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of upper and lower solutions and a diagonal argument.
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1. Introduction

In recent years there has been an increasing interest in problems arising in Financial Mathematics and in particular on
option pricing. The standard approach to this problem leads to the study of equations of a parabolic type.
An option is a contract that gives the holder the right to trade in the future at a previously agreed price. A European call

option is a right to buy a particular asset for an agreed amount at a specific time in future. A put option is the right to sell a
particular asset for an agreed amount at a specific time in future.
In Financial Mathematics, usually the Black–Scholes model [1] is used to price these contracts, by means of a reversed-

time parabolic partial differential equation. In this model, an important quantity is the so-called volatility. Volatility is a
measure of the amount of fluctuation in the asset prices: a measure of randomness. It has a major impact on the value of
the option; in mathematical terms, it corresponds to the diffusion coefficient in the Black–Scholes equation.
In the standard Black–Scholes model, a basic assumption is that the volatility is constant. Several models that have been

proposed in recent years, however, allowed the volatility to be non-constant or a stochastic variable. For instance, in [2] a
modelwith stochastic volatility is proposed. In thismodel the underlying security S follows, as in the standard Black–Scholes
model, an stochastic process

dSt = µStdt + σtStdZt ,

where Z is a standard Brownianmotion. Unlike the classicalmodel, the variance v(t) = σ 2(t) also follows stochastic process
given by

dvt = κ(θ − v(t))dt + γ
√
vtdWt ,

whereW is another standard Brownian motion. The correlation coefficient betweenW and Z is denoted by ρ:

E(dZt , dWt) = ρdt.

This leads to a generalized Black–Scholes equation:
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If we introduce the change of variables given by y = log S, x = v
γ
, τ = T − t the following problem for u(x, y) = U(S, v)

is obtained:

uτ =
1
2
γ x
[
∆u+ 2ρ

∂2u
∂x∂y

]
+
1
γ
[κ(θ − γ x)− λγ x]

∂u
∂x
+

(
r −

γ x
2

) ∂u
∂y
− ru

in a cylindrical domain Ω × (0, T ), with Ω ⊂ R2. A similar model has been considered in [3], for which the stationary
equation has been studied in [4].
More general models with stochastic volatility have been considered for example in [5], where the following problem is

derived from the Feynman–Kac relation:ut =
1
2
Tr
(
M(x, τ )D2u

)
+ q(x, τ ) · Du,

u(x, 0) = u0(x)

for some diffusion matrixM and a payoff function u0.
This discussion motivates us to consider the general parabolic problem{Lu− ut = g(u, x, t) inΩ × (0, T )

u(x, 0) = u0(x) onΩ × {0}
u(x, t) = h(x, t) on ∂Ω × (0, T ).

(1.1)

We shall assume thatΩ ⊂ Rd is an unbounded smooth domain, g : [0,+∞)×Ω × [0, T ] → [0,+∞) is continuous and
continuously differentiable with respect to u, L is a second order elliptic operator in non-divergence form, namely

Lu :=
d∑
i,j=1

aij(x, t)uxixj +
d∑
i=1

bi(x, t)uxi + c(x, t)u,

where the coefficients of L belong to the Hölder Space Cδ,δ/2
(
Ω × [0, T ]

)
and satisfy the following conditions

Λ|v|2 ≥

d∑
i,j=1

aij(x, t)vivj ≥ λ|v|2 (Λ ≥ λ > 0)

|bi(x, t)| ≤ C, c(x, t) ≤ 0.

Furthermore, we shall assume that u0 ∈ C2+δ(Ω), h ∈ C2+δ,1+δ/2(Ω × [0, T ]) and satisfy the following compatibility
condition

h(x, 0) = u0(x) ∀ x ∈ ∂Ω. (1.2)

Our main result reads as follows:

Theorem 1.1. Let L be the elliptic operator defined as above, and assume that g(0, x, t) = 0. Then for any T > 0 there exists
θ0 = θ0(Λ, d, ‖b‖∞, T ) such that if θ < θ0, then for any initial and boundary conditions u0 and h satisfying

0 ≤ u0(x) ≤ kT−
d
2 e

θ
T |x|

2

and

0 ≤ h(x, t) ≤ k(T − t)−
d
2 e

θ
T−t |x|

2
for x ∈ ∂Ω, 0 ≤ t < T

for some constant k, there exists at least one solution u of the problem (1.1) satisfying

0 ≤ u(x, t) ≤ k(T − t)−
d
2 e

θ
T−t |x|

2
.

We give a proof of Theorem 1.1 in Section 2, using the method of upper and lower solutions. We recall that u is called an
upper (lower) solution of problem (1.1) if{Lu− ut ≤ (≥)g(u, x, t) inΩ × (0, T )

u(x, 0) ≥ (≤)u0(x) onΩ × {0}
u(x, t) ≥ (≤)h(x, t) on ∂Ω × (0, T ).

On the other hand, we obtain a uniqueness result, which can be deduced immediately from the following version of the
maximum principle.
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Theorem 1.2. In the situation of Theorem 1.1, let T̃ < T and let u be a lower solution of (1.1) in the domain V = Ω × (0, T̃ )
such that 0 ≤ u ≤ KeA|x|

2
for some constants A and K . Furthermore, assume that g is nondecreasing in u. Then

sup
V
u = sup

∂ ′V
u,

where ∂ ′V = (Ω × {0}) ∪ (∂Ω × [0, T̃ ]) denotes the parabolic boundary of the domain V .

A proof of Theorem 1.2 is given in Section 3.

2. The method of upper and lower solutions

In order to prove Theorem 1.1, we shall apply themethod of upper and lower solutions. More precisely, we shall consider
α ≡ 0 and β = k(T − t)−

d
2 e

θ
T−t |x|

2
. Indeed, from the hypothesis it is clear that α is a lower solution, and a straightforward

computation shows that β satisfies:

Lβ − βt = β

{(
2θ
T − t

)2 d∑
i,j=1

aijxixj +
2θ
T − t

d∑
i=1

aii +
2θ
T − t

d∑
i=1

bixi + c −
[

d
2(T − t)

+
θ

(T − t)2
|x|2

]}
.

From our assumptions, and using the fact that
∑d
i=1 a

ii
≤ Λ, and that 2

∑d
i=1 b

ixi ≤ ε|x|2 + 1
ε
‖b‖2
∞
, we deduce that

1
β
(Lβ − βt) ≤ (4θΛ− 1+ ε(T − t))

θ |x|2

(T − t)2
+

1
T − t

[
2θΛ−

d
2
+
1
ε
θ‖b‖2

∞
+ c

]
.

Taking ε < 1
T , and

θ ≤ min
{
1− Tε
4Λ

,
dε

2‖b‖2
∞
+ 4Λ

}
,

it follows that

Lβ − βt ≤ 0 ≤ g(β).

As u0(x) ≤ β(x, 0) and h(x, t) ≤ β(x, t) for x ∈ ∂Ω , we conclude that β is an upper solution of the problem.

Remark 2.1. If U is a smooth and bounded subset of Ω , by [6, Thm. 10.4.1], and the compatibility condition (1.2), there
exists a unique function ϕU ∈ C2+δ,1+δ/2(U × [0, T ]) such that{LϕU − (ϕU)t = 0,

ϕU(x, 0) = u0(x) x ∈ U
ϕU(x, t) = h(x, t) (x, t) ∈ ∂U × [0, T ].

By the standard maximum principle,

0 ≤ ϕU(x, t) ≤ β(x, t)

for (x, t) ∈ U × [0, T ].

First, we solve an analogous problem in a bounded domain.

Lemma 2.1. Let U ⊂ Rd a bounded smooth domain, let T̃ < T and let ϕU be defined as in Remark 2.1. Then the problemLu− ut = g(u, x, t) in U × (0, T̃ )
u(x, 0) = u0(x) in U × {0}
u(x, t) = ϕU(x, t) in ∂U × (0, T̃ )

(2.1)

admits at least one solution u with 0 ≤ u(x, t) ≤ β(x, t) for x ∈ U, 0 ≤ t ≤ T̃ .

Proof. Set λ > 0 such that the function g(u, x, t)− λu is non-increasing on u for 0 ≤ u ≤ maxx∈∂U β(x, T̃ ). Set u0 = 0 and
V = U × (0, T̃ ). By standard results, we may define un+1 ∈ W 2,1p (V ) as the unique solution of the problemLu

n+1
− un+1t − λu

n+1
= g(un, x, t)− λun in U × (0, T̃ )

un+1(x, 0) = u0(x) in U × {0}
un+1(x, t) = ϕU(x, t) in ∂U × (0, T̃ ).

(2.2)
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We claim that

0 ≤ un(x, t) ≤ un+1(x, t) ≤ β(x, t) ∀ (x, t) ∈ U × [0, T̃ ],∀ n ∈ N0.

Indeed, by the maximum principle it follows that u1 ≥ 0; moreover,

Lu1 − u1t − λu
1
= g(0, x, t) ≥ g(β, x, t)− λβ ≥ Lβ − βt − λβ

and hence u1 ≤ β . Inductively,

Lun+1 − un+1t − λu
n+1
= g(un, x, t)− λun ≤ g(un−1, x, t)− λun−1

= Lun − unt − λu
n.

Thus un+1 ≥ un. In the same way as before it follows that un+1 ≤ β .
We define

u(x, t) = lim
n→∞

un(x, t).

By the standard Lp-estimates [7, Thm 7.17],

‖D2(un − um)‖Lp(V ) + ‖(un − um)t‖Lp(V ) ≤ c
(
‖L(un − um)− (un − um)t‖Lp(V ) + ‖un − um‖Lp(V )

)
.

By construction,

L(un − um)− (un − um)t = g(un−1, x, t)− g(um−1, x, t)− λ(un−1 − um−1).

As g is continuous, and using that 0 ≤ un ≤ β , by dominated convergence it follows that {un} is a Cauchy sequence in
W 2,1p (V ). Hence un → u in theW 2,1p -norm, and then u is a strong solution.Moreover, by theMorrey imbedding and Schauder
estimates, it follows that u is a classical solution. �

Proof of Theorem 1.1. We approximate the domain Ω by an non-decreasing sequence (ΩN)N∈N of bounded smooth sub-
domains ofΩ , which can be chosen in such a way that ∂Ω is also the union of the non-decreasing sequenceΩN ∩Ω .
Then, define uN as a solution of the problem

Lu− ut = g(u, x, t) inΩN ×
(
0, T −

1
N

)
u(x, 0) = u0(x) inΩN × {0}

u(x, t) = h(x, t) in ∂ΩN ×
(
0, T −

1
N

) (2.3)

such that 0 ≤ uN ≤ β inΩN × (0, T − 1
N ). Define VN = ΩN × (0, T −

1
N ) and choose p > d. ForM > N , we have that

‖D2(uM)‖Lp(VN ) + ‖(u
M)t‖Lp(VN ) ≤ c

(
‖LuM − (uM)t‖Lp(VN ) + ‖u

M
‖Lp(VN )

)
≤ c

(
‖g(uM , ·)‖Lp(VN ) + ‖β‖Lp(VN )

)
≤ C

for some constant C depending only onN . ByMorrey imbedding, there exists a subsequence that converges uniformly on VN .
Using a standard diagonal argument, we may extract a subsequence (still denoted {uM}) such that uM converges uniformly
to some function u over compact subsets ofΩ × (0, T ). For V = U × (0, T̃ ), U ⊂⊂ Ω , T̃ < T , takingM,N large enough we
have that

‖D2(uN − uM)‖Lp(V ) + ‖(uN − uM)t‖Lp(V ) ≤ c
(
‖L(uN − uM)− (uN − uM)t‖Lp(V ) + ‖uN − uM‖Lp(V )

)
.

By construction,

L(uN − uM)− (uN − uM)t = g(uM−1, x, t)− g(uM−1, x, t)− λ(uN−1 − uM−1).

As before, using that g is continuous, and that 0 ≤ uN ≤ β , by dominated convergence it follows that {uN} is a Cauchy
sequence in W 2,1p (V ). Hence uN → u in the W 2,1p -norm, and then u is a classical solution in V . It follows that u satisfies
the equation on Ω × (0, T ). Furthermore, it is clear that u(x, 0) = u0(x). For M > N we have that uM(x, t) = uN(x, t) for
x ∈ ∂Ω ∩ ∂ΩN , t ∈ (0, T − 1

N ). Thus, it follows that u satisfies the boundary condition u(x, t) = h(x, t) on ∂Ω × [0, T ). �

3. A maximum principle for problem (1.1)

In this section we give a proof of Theorem 1.2. For ε > 0 set

v(x, t) = u(x, t)− εβ(x, t).

As β is non-decreasing in t ,

v(x, t) ≤ KeA|x|
2
− εT−

d
2 e

θ
T |x|

2
.
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Choosing θ > TA, we conclude that

lim
|x|→∞

[
sup
0≤t≤T̃

v(x, t)

]
= −∞.

Wemay choose R large enough such that

v(x, t) ≤ M := sup
∂ ′V
u(x, t)

for x ∈ Ω with |x| ≥ R and 0 ≤ t ≤ T̃ . On the other hand,

Lv − vt − g(v, x, t) ≥ Lu− ut − g(u, x, t)− ε(Lβ − βt) ≥ 0.

As in the proof of Theorem 1.1, we approximate the domainΩ by an non-decreasing sequence (ΩN)N∈N of bounded smooth
sub-domains ofΩ , which can be chosen in such a way that ∂Ω is also the union of the non-decreasing sequenceΩN ∩ Ω .
For N large enough, we may assume that if x ∈ ∂ΩN then x ∈ ∂Ω or |x| ≥ R.
Hence, by the classical maximum principle for bounded domains,

v(x, t) ≤ sup
∂ ′ΩN

v(x, t) ≤ M.

Letting ε→ 0, we conclude that u(x, t) ≤ M for 0 ≤ t ≤ T̃ .
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