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a b s t r a c t

The standardization of toxicity tests requires the selection of the most suitable test species and their

developmental stages, as well as the selection of the appropriate assay matrix and the evaluation of the

sensitivity of the test species to the reference toxicants. International protocols recommend the use of

the amphipod Hyalella azteca from the Northern Hemisphere for sediment toxicity tests. We selected

the widely distributed amphipod Hyalella curvispina, representative of pleustonic, epiphitic and

zoobenthic assemblages in austral South America, as test species to be used in regional studies. Our

goals were to evaluate the sensitivity of three developmental stages of H. curvispina to cadmium as a

reference toxicant and to select the most suitable age and exposure time for aquatic ecotoxicity

assessment. The three ages were highly susceptible to cadmium, with sensitivities: neonates 4
adults 4 juveniles. Our results validate the use of the native H. curvispina as a standard species for

ecotoxicological assessment studies.

Published by Elsevier Inc.

1. Introduction

There are many and varied consequences of chemical con-
tamination on the biota, ranging from lethality to sublethal and
chronic effects such as alterations in reproduction, growth and
development (Cooney, 1995; Anguas-Cabrera et al., 2004; Garcı́a-
Medina et al., 2004).

Changes in population structure and dynamics may also
become evident (Iannacone Oliver and Alvariño Flores (2003);
Garcı́a-Garcı́a et al., 2004). The responses of organisms to
contaminants depend on the toxicant concentration, the environ-
ment they live in and their vulnerability according to life-history
traits. Hence, the effects of a given toxicant on a population, and
ultimately on the whole community, are expected to be
particularly harmful during the reproduction and breeding
periods (Pascoe et al., 1989; Lagadic et al., 1994; Roex et al.,
2000; Pietrock et al., 2008).

The bioassays are useful tools for evaluating the toxicity
because test organisms show an integrated response to the
adverse effects of chemical substances to which they are exposed,

providing information complementary to physicochemical ana-
lyses.

Bioassay standardization requires not only a methodological
protocol but also the selection of the most suitable test species
and developmental stages, the assay matrix and the reference
substance among others. Toxicity tests using reference substances
are one way of monitoring the environment and of understanding
the effects of xenobiotics on aquatic organisms (Jorge and Moreira
2005).

Most standardized bioassay protocols use Northern Hemi-
sphere test species, but regional studies should use native species
to obtain reliable results. The use of native species, which are
better adapted to the environmental conditions of the region, can
provide more useful information than exotic species do.

The amphipod Hyalella azteca (usually found in lentic habitats,
ponds and occasionally in lotic habitats such as streams) is a
common test organism for aquatic toxicity evaluation (Ingersoll,
1995; Borgmann and Munawar, 1989; González Ortı́z and
Martı́nez-Tabche, 2004; Ramı́rez-Romero et al., 2004; Wang
et al., 2004, Bartlett et al., 2005, Borgmann et al., 2005).

The species used in this work, Hyalella curvispina, was first
reported in Argentina by Shoemaker (1942). It is representative of
zoobenthic and epiphitic communities in austral South America,
from Punta Arenas, Chile (Cunningham, 1871) and Islas Malvinas,
Argentina (Stock and Platvoet, 1991) in the south, to Cangallo and
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Rı́o de Janeiro, Brazil (Oliveira, 1953) in the north. This species has
also been cited as H. knickerbuckeri (1931), H. simplex (1943) and
H. pernix (1985) (Grosso and Peralta, 1999). H. curvispina (being
mainly found in ponds and streams) is suitable as test organism
for regional studies of toxicity due to its wide distribution, easy
breeding under laboratory conditions, and because it is part of the
native fauna. In Argentina it has been increasingly used in
ecotoxicity testing both in the field and under laboratory
conditions (Rodrigues Capı́tulo, 1984; Di Marzio et al., 1999;
Grac-a et al., 2002; Argemi et al., 2003; Galassi et al., 2004;
Jergentz et al., 2005; Anguiano et al., 2005; Doyle, 2007, Giusto
et al., 2008, Giusto and Ferrari, 2008). All these considerations
underline the need for establishing a protocol using H. curvispina,
and in this context, to determine its sensitivity to reference
toxicants.

Reference substances are used to make comparisons among
tests and among methods that use different organisms, and for
interlaboratory calibration (Hunt and Anderson, 1989). Further-
more, they can reveal differences in the sensitivity of different
batches of test organisms in periods of acclimation, disease,
density or handling stress and may also be used to evaluate
reproducibility and validate tests (Ong and Din, 2001).

The ideal reference substance must be toxic in low concentra-
tions, quickly lethal, stable, non selective, detectable through
known analytical techniques and further, able to furnish con-
sistent laboratory results (Ong and Din, 2001). Cadmium is
recommended as a reference toxicant in toxicity studies by
international protocols (EPS 1/RM/33, 1997; DFO, 1992; ASTM,
1991, 1993, 1995; Borgmann et al., 1989; USEPA, 1991, 1993,
1994; NWRI, 1992). It is a non-essential element of unknown
biological function, with a global ratio of approximately 7:1
between release from anthropogenic sources and release from
natural sources (Abel, 1996).

Most of the cadmium discharged into freshwater ecosystems
accumulates in sediments and can be resuspended into the water
column under certain conditions (Wright and Welbourn, 1994).
The bioavailable form of cadmium is the free ion Cd+2. According
to water quality criteria for the protection of aquatic life, allowed
cadmium concentrations range between 0.2 and 4 mg Cd+2/L, for
hardness between 0 and 60 and up to 180 mg CaCO3/L,
respectively (Law N

%
o 24051, 1991; USEPA, 2002). Several aquatic

organisms such as crustaceans, insects and fishes show high
mortalities after exposure to 0.8–9.9 mg Cd+2/L for 4–33 days,
while concentrations exceeding 1 mg/L cause negative effects on
the reproduction and growth of H. azteca (Borgmann et al., 1989).
The response of test organisms to a reference toxicant must be
quick and easy to distinguish, and these requirements are met
when H. azteca is exposed to cadmium (McNulty et al., 1998). In
Argentina, cadmium is used as a reference toxicant in ecotox-
icological bioassays with different aquatic organisms (Ferrari
et al., 1997; 2005; Garcı́a et al., 1998; Demichelis et al., 2001).

Taking into account the need to standardize the use of
H. curvispina as a test organism in ecotoxicological assays, the
purposes of this study are to evaluate the sensitivity of
H. curvispina to cadmium as a reference toxicant in function of
age and exposure time, and to select the most suitable age for
standardized ecotoxicological tests and their duration.

2. Materials and methods

The specimens of H. curvispina were collected in two relatively pristine

freshwater bodies in the surroundings of La Plata City, located in Punta Lara:

34147�49.11��S; 58101�44.92��W and in Berazategui: 34145�664��S; 58110€824��W Buenos

Aires, Argentina (Gómez and Toresani, 1999). In the laboratory they were

acclimated in plastic trays with water and aquatic plants (Egeria densa, Lemna

gibba) from the collection site. The water was gradually replaced with

non-chlorinated tap water over a 48 h period and the plants were left to serve

as substrate and shelter for the amphipods. Animal density varied between 60 and

100 individuals/L. The maintenance conditions were as follows: temperature

19–25 1C, natural photoperiod, dissolved oxygen 8.2–9.1 mg/l, conductivity

962–1054 mS/cm, 25 mg/l of commercial fish food 2–3 times a week.

The following life-cycle stages were isolated from the population maintained

under laboratory conditions and acclimated for 7days before use: 1) neonates/

breeding (7–20 d of age, between 0.88 and 2.3 mm length), obtained from isolated

ovigerous females; 2) juveniles (between 3.2 and �5.0 mm length); and 3) adult

males (between 5.1 and 10 mm length), see Fig. 1. The size ranges established here

for the ages of H. curvispina are comparable to those for another native amphipod,

Hyalella pampeana, with neonates/amphipodites between 1.28 and 2.87 mm,

juveniles/prereproductive stages between 3.37 and 4.06 and adults 44.06 mm

(Lopretto, 1983). The sizes of male adults of both regional species are in

accordance with those reported in the taxonomic descriptions by González

Balbontı́n Exequiel (2001).

All bioassays were conducted under static conditions, at controlled tempera-

ture of 2172 1C, and a photoperiod of 16 h light/8 h darkness. The dilution

medium was moderately hard reconstituted water (MHW) with the following

chemical composition (mg/L): 96 NaHCO3; 60 Ca SO42H2O; 60 MgSO4; 4 KCl; 7.4–

7.8 pH; hardness 80–100 mg/L CaCO3; alkalinity, 60–70 mg/L CaCO3, (APHA,

1995). The exposure time of the assay was 14 days for juveniles and adults and 4

days for neonates.

The different cadmium concentrations assayed were prepared using dilution

series of a stock solution of 1 mg Cd2+/mL (as CdCl2) in bidestilled water. Nominal

concentrations were 2.5, 5, 8, 10, 15, 25, 50 and 100 mgCd2+/L.

In each assay, all treatments were performed in quadruplicate; each beaker

contained 5 animals, 150 ml of water and a piece of nylon as substrate. Table 1

shows a detailed description of the assays, in terms of age and total number of

individuals, number of assays and concentrations used.

The following variables were measured in MHW at initial exposure times:

dissolved oxygen and pH with sensors (oxymeter Hanna 600-ESD [70,1 mg/L], pH

meter Hanna HI 8633 [70,01 mg/L], respectively); water hardness, estimated by

the volumetric method, with the Aquamerck test kit (Merck, sensitivity of 1 mg/L

CaCO3); and the analytical Cd concentration was determined using inductively

coupled plasma atomic emission spectrometry (ICPES, Perkin-Elmer Optima-3100

Icp-XL) with a method detection limit o1.5 mg Cd2+/L (APHA, 1995).

The assays were performed in translucid containers of polypropylene with a

capacity of 250 ml, covered with transparent plastic lids throughout the

experiment. Animals were fed 20 mg/l of ground fish food (Tetra Min) three

times a week.

The number of live and dead animals in each replicate was recorded on days 2,

4, 7, 10 and 14 of exposure for juveniles and adults and on days 1, 2, 3 and 4 for

neonates. The water in the replicates was oxygenated during animal count.

The lethal concentrations (LC50) were calculated by the Probit method (Finney,

1972) with the TOXSTAT-EPA program (1996, software package version 3.5), using

measured concentration values and the total number of repetitions for each age.

The significance of the differences among treatments and the survival kinetics

as a function of time for each age was analyzed using a non-parametric test

(Kruskal Wallis test) followed by pairwise comparisons (Sparks, 2000; Zar, 1999).

Statistical analyses were conducted with the InfoStat software package (InfoStat,

2004). The significance level was set at po0.05.

Fig. 1. Neonates, juveniles and male adults of Hyalella curvispina. Note differences

in external morphology and size.
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3. Results

The values of dissolved oxygen, pH and hardness in MHW at
time zero ranged between: 8.2 and 9.1 mg/L, 7.6–7.8 and 94.3–
101.7 mg CaCO3/L, respectively. For all the assays, the analytical
values of Cd in solution were between 86–96% of the nominal
values for the concentration range between 2.5 and 100 mg Cd2 +/
L. The effective concentrations of cadmium (mean+SD, n=5) in 8
of the concentrations assayed (2.5, 5, 8, 10, 15, 25, 50 and 100)
were 2.9+0.2, 4.8+0.5, 8.1+0.8, 10.270.7, 14.870.6, 22.772.2,
45.175.6 and 88.571.4 mg Cd27/L, respectively.

The two lowest concentrations (0.625 and 1.25 mg Cd27/L)
were not included in the analysis because they were below the
detection limits of the technique.

3.1. Assays with neonates

Table 2 shows the obtained values of LC50 (mg Cd27/L) for the
different times of exposure. Although the LC50 on day 1 was not
significantly different (ns), there was an evident time-dependent
effect with increasing toxicity.

Fig. 2 shows the survival as a function of time for the different
concentrations of cadmium. The kinetics analysis indicated four
homogeneous groups at the conclusion of the exposure period: (a)

concentrations of 45.1 and 88.5 mg Cd27/L with survival rates
less than 10%, (b) concentration of 22.7 mg Cd27/L with a survival
rate of around 10%, (c) intermediate concentrations between 2.9–
22.7 mg Cd27/L with survival rates between 10% and 55%, (d)
intermediate concentrations between 0.63–1.25 mg Cd27/L
(nominal values) with survival rates between 35% and 60%, and
the control with 95% of survival on exposure day 4 (Table 3
Part A).

The comparison of survival between times of exposure (days 1,
2, 3 and 4) revealed a different response between the two highest
concentrations and the remaining ones in the first 24 h of the
assay (Table 3 Part B), and this result was consistent with the
mean lethal concentrations (Table 2).

3.2. Assays with juveniles

Table 4 shows the values of LC50 (mg Cd27/L) obtained for the
different times of exposure. A time-dependent increase in toxicity
can clearly be observed.

The survival curves as a function of time for each tested
concentration are presented in Fig. 3. The kinetics analysis
identified three homogeneous groups at the conclusion of the
exposure period: (a) concentrations of 45.1, 22.7 and 14.8 mg
Cd27/L with survival rates less than 25%, (b) concentrations

Table 1
Detail of the assays performed with neonates, juveniles and adults of H. curvispina: number of individuals (N), number of bioassays (no) and mean analytical and nominal

( � ) cadmium concentrations (mg Cd/L) assayed (per quatriplicate) in each bioassay.

age N no Cadmium concentrations (mg Cd27/L) nominals ( � )and effectives (means values)

0 0.625 1.25 2.5 5 8 10 15 25 50 100

Neonates 260 2 0 0.625 1.25 2.9 4.8 10.2 22.7 45.1 88.5

Juveniles 280 2 0 2.9 4.8 8.1 10.2 14.8 22.7 45.1

Adults 542 5 0 2.9 4.8 10.2 22.7 45.1

Table 2
Mean lethal concentrations of cadmium (LC 50 mg Cd27/L) in moderately hard water (MHW) obtained for neonates of H. curvispina at different exposure times. (N=260;

Chi2 critical value=12.592). ‘‘ns’’ denotes a not statistically significant difference (Po0.05).

Exposure time (days) LC50 (mg Cd27/L) Confidence limits slope intercept Chi2

1 8.02 2.71–30.42 1.071 4.031 18.314 ns

2 4.47 2.64–6.89 1.215 4.210 7.919

3 2.26 1.23–3.47 1.228 4.565 5.802

4 1.71 0.78–2.82 1.191 4.721 6.622

Fig. 2. Survival (%) of H. curvispina neonates exposed to different cadmium concentrations (mg Cd27/L) in moderately hard water (MHW).
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between 22.7 and 10.2 Cd27/L with survival rates between 10%
and 40%, and c) low concentrations (r8.1 mg Cd27/L), controls
included, with survival rates exceeding 80% (Table 5 Part A).

The analysis between times of exposure indicated the presence
of three homogeneous groups, with no significant differences in
survival between concentrations from exposure day 7 onward
(Table 5, Part B).

3.3. Assays with adults

Table 6 shows the values of LC50 obtained for the different
times of exposure. There was a gradual decrease in LC50 with time
of exposure, with confidence intervals overlapping at all times of
exposure.

Survival curves as a function of time for each tested
concentration are shown in Fig. 4. The kinetics analysis
identified three homogeneous groups at the conclusion of the
exposure period, excluding the control: a) concentrations of 88.5,

45.1 and 22.7 mg Cd27/L with survival rates less than 10% on
exposure day 14, (b) concentrations of 10.2 and 4.8 mgCd27/L
with survival rates around 50%, and (c) concentration of 2.9 mg
Cd27/L with a survival rate of 70% (Table 7 Part A).

The comparison between times of exposure revealed no
significant differences between concentrations from exposure
day 4 onward (Table 7 Part B), which is concordant with the
considerable overlap of the confidence intervals for the LC50

values between successive exposure times (Table 6).

3.4. Comparison of sensitivity to cadmium among

developmental stages

The toxic effects of cadmium differed according to age, with
neonates showing the highest sensitivity followed by adults and
then juveniles. Fig. 5 shows the LC50 values obtained for the three
developmental stages and their respective confidence intervals.
On day 4 of exposure, the LC50 value for neonates was 5 times
lower than that for adults and 20 times lower than that for

Table 3
Survival of H. curvispina neonates. Matrix of pairwise comparisons (Kruskal Wallis)

between cadmium concentrations and exposure times. Statistically homogeneous

groups (p40.05) are identified by the same letter. Part A, Chi20.05;8=15.507, Part B,

Chi2
0.05;4=9.488.

Concentration H: 83.2 Part A Exposure time H: 93.17 Part B

Cd (mg/L ) Homogeneous groups Time (days) Homogeneous groups

88.5 A 4 A

45.1 A 3 A

22.7 A B 2 A B

10.2 B 1 B

4.8 B 0 C

2.9 B C

1.25 B C

0.63 C

0 D

Table 4
Mean lethal concentrations of cadmium (LC 50 mg Cd27/L) in moderately hard water (MHW) obtained for juveniles of H. curvispina at different exposure times (N=280;

Chi2 critical value=11.070).

Exposure time (day) LC50 (mg Cd27/L ) Confidence limits Slope Intercept Chi2

4 29.99 24.35–39.07 2.819 0.837 3.451

7 17.76 14.19–21.63 3.075 1.157 5.703

10 14.52 11.40–18.36 3.079 1.422 3.290

14 10.20 8.19–12.08 3.817 1.150 5.479

Fig. 3. Survival (%) of H. curvispina juveniles exposed to different cadmium concentrations (mg Cd27/L) in moderately hard water (MHW).

Table 5
Survival of H. curvispina juveniles. Matrix of pair wise comparisons (Kruskal-

Wallis) between cadmium concentrations and exposure times. Statistically

homogeneous groups (p40.05) are identified by the same letter. Part A,

Chi20.05;7=14.067, Part B, Chi2
0.05;5=11.070.

Concentration H: 87.61 Part A Exposure time H: 83.47 Part B

Cd (mg/L) Homogeneous groups Time (days) Homogeneous groups

45.1 A 14 A

22.7 A B 10 A

14.8 A B 7 A

10.2 B 4 B

8.1 C 2 C

4.8 C 0 C

2.9 C

0 C

Garcı́aM.E. et al. / Ecotoxicology and Environmental Safety 73 (2010) 771–778774
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juveniles. At successive exposure times, the LC50s for juveniles
were approximately twice those for adults.

4. Discussion

The available data suggest that the sensitivity of invertebrate
species to toxicants is developmental stage-dependent, with
juvenile stages being more vulnerable than mature ones. On this
basis, the use of toxicity data derived with these juveniles will
eventually result in the most protective water quality criteria
(Muysen and Janssen, 2007). Based on a database of comparative
toxicity of chemicals substances to different life stages of aquatic
invertebrates, Hutchinson et al.(1998) showed that in most cases,
larvae were more sensitive than juveniles (66% of the substances)
which, in turn, were more sensitive than adults (54% of the
substances). However, particularly for cadmium, these authors
found that juveniles were more sensitive than either larvae or
adults. Our results indicate that the H. curvispina juveniles are less
sensitive than the other two ages. Collyard et al. (1994) in
evaluating the toxicity of five substances with different action
modes (including cadmium) found 96 h LC50s values typically
varied by 50% or less among the various age classes of H. azteca.

The use of the LC50 value, which is the most common measure
of toxicity, assumes that survival depends on the concentration of
the toxic substance and that, in general, the LC50 value decreases
with time of exposure. Despite its limitations as a toxicity
indicator, it is considered to play an important role in ecological
risk assessment (Kooijman, 1998).

The metal accumulation in aquatic invertebrates and the
resulting acute and chronic effects have been evaluated in
numerous species, particularly from the Northern Hemisphere
(Amiard-Triquet et al., 1987; Borgmann et al., 1993a, 1993b,
2005; Toussaint, Shedd et al., 1995; Shaw and Chadwhich,1998;
Gillis et al., 2004), and, to a lesser extent, in local species

Table 6
Mean lethal concentrations of cadmium (LC 50, mg Cd27/L) in moderately hard water (MHW) obtained for adult males of H. curvispina at different exposure times (N=542;

Chi2 critical value=7.815).

Exposure time (days) LC50 (mg Cd27/L) Confidence limits Slope Intercept Chi2

4 8.68 7.18–10.67 2.033 3.092 6.062

7 7.22 5.96–8.76 2.205 3.106 6.028

10 6.41 5.28–7.73 2.205 3.220 4.981

14 6.12 4.87–7.53 2.105 3.344 6.928

Fig. 4. Survival (%) of H. curvispina adult males exposed to different cadmium concentrations (mg Cd27/L) in moderately hard water (MHW).

Table 7
Survival of H. curvispina adult males. Matrix of pairwise comparisons (Kruskal-

Wallis) between cadmium concentrations and exposure times. Statistically

homogeneous groups (p40.05) are identified by the same letter. Part A,

Chi2
0.05;6=15.592, Part B, Chi2

0.05;5=11.070.

Concentration H: 209 .67 Part A Exposure time H: 98.77 Part B

Cd (mg/L) Homogeneous groups Time (days) Homogeneous groups

88.5 A 14 A

45.1 A 10 A

22.7 A 7 A

10.2 B 4 A B

4.8 B 2 B

2.9 C 0 C

0 D

Fig. 5. Mean lethal concentrations of cadmium (CL50, mg Cd27/L) and confidence

intervals at different exposure times for neonates, juveniles and adults of

H. curvispina.
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(Rodrı́gues Capı́tulo, 1984; Achiorno et al., 2005; 2008; Vásquez
et al., 2005; Gagneten, 2006).

Among the 18 taxonomic groups of invertebrates tested for the
evaluation of toxic effects, cladocerans are the most commonly
used, and amphipods are regarded as highly vulnerable (Janssen,
1998). A study concerning chronic exposure of Daphnia magna

and H. azteca to heavy metals showed that amphipods proved to
be the most sensitive in almost all cases (Borgmann and
Munawar, 1989). The sensitivity of 21 genera of aquatic organ-
isms to chronic exposure to cadmium was determined in order to
establish guide levels for the protection of aquatic life; Hyalella

ranked within the four most sensitive genera (Mebane, 2006).
The recommended age and/or size for H. azteca in toxicity tests

is 271 mm between 1 and 3 days old (USEPA, 1991), between 0
and 7 days old (DFO, 1989, 1992; , EPS 1/RM/33, 1997), between 7
and 14 days old (EPS 1/RM/33, 1997; USEPA, 1994) or between 2
and 3 mm (EPS 1/RM/33, 1997, ASTM, 1991). The current USEPA
(2000) sediment toxicity method for H. azteca calls for starting
long-term tests with a duration of 42 days and 7 or 8 days old
animals.

In Argentina (Law N
%
o 24051), the maximum permissible level

of cadmium for the protection of freshwater aquatic life in surface
waters is 2 mg Cd27/L for water hardness between 60 – 120 mg/L
CaCO3 and 0.2 mg Cd27/L) for water hardness between 0–60 mg/L
CaCO3. Our results indicate that the neonates of H. curvispina (0–
20 days old and 0.88–2.3 mm in length), are very sensitive to
cadmium with LC50 values between 2.26 and 1.71 mg Cd27/L on
the 3th and 4th of exposure days; these concentrations are
slightly below the maximum permissible level for aquatic life
protection (Table 2). A LC50 of 1.6 mg Cd27/L with confidence
levels between 0.9 and 2.8 mg Cd27/L were reported for H. azteca

exposed for 6 weeks (Borgmann et al., 1993a, 1993b).
The juveniles showed to be much less sensitive to cadmium

than neonates under the same experimental conditions and
exposure times, with LC50s values between 29.99 and 10.20 mg
Cd27/L for days 4 and 14, respectively (Table 4). These
concentrations are detectable by the currently available techni-
ques, which is necessary for reliable, comparable and reproduci-
ble results. The survival response tended to stabilize with the
increasing of the exposure time and increasing cadmium
concentration from exposure day 7 onward. According to our
experience, the juveniles of H. curvispina can be handled and
identified easily (Fig. 1) and show high survival rates under
laboratory maintenance conditions.

Adults were remarkably more sensitive to cadmium than
juveniles (with an adult: juvenile LC50 ratio of 4 on exposure day
4) and showed a stable response as a function of time and
concentration from the first day of survival evaluation. Boxal,
et al. (2001) pointed out that to interpret the age-dependent
sensitivity to a particular toxicant it is required to determine its
route of entrance and the physiology of the organism.

In ecotoxicity tests, the time of exposure depends on the
objectives of the analysis. For acute toxicity tests with H. azteca

neonates, the recommended time of exposure to a reference
toxicant varies from 48 to 96 h (NWRI, 1992, USEPA, 1991, 1994).
For spiked sediment tests with H. azteca neonates, recommenda-
tions vary from 7 days, (USEPA, 1991), 10 days (USEPA, 1994),
14 days (EPS, 1985; EC, 1994; EPS, 1997) to 28 days (EPS 1/RM/33
(1997)), from 10 to 30 days (ASTM, 1991) or 28 days (DFO, 1989,
1992, NWRI, 1992). In both cases, no recommendations have been
made for the assessment of toxic effects during exposure; for
example, mortality is only recorded at the conclusion of the
exposure period. The chronic toxicity tests usually last from 4 to 8
weeks, and Borgmann and Munawar (1989) have proposed not to
exceed this short period to avoid response variability. Never-
theless, it is important to assess the response of potential test

species to the selected endpoints in function of time and in
function of the concentration of the reference toxicant.

In brief, the neonates of this species are extremely sensitive to
cadmium at concentrations from 22.7 to 0.6 mg Cd27/L and
exposure times up to 72 h. The juveniles are the least sensitive of
the three ages, with a time and concentration-dependent
response between 22.7–8.1 mg Cd27/L and an optimum final
exposure time of 7 days. Adult males have an intermediate
sensitivity, and show a stable response between 22.7–2.5 mg
Cd27/L and 4–14 days of exposure. Notwithstanding these
considerations, Cd can be regarded as highly toxic to H. curvispina

at the three ages studied and could be used as reference toxicant
in assays with this species. In addition, juveniles are proposed as
the preferential age for ecotoxicological assessment at a regional
level.

5. Conclusions

The life stages of H. curvispina had a different sensitivity to
cadmium, in particular, neonates, which showed a LC50 96 h
value similar to the guide level for the protection of aquatic life.

H. curvispina resulted an adequate test species and the Cd a
suitable reference substance for assessment of ecotoxicity in
regional water bodies.
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