CÞ is open and connected. g
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