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Abstract

Angular distributions for the inelastic scattering of the weakly bound 6Li nucleus from a 144Sm target
(associated with the contributions of both the 2+

1 and 3−
1

144Sm excited states together) were measured at
bombarding energies close to the Coulomb barrier. The experimental data were compared with expected
results based on continuum discretized coupled-channel (CDCC) calculations. The results confirm that it
is essential to include continuum–continuum couplings to reproduce the experimental data. The analysis
demonstrates that inelastic scattering data can be a critical tool in testing full CDCC calculations involving
weakly bound nuclei.
© 2011 Elsevier B.V. All rights reserved.

Keywords: NUCLEAR REACTIONS 144Sm(6Li,6Li), E = 23.0–35.1 MeV; measured scattered 6Li spectra using surface
barrier detector array; deduced σ(θ) for different target excitations, reaction mechanism features. Comparison with
continuum discretized coupled-channel calculations

* Corresponding author.
E-mail address: awoodard@nd.edu (A.E. Woodard).

1 Present address: Physics Department, University of Notre Dame, Notre Dame, IN 46556, USA.
0375-9474/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.nuclphysa.2011.10.003



18 A.E. Woodard et al. / Nuclear Physics A 873 (2012) 17–27
1. Introduction

The effect of breakup of weakly bound systems on different reaction mechanisms and scat-
tering has been extensively studied [1]. However, both theoretical and experimental results have
been inconsistent in some areas, and consequently this effect is still not fully understood. Re-
cently, our group has investigated the influence of breakup on the 6Li + 144Sm system at incident
energies near the Coulomb barrier by different forms: backward angle quasi-elastic scattering
and the corresponding barrier distribution (QEBD) [2,3], elastic scattering [4,5] and exclusive
measurements of the emitted d and α particle in the breakup process [6,7]. 6Li is a weakly bound
projectile with breakup threshold energy of 1.67 MeV and no bound excited states, while 144Sm
is a nearly spherical target. In Ref. [4], experimental elastic scattering angular distributions were
presented for near-barrier energies, and the energy dependence of the optical potential was inves-
tigated. In a later theoretical work [5], those experimental angular distributions were studied by
means of continuum discretized coupled-channel (CDCC) calculations. In addition to the elastic
scattering angular distributions reported in Ref. [4], the inelastic scattering leading to the com-
bined 2+

1 (E∗ = 1.66 MeV) and 3−
1 (E∗ = 1.81 MeV) target excited states was also measured in

this experiment. In the present paper we report those inelastic scattering data and their analysis
by means of CDCC calculations. The goal is to reproduce simultaneously both elastic and inelas-
tic scattering as a stringent proof of the proposed model. In this way, we investigate the effect of
breakup on the inelastic scattering angular distributions.

2. Experimental setup

The experimental details have been reported previously in Ref. [4], and are summarized briefly
here. The beam of 6Li was produced in the 20 UD tandem accelerator at the TANDAR Laboratory
in Buenos Aires. The bombarding energy of the projectile was varied around the Coulomb barrier
(V lab

b = 24.5 MeV) between 23.0 and 35.1 MeV. The 144Sm target had 120 µg/cm2 of thickness,
enriched to 88% and it was evaporated onto 20 µg/cm2 of carbon backing. An array of eight
surface-barrier detectors was used, with an energy resolution ranging from 0.5% to 1.0%. The
angular distributions were measured in steps of 2.5◦ or 5.0◦. They are reported in the angular
range from 40◦ to 170◦, where it is possible to distinguish between events associated with the
inelastic scattering from the 144Sm target and the elastic scattering from the target contaminations
(16O) and 12C in the backing film. Fig. 1 shows typical spectra measured at Elab = 23.0 MeV and
θc.m. = 127.3◦ and Elab = 28.0 MeV and θc.m. = 124.6◦. The inelastic excitations of the target
are marked in the figure by arrows. For most of the spectra, it was not possible to separate the
2+

1 and 3−
1

144Sm states. Consequently the inelastic angular distributions we report are the sum
of the cross sections of these two excited states. The statistical uncertainty of the cross sections
ranges from 10% to 50%.

3. CDCC model space

At present, the most successful method to deal with the complexity of coupling continuum
states among them and with the bound states is the CDCC method [8,9]. Within this method, the
scattering states are grouped into wave packets or bins with defined angular momenta, to obtain
representative bin wave functions that belong to the Hilbert space. Hence they give non-infinite
matrix elements when the interaction potential is folded between these bin states. With this ap-
proach the continuum states can be coupled as if they were “inelastic excitations”, but with a
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Fig. 1. Energy spectra of the reaction products around the elastic peak for the 6Li + 144Sm system, measured at
Elab = 23 MeV and θc.m. = 127.3◦ (top), and Elab = 28 MeV and θc.m. = 124.6◦ (bottom). Different exit channels
are indicated.

model space considerably larger than the one that includes only bound states. The coupled chan-
nel calculation has an infinite configuration space, which must be truncated without excluding
the states of interest. For this reason, calculating the numerical solution by means of the CDCC
method can be difficult and must include rigorous tests of convergence.

The wave function of the system with total angular momentum J and z-projection M can be
schematically written as

Ψ JM(R, r, ξ) =
∑

i

FJ
i (R)

R
Y JM

i (R̂, r, ξ). (1)

In this expression, the index i stands for the set of quantum numbers {εi, li, ji, Ii,L} where ε

is the energy at the center of the bin, l is the relative orbital angular momentum of the clusters
that summed to the spin of the deuteron give the total angular momentum j, L stands for the
relative projectile-target angular momentum, and I is the spin of the collective excitation of the
target. The variables R, r and ξ stand for the projectile-target separation vector, projectile internal
coordinate and target internal degrees of freedom, respectively, and R̂ represents the angular part
of the vector R. FJ

i (R) is the radial wave function of the projectile-target relative motion while

Y JM
i (R̂, r, ξ) is a triple tensor product of the full internal wave functions of the target, the bins,

and the angular part of the projectile-target relative motion. Using the standard procedure of
integrating over all the variables except R, the following system of coupled equations is obtained

[
TL + UJ

ii (R) − E + εi
]
FJ

i (R) = −
∑

UJ
ij (R)F J

j (R), (2)

j
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where the matrix elements in Eq. (2) are given by

UJ
ij (R) =

∫
dR̂drdξ Y JM∗

i (R̂, r, ξ)V (R, r, ξ)Y JM
j (R̂, r, ξ). (3)

In the present CDCC calculation for the 6Li + 144Sm system, we postulate that the 6Li breaks
up into α-particles and deuterons and we assume that the cluster model is valid [10,11]. The
only bound state of the clusters is their ground state, corresponding to the entrance channel. The
projectile’s remaining states within the model space are in the continuum, and it is necessary to
generate a set of bins to represent them. Special care has to be taken to account for resonant states
of the 6Li projectile, in order to avoid double counting. The scattering optical potential used to
generate the bins was the one used in Refs. [12,3,5]. The convergence of the CDCC method,
as will be shown below, was reached with bins with maximum energy of εmax = 7 MeV in the
whole energy range studied. The energy was discretized for relative orbital angular momentum
of the α-deuteron clusters l � 2.

In order to describe the unbound resonant states, different discretizations in energy were used
for different angular momenta of the cluster. For l = 0,1, the discretizations were the same and
resulting in 2 bins/MeV. The choice of the bins for l = 2 was guided to describe the resonant
states. For this purpose, three different groups of bins were used for Jπ = 3+,2+ and 1+, that
are the unbound resonant states of the 6Li projectile, obtained by coupling the l = 2 angular
momentum plus the spin of the deuteron s = 1. The α-deuteron interaction potential is of Wood–
Saxon form and includes the spin-orbit interaction, as described in Ref. [12]. This potential was
shown to describe the experimental widths and energies of the resonant states of the projectile.
For the 1+ and 2+ continuum states, 2.5 bins/MeV were taken inside the resonances. For en-
ergies below and above the resonances, 2 bins/MeV and 2.5 bins/MeV were used, respectively.
For the 3+ continuum bins, the discretization was as follows: 7.7 bins/MeV, 10.0 bins/MeV and
7.7 bins/MeV below, inside and above the resonance, respectively. The matching radius that guar-
anteed the orthogonality between bins was rbin = 160 fm. The projectile-target relative motion
wave functions were expanded up to 200h̄ in the whole energy interval and integrated up to a
maximum radius of Rmax = 500 fm of the relative projectile-target distance. This was to ensure
the convergence of the wave functions to the asymptotic Coulomb functions for all of the individ-
ual angular distributions. Fragment-target potentials were expanded up to the quadrupole term
(Kmax � 2) because the octupole term gave negligible effects on the calculated cross sections.

To evaluate the matrix elements of Eq. (3) in the cluster model, one splits the interaction
into a number of cluster terms. In the present calculations, the interaction was split into two
cluster terms corresponding to the α-target interaction and deuteron-target interactions, including
Coulomb and nuclear parts

V (R, r, ξ) = Vα−T(R, r, ξ) + Vd−T(R, r, ξ). (4)

For the real part of the nuclear potentials, a double folding type potential was used. The matter
density of the 144Sm target was taken from the systematic of the São Paulo potential [13]. As-
suming that charge and matter densities have similar distributions, the matter density distribution
of the deuteron and the 4He cluster were obtained by doubling the charge distribution reported in
Ref. [14]. For the imaginary parts of the optical potentials, an internal Woods–Saxon form factor
was used with depth W0 = 50.0 MeV, reduced radius r0 = 1.06 fm and diffuseness a = 0.2 fm.
This internal potential is equivalent to the so-called Ingoing Wave Boundary Condition and is
responsible for the absorption of flux to fusion after one or both clusters has/have overcome the
Coulomb barrier, representing then the total fusion cross section. In Ref. [5], it has been shown
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that the cross sections are almost completely insensitive to the choice of the internal imaginary
potentials, as long as they are kept internal. The main reason to keep them internal with respect
to the barrier is because if the absorption potential reached the surface (the barrier region), it
would account for the absorption into other direct reaction channels not included in the coupling
scheme, like inelastic scattering and transfer reactions. Since these direct channels will be taken
into account explicitly in our calculations, we have to avoid double counting.

In what follows we would like to briefly discuss and summarize a few points of the procedure
that we have applied. It is especially important to emphasize the treatment that we have given to
the inelastic excitations and the internal degrees of freedom of the target, as well as the special
attention that we have paid to the possible problem that stems from double counting. Although we
are not dealing in this work with the fusion cross section calculation, we would like to emphasize
that while a short-range imaginary potential, acting on the projectile center-of-mass may produce
a short-range absorption, it is not obvious that a short-range imaginary potential acting on the
fragment-target relative coordinate will also necessarily lead to a short-range absorption in the
projectile-target center of mass. In fact, if the relative separation of the fragments is large enough
that the projectile is in a continuum state, then absorbing the center-of-mass of the projectile
does not necessarily imply that any of the fragments will be absorbed, as is the case for the
present projectile where the two breakup fragments have comparable masses. The absorption of
the center-of-mass of the projectile will lead to the absorption of at least one fragment if the mass
of one fragment is much larger than the other [15]. As pointed out in Eq. (4), the potential that
we take is the sum of two terms corresponding to the interactions between the target and each
one of the breakup fragments (alpha particle and deuteron). Our approach is based on a method
that has been recently proposed to separate complete and incomplete fusion for the deuterium
induced reaction within the CDCC formalism [16]. In that method, the integrations are performed
over the fragment-target spatial coordinates instead of using the projectile-target and the internal
projectile coordinates. Moreover, these fragment-target interactions are described in terms of
bare potentials to which one needs to explicitly add the collective couplings in the usual coupled
channel method, where the real parts of the interaction potentials are expanded in multipoles in
order to obtain the transition form-factors. Using the harmonic vibrational model the transition
matrix elements are found to lead to the same effect as the optical potential that describes the
elastic scattering [17]. All calculations presented in this manuscript were performed with the code
FRESCO [18]. Since the current version of the code does not include the excitation of the target in
the CDCC method, all form-factors and reduced matrix elements were given as external values.
In the present calculation the potential that is deformed to describe the inelastic excitations of the
target is obtained by single folding the sum of the fragment-target potentials and the projectile
ground state wave function. The extension of the CDCC method to include target excitations has
been performed in a limited number of works (see for example a work of Yahiro et al. [19]).
Recently, there have also been some works which take into account the excitation of the core if
the projectile is considered as a core plus a valence particle [20].

In the present calculation, neither the excitations of the α-core nor those of the deuteron inter-
nal degrees of freedom are included in the coupling scheme. A possible sequential breakup of the
deuteron was also not included in the calculations. As mentioned before, besides the excitation
of the continuum states of the projectile, the collective internal degrees of freedom of the 144Sm
target are included in the calculations. The corresponding channels are labeled by the values
of the target’s intrinsic angular momentum I . Deformation parameters of β2 = 0.087 [21] and
β3 = 0.130 [22] were used for the 2+

1 and 3−
1

144Sm excited states, respectively. Simultaneous
excitations of the projectile and the target were not considered. It is important to point out here
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that our calculations do not employ any fitting procedure, using free parameters in order to obtain
the best adjustment to the inelastic angular distributions.

4. Results and discussion

Fig. 2 compares the experimental inelastic scattering angular distributions at Elab =
23.0,24.1,26.0,28.0,30.1,32.2 and 35.1 MeV to different theoretical approaches. The solid
curves represent the full CDCC calculation including all reorientation terms of the continuum
couplings, including the continuum–continuum couplings as well as the inelastic excitations of
the 144Sm target. The experimental data are generally consistent with the model but exceed the
predicted values at the lowest energies. Although the results of the calculations are sensitive to
small variations in the value of the deformation parameter β2 used for the 144Sm target, varia-
tions of this parameter by up to 10% does not significantly improve the agreement between the
model and the data. The dashed curves represent the usual CC calculations (where the breakup
channel is not considered) using the interaction of the whole projectile with the target, with
the matter density for the 6Li projectile taken from the São Paulo potential systematic. For the
highest energies it can be seen that this CC calculation over-predicts the experimental data and
does not reproduce the shape of the inelastic angular distributions. In Fig. 2 we also show the
effect of the continuum–continuum coupling (CCC) in the CDCC calculations for the inelastic
scattering. The dotted curves are the results of CDCC calculations when the CCC are not in-
cluded, that is, when all the matrix elements given in Eq. (3) which do not couple the 6Li ground
state with any bin wave function are taken equal to zero. By comparing the full CDCC calcula-
tions to those without CCC, one can observe that at near-barrier energies the effect of the CCC
on the inelastic scattering angular distributions is negligible. However, its importance increases
noticeably for higher energies. The effect of taking into account the CCC is to increase the in-
elastic cross sections. A similar effect was reported for elastic scattering angular distributions
calculated for the 8B + 58Ni system at near-barrier energies [23,24]. In Ref. [24] it was shown
that the reason for the enhancement of the elastic cross section was the real repulsive dynamic
polarization potential due to CCC and the reduction of its long range absorptive imaginary part,
related to the breakup channel. The real repulsive dynamic polarization potential increases the
Coulomb barrier and consequently reduces the fusion probability. The loss of flux going to fusion
feeds the peripheral channels, like elastic and inelastic scattering and other direct reactions. In
spite of the small discrepancies discussed above, we conclude that when the breakup channel is
present the best description of the data is obtained performing a full CDCC calculation that con-
tains all important channels in the coupling scheme, including continuum–continuum couplings.
Some previous reports [2,3,25–27] have analyzed backscattering quasi-elastic barrier distribu-
tions (QEBD) using CC calculations for weakly bound systems and have reached conclusions
concerning the importance of the role played by inelastic or transfer channels without explicitly
considering the breakup channel. It may be necessary to revise these conclusions, considering
that the most striking differences between full CDCC and the usual CC calculations are precisely
at the largest angles.

In Fig. 3 we compare the results of the full CDCC calculations to the elastic scattering angular
distributions. This comparison has already been reported [5], but here it is enlarged to show the
low energies in detail. It can be seen that there is also some disagreement between calculations
and experimental data at low energies. For the elastic scattering, the calculations over-predict the
data, while for inelastic scattering the data are greater than predicted. It is very important to stress
that the disagreement between the calculations and the experimental data is much more evident
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Fig. 2. (Color online.) Experimental and calculated angular distributions of inelastic scattering cross sections of the
weakly bound 6Li nucleus from a 144Sm target, with contribution from the 2+

1 and the 3−
1 target excited states at

Elab = 23.0,24.1,26.0,28.0,30.1,32.2 and 35.1 MeV. Different calculations correspond to: full CDCC calculation
including all reorientation terms of the continuum couplings, the continuum–continuum couplings as well as the inelastic
excitations of the 144Sm target (solid curves), the usual CC calculation that does not take into account the breakup
channel (dashed curves), and the results of CDCC calculations when the continuum–continuum couplings are switched
off (dotted curves).
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Fig. 3. (Color online.) Comparison between experimental and calculated elastic scattering angular distributions for the
6Li + 144Sm system. The experimental data were taken from Ref. [4] and normalized to the Rutherford cross section.
Different calculations correspond to: Optical Model calculation (dotted curves), usual Coupled Channel calculation with-
out considering the breakup channel (dashed curves), and full CDCC calculation (solid curves) carried out to describe the
experimental inelastic scattering presented in this work (see text for details). This comparison has already been reported
in Ref. [5] at eleven different bombarding energies. In this figure, only four energies (labeled in the laboratory frame) are
shown.

in the analysis of the inelastic than for elastic scattering angular distributions. The present results
show very clearly that inelastic scattering data are a useful tool to investigate the confidence of
the calculations.

To see the relative contribution of each inelastic excitation to the summed inelastic angular
distribution, we included in Fig. 4 their respective theoretical cross sections at three different
bombarding energies. It can be seen that the quadrupole excitations contribute more at medium
and forward angles and the octupole at the largest ones, and that the octupole cross sections
increase with the energy.
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Fig. 4. (Color online.) Contribution of the 2+
1 and 3−

1 target excitations (dashed and dotted curve, respectively) to the

summed (2+
1 + 3−

1 ) inelastic angular distribution (solid curve). The quadrupole excitations are more relevant at medium
and forward angles and the octupole at the largest angles. The octupole cross sections increase with the energy. Only
three energies (labeled in the laboratory frame) are shown.

Finally, we would like to show the sensitivity of our calculations to the optical potentials used
in the calculations. Fig. 5 shows CDCC calculations for the elastic and inelastic scattering angular
distributions at Elab = 30.1 MeV, chosen as example. The full curves represent our previous
calculations of Figs. 2 and 3. The dashed curves are the results using the SPP for the interaction
α-deuteron to generate the bins. It can be seen that the results are very sensitive to the optical
potential used. The reason for the disagreement may be that the double folding potential does not
provide an adequate approximation of the interaction between these very light ions. The dotted
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Fig. 5. (Color online.) Comparison of CDCC calculations using SPP and Woods–Saxon potentials at Elab = 30.1 (see
text for details).

curves are the results of a new CDCC calculation using the Woods–Saxon optical potential from
systematics. For the real part of the 4He+ 144Sm potential we used the one from Ref. [28] and for
the deuteron + 144Sm the one from Ref. [29]. The disagreement with the experimental data may
be because we are using only the real part of the phenomenological effective optical potential of
those systematics, which in principle depends on the imaginary part used to describe the elastic
scattering angular distributions. In the case of the microscopic double folding potentials, they
are derived from matter densities and the nucleon–nucleon interaction and they are independent
of the imaginary part of the optical potential. These results show that in fact the double folding
potential is more reliable for CDCC calculations than Woods–Saxon potentials, especially when
all the relevant reaction channels are included in the coupling scheme.

5. Conclusions

We have reported angular distributions of original experimental inelastic scattering cross sec-
tions of the weakly bound 6Li nucleus from a 144Sm target (2+

1 and 3−
1 target excited states) at

seven bombarding energies near the Coulomb barrier. Those experimental results, together with
pre-existent elastic scattering data, were used to determine the contribution of various channels
involved in the 6Li + 144Sm reaction, by means of coupled channel and continuum discretized
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coupled-channel calculations. The best agreement with the data was reached when a full CDCC
calculation including continuum–continuum couplings was carried out. This result shows that
when the breakup channel is present, one has to perform a full CDCC calculation that contains
all important channels in the coupling scheme, including continuum–continuum couplings. At
the lowest energies the calculations under-predict the experimental data by a factor of around
two, although both experiment and theory agree in shape. The disagreement between the full
CDCC calculations and the data at low energies can also be observed in the elastic scattering
angular distributions (where the calculations over-predict the data), however the discrepancy is
smaller than that observed in the inelastic scattering data. The effect of the continuum–continuum
couplings on the calculated inelastic scattering angular distributions is negligible at near-barrier
energies, but its importance increases dramatically for higher energies, where it increases the
inelastic cross sections. We plan to elucidate possible sources of the discrepancies between full
CDCC calculations and data by simultaneously analyzing the elastic and inelastic data for the
7Li + 144Sm system.
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