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Abstract

We calculate the dependence of the deuterium binding energy upon the Higgs vacuum expectation value
(v), by using different effective nucleon–nucleon potentials, and set constraints on the time variation of the
Higgs vacuum expectation value from Big Bang Nucleosynthesis. The analysis is based on the calculation
of the abundances of primordial D, 4He and 7Li. Results are consistent with variations of v/ΛQCD in the
early universe, within 6σ if all available data on primordial abundances are considered in the analysis.
© 2010 Elsevier B.V. All rights reserved.
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1. Introduction

There exist some theories which allow fundamental constants to vary over cosmological times
scales, such as super-strings [1–6], brane-world [7–10] and Kaluza–Klein theories [11–15]. Big
Bang Nucleosynthesis (BBN) provides constraints on the variation of fundamental constants.
BBN is one of the most powerful tools to study the early Universe and has only one free parame-
ter: the baryon to photon ratio ηB . The value of ηB can be obtained from the analysis between the
predicted BBN abundances and their observational data, or from the analysis of the cosmic mi-
crowave background (CMB) data [16–18]. The theoretical abundances (obtained from the value
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of the baryon density provided by CMB) are consistent with the observed abundances of D, but
not with all the 4He and 7Li data. Since BBN is sensible to fundamental constants, such as the
Higgs vacuum expectation value, and the fine structure constant among others, it is an important
test to set constraints on deviations from the standard cosmology, and on physical theories be-
yond the standard model (SM). The time variation of some fundamental constants (e.g. the fine
structure constant, the electron mass, the Planck mass), was studied in Campbell and Olive [19],
Bergström et al. [20], Ichikawa and Kawasaki [21], Nollett and Lopez [22], Müller et al. [23],
Ichikawa and Kawasaki [24], Cyburt et al. [25], Landau et al. [26], Coc et al. [27], Chamoun
et al. [28].

The production of all primordial elements would be different from the BBN prediction if the
deuterium binding energy, εD , acquires a value on that epoch different than the present one.
Several authors have studied the variation of εD as function of the quark masses, and they have
applied their results to set constraints on the variation of the deuterium binding energy using
data from cosmological epochs [29–34]. From the analysis of Beane and Savage [35] and Epel-
baum et al. [36], Yoo and Scherrer [37] considered εD as a linear function of the Higgs vacuum
expectation value and set constraints on the variation of v during cosmological times.

In a previous work [38], we have studied the dependence of the deuterium binding energy with
v/ΛQCD, where ΛQCD is the strong-coupling constant, using an effective, soft-core, nucleon–
nucleon interaction, the Reid 93 potential [39,40], and applied the results to set constraints on the
time variation of v/ΛQCD. Since there exist several nucleon–nucleon effective potentials [39–47],
it is of interest to see if the constraints on εD do vary with them. In the present work we calculate
the dependence of εD with the dimensionless parameter N = v/ΛQCD using the Argonne v18,
the Nijmegen and the Bonn potentials and compare these results with the one obtained using the
Reid potential. Following Berengut et al. [34], we assume ΛQCD is constant, that is, we measure
all dimensions in units of ΛQCD, therefore, hereafter, the relative variation δv

v0
represents δN

N0
. We

focus our attention on the calculation of the primordial abundances to set constraints on the time
variation of the Higgs vacuum expectation value for the different potentials. We also study the
sensibility of this variation on the abundance of 4He [30].

This work is organizes as follows. In Section 2, we discuss the dependence of the deuterium
binding energy with the Higgs vacuum expectation value for different effective potential. In
Section 3, we calculate the primordial abundances and obtain constraints on the variation of the
Higgs vacuum expectation value. Our conclusions are presented in Section 4.

2. Dependence of the deuterium binding energy with v

We are interested in the effects on the deuterium-binding-energy due to the change of v. The
variation of this parameter produces variations on the mass of light and heavier mesons [33]. The
effects on the different effective potentials due to the change of v are noticeable. Therefore one
might expect that the binding energy εD and the D ground-state wave function would be affected
by changes in v.

In the next section we briefly described the potentials used in this work and their modifications
due to the variation of the Higgs vacuum expectation value.

2.1. Reid potential

The Reid potential represents the nucleon–nucleon interaction through the one-pion exchange
mechanism (OPE) and a combination of central, tensor and spin–orbit functions with cut-off
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parameters (non-OPE) [40]. The Reid 93 potential is the regularized version of the Reid 68
potential [39]. This regularization is performed by introducing a dipole form factor

F
(
k2) = (Λ2 − m2)2

(Λ2 + k2)2
, (1)

where Λ is the dipole cut-off parameter. This choice yields the function

φ0
C(m, r) = e−mr

mr
− e−Λr

mr

(
1 + Λ2 − m2

2Λ2
Λr

)
, (2)

for the central contribution to the potential. The tensor and spin–orbit potentials can be expressed
as
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The OPE contribution to the Reid 93 potential is then written as

VOPE(r) = −f 2
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mπ0
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T (mπ0 , r)S12 + 1

3
φ0

C(mπ0 , r)(σ1 · σ2)

]

+ 2

(
mπ±

ms

)2

mπ±
[
φ0

T (mπ± , r)S12 + 1

3
φ0

C(mπ± , r)(σ1 · σ2)

]}
,

where mπ0 and mπ± are the mass of the neutral and charged pion respectively.
The non-OPE contribution are

VC(r) = mπ

6∑
p=2

αppφ0
C(pmπ, r),

VT (r) = 4mπβ4φ
0
T (4mπ, r) + 6mπβ6φ

0
T (6mπ, r),

VLS(r) = 3mπγ3φ
0
SO(3mπ, r) + 5mπβ5φ

0
SO(5mπ, r),

where mπ = (mπ0 +2mπ±)/3 and Λ = 8mπ [40]. Neither the two-pion exchange nor the heavy-
meson-exchange mechanisms appear explicitly in this potential.

We are interested in the variation of the deuterium binding energy due to the variation of
the Higgs vacuum expectation value. The variation of the pion mass is directly related to the
variation of the Higgs vacuum expectation value, since m2

π ∝ v [37]. In order to include the
variation of v in the potential, to affect OPE vertices, we replace the pion-mass by mπ(1 + 1

2
δv
v0

),

where δv = vBBN − v0, vBBN (v0) is the BBN (present) value of the Higgs vacuum expectation
value [38]. This is done while keeping the scaling mass ms and mπ at a fixed value [33].

2.2. Nijmegen potential

The Nijmegen potential takes into account the exchange of scalar mesons (a0, f0 and ε),
pseudo-scalar mesons (π , η and η′) and vector mesons (ρ, ω and φ), and it includes the dominant
J = 0 part of the Pomeron [41–43]. In this potential, the neutron–proton mass difference is taken
into account explicitly [40]. To remove the singularity at the origin, this potential was regularized
using an exponential form factor
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(
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where Λ is the cut-off parameter. This choice yields the function
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for the central contribution to the potential. The tensor and spin–orbit potentials can be expressed
as [43]
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where

erfc(x) = 2√
π

∞∫
x

dt e−t2
. (7)

The full potential can be written in terms of the previous functions (see Nagels et al. [41–43]).
A change in v provides changes in the masses of light and heavy-mesons and in the neutron–

proton mass difference. To introduce these variations, we considered the analysis performed in
Höll et al. [48], and write the variations of the meson masses as

δmH

mH

= σH

mH

δmq

mq

= σH

mH

δv

v0
, (8)

where σH

mH
acquires different values according to the meson, mq = mu+md

2 , mu and md are the
up and down quark masses respectively. The values of σH

mH
are 0.5 for the pion, 0.021 for the

ρ-meson, 0.034 for the ω-meson and 0.064 for the nucleon [48], respectively. The variation of
the neutron to proton mass difference is written [49]

δ�mnp

(�mnp)0
= 1.587

δv

v0
. (9)

In order to include the variation in mH (meson mass) we replace, in all the equations, mH by
mH (1 + δmH

mH
) = mH (1 + σH

mH

δv
v0

), and �mnp by �mnp(1 + δ�mnp

(�mnp)0
).

2.3. Argonne v18 potential

The Argonne v18 potential (the subindex 18 denotes the number of operators used to build the
effective potential) includes an electromagnetic interaction [44]
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where mr is the reduced mass, μp and μn are proton and neutron magnetic moments respectively,
β is constant,
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a long-range one-pion-exchange (OPE)
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with d a constant, and an intermediate-range attraction and a short-range repulsion [44]

V R(r) = vC(r) + vL2(r)L2 + vT (r)S12 + vLS(r)L · S + vLS2(r)(L · S)2, (13)

where

vi(r) = I iT 2
μ(r) + {

P i + μrQi + (μr)2Ri
}
W(r), (14)

where μ = m
π0+2mπ±

3 , and the coefficients I i , P i , Qi and Ri are free parameters to be adjust
and the function W(r) is a Woods–Saxon function

W(r) = 1

1 + e(r−r0)/a
. (15)

In this potential, the two-pion interaction (TPE) appears explicitly. The exchange of heavy-
mesons, like ρ and ω mesons is treated phenomenologically [33].

If the Higgs vacuum expectation value changes with time, the OPE and TPE terms on the
potential would be modified according to the variation of the pion-mass, although, one must
keep the scaling mass ms on the OPE terms fixed [33], as said before.

The intermediate NN and �� states are not considered in the Argonne v18 potential. In
order to take into account the effects produced by the variation of the Higgs vacuum expecta-
tion values upon the masses of those states, the coefficients I i must be multiplied by a factor
(1 + 0.49 δmN )(1 − 0.57 δm� ), where δm� = 0.041 δv [33].
mN m� m� v0
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To take into account the mass variation of the heavy mesons, we followed the arguments of
Flambaum and Wiringa [33]. The authors considered these variations by changing the range of
the Woods–Saxon potential at the rate

δr0

r0
= δa

a
= −2

3

δm

m
= −0.02

δv

v0
, (16)

where δr0 = rBBN
0 − ro, δa = aBBN − a, δm = mBBN − m, rBBN

0 (r0) is the BBN (present) value
of the nucleon radius, aBBN (a) is the BBN (present) value of the radial diffuseness, mBBN (m)

is the BBN (present) value of the mass of the exchanged meson [48,50,33].

2.4. Bonn potential

The Bonn potential represent the nucleon–nucleon potential by taking into account the ex-
change of pseudoscalar mesons (π , η), scalar mesons (σ , δ) and vector mesons (ω, ρ) [45].
To avoid the singularities at the origin, we have regularized the potential by introducing a
form-factor (a dipole form-factor, see Eq. (1)) in the Fourier transformation that leads from the
momentum-space potential to configuration-space potential [40]. The potential can be written in
terms of Eqs. (2) and (3).

If the Higgs vacuum expectation value has a value different of the present one, the mass
of light and heavy mesons would change. In order to include these effect, we replace mH by
mH (1 + δmH

mH
) = mH (1 + σH

mH

δv
v0

) [48].

2.5. Results

After modifying all the effective potentials, to take into account the variation of the meson
masses, we have calculated the deuterium wave function, and the deuterium binding energy for
different values of the Higgs vacuum expectation value.

The deuteron wave function can be written as a finite set of Yukawa-type functions [51,52] be-
cause of the functional structure of the potential. The u(r) and w(r) component are parametrized
as

u(r) =
n∑

i=1

Cie
−mir ,

w(r) =
n∑

i=1

Die
−mir

(
1 + 3

mir
+ 3

(mir)2

)
, (17)

where mi = √
2MrεD +mπ(i − 1), Ci and Di are constants to be determined by the best fit, and

Mr is the reduced mass. The wave functions are normalized by

∞∫
0

dr
[(

u(r)
)2 + (

w(r)
)2] = 1. (18)

At small r , the boundary conditions on wave functions are u(r) ∼ r and w(r) ∼ r3, leading to
four constraints on the constants Ci and Di

n∑
Ci =

n∑
Di =

n∑
Dim

2
i =

n∑ Di

m2
= 0. (19)
i=1 i=1 i=1 i=1 i
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Table 1
Our results for the coefficient κ in the relationship δεD

(εD)0
= κ δv

v0

Potential κ Ref.

Reid −1.83 Mosquera and Civitarese [38]
Nijmegen −1.66 This work
Argonne −1.23 This work
Bonn −0.66 This work

Fig. 1. Dependence of δεD
(εD)0

upon the relative change of the Higgs vacuum expectation value δv
v0

, from the work of Flam-

baum and Shuryak [29] (areas I and II, between the solid lines) and our calculated values for the Reid 93 potential (a),
the Nijmegen potential (b), the Argonne v18 potential (c) and the Bonn potential (d).

To satisfy this constraints, the last coefficient Cn and the three last coefficients Dn, Dn−1, Dn−2

are calculated by solving the system of equations (19) [52,51]. We determine the coefficients Ci

and Di and the deuterium binding energy by solving the Schrödinger equation for each potential.
In Table 1 we present the results. For the four potentials considered the proportionality be-

tween the variation of the binding energy and the variation of the Higgs vacuum expectation
value yields a negative value, in good agreement with Flambaum and Shuryak [29], Beane and
Savage [35], Epelbaum et al. [36].

In Fig. 1 we show our results for the variation of the deuterium binding energy with v. In the
same figure we present the limits obtained by Flambaum and Shuryak [29].

3. Big Bang Nucleosynthesis

In order to calculate the primordial abundances of D, 4He and 7Li, for variable v, we modify
the numerical code developed by Kawano [53,54]. For details on the modifications see Landau
et al. [55], Mosquera and Civitarese [38]. We use the data of D [56–65], 4He [66–78] and 7Li
[79–86] to set bounds on the variation of v (see Tables 2, 3, 4). As regards the consistency of the
data, we follow the treatment of Yao et al. [87] and increase the observational error by a factor Θ :
i) ΘD = 2.37 for D; ii) Θ4He = 4.60 for 4He; and iii) Θ7Li = 1.43 for 7Li.
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Table 2
Observational abundances of D (Y obs) used in this work. The values
and their deviations (σ obs) are taken from the references listed in the
second column. The factor that increases the observational error is
ΘD = 2.37, and the number of data is ND = 10.

Y obs ± σ obs Refs.

(1.60+0.25
−0.30) × 10−5 Crighton et al. [63]

(2.42+0.35
−0.25) × 10−5 Kirkman et al. [58]

(3.30 ± 0.30) × 10−5 Burles and Tytler [64]

(3.98+0.59
−0.67) × 10−5 Burles and Tytler [57]

(2.54 ± 0.23) × 10−5 O’Meara et al. [59]

(2.82+0.20
−0.19) × 10−5 O’Meara et al. [61]

(1.65 ± 0.35) × 10−5 Pettini and Bowen [56]

(2.81 ± 0.20) × 10−5 Pettini et al. [60]

(3.75 ± 0.25) × 10−5 Levshakov et al. [62]

3.6+1.9
−1.1 × 10−5 Ivanchik et al. [65]

Table 3
Observational abundances of 4He (Y obs) used in this work. The
values and their deviations (±σ obs) are taken from the references
listed in the second column. The factor that increases the observa-
tional error is Θ4He = 4.60, and the number of data is N4He = 13.

Y obs ± σ obs Refs.

0.2391 ± 0.0020 Luridiana et al. [67]
0.2384 ± 0.0025 Peimbert et al. [68]
0.2371 ± 0.0015 Peimbert [69]
0.2340 ± 0.0029 Olive et al. [66]
0.2443 ± 0.0015 Thuan and Izotov [72]
0.2440 ± 0.0020 Thuan and Izotov [73]
0.2430 ± 0.0030 Izotov et al. [74]
0.2400 ± 0.0050 Izotov et al. [75]
0.2421 ± 0.0021 Izotov and Thuan [71]
0.2463 ± 0.0030 Izotov et al. [70]
0.2477 ± 0.0029 Peimbert et al. [76]
0.2565 ± 0.0010 Izotov and Thuan [77]
0.2516 ± 0.0011 Izotov et al. [78]

We have computed light nuclei abundances and performed the statistical analysis using ob-
servational data to obtain the best fit of the Higgs vacuum expectation value and the baryon to
photon ratio for the following cases:

i) variation of v and keeping ηB fixed at the WMAP value, (ηWMAP
B = (6.108±0.219)×10−10)

[17], and,
ii) variation of v and ηB .

In Table 5 we show the theoretical predictions of the abundances in the standard model ηB

fixed to the WMAP estimate, using Kawano’s code.
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Table 4
Observational abundances of 7Li (Y obs) used in this work. The values and
their deviations (±σ obs) are taken from the references listed in the second
column. The factor that increases the observational error is Θ7Li = 1.43,
and the number of data is N7Li = 8.

Y obs ± σ obs Refs.

1.26+0.29
−0.25 × 10−10 Bonifacio et al. [79]

2.19+0.30
−0.27 × 10−10 Bonifacio et al. [80]

1.73+0.27
−0.23 × 10−10 Bonifacio and Molaro [81]

1.58+0.23
−0.20 × 10−10 Molaro et al. [82]

1.23+0.68
−0.23 × 10−10 Ryan et al. [83]

2.75+1.41
−0.93 × 10−10 Boesgaard et al. [84]

(1.20 ± 0.10) × 10−10 Hosford et al. [85]

(1.3 ± 0.2) × 10−10 Asplund et al. [86]

Table 5
Theoretical abundances in the standard model,
using Kawano’s code.

Nucleus Our results

D 2.565 × 10−5

4He 0.2468
7Li 4.497 × 10−10

3.1. Variation of v with ηB = ηWMAP
B

To set constrains on the variation of v, we have computed the primordial abundances for
different values of the Higgs vacuum expectation value considering the baryon to photon ratio
fixed at the WMAP value (ηWMAP

B = (6.108 ± 0.219) × 10−10) [17]. We have run the modified
Kawano’s code for each potential considered (see Table 1). To determine the sensibility of the
variation of v during BBN, upon the primordial abundances, we have performed a χ2-test for
each of the following set of data:

i) all deuterium data (Table 2)
ii) all helium data (Table 3)

iii) all lithium data (Table 4)
iv) all deuterium and helium data
v) all deuterium, helium and lithium data

Results are presented in Table 6.
The results for the different potentials are similar. We found null variation of the Higgs vac-

uum expectation value if the χ2-test is performed with the available data of D and 4He. If we
introduce the observable data of 7Li in the analysis, we obtain variation of v even at six standard
deviations (6σ ).



166 O. Civitarese et al. / Nuclear Physics A 846 (2010) 157–173
Table 6
Best fit parameter values and 1σ errors for the BBN constraints on δv

v0
(in units

of [10−3]), keeping ηB fixed at WMAP value using only one light element, D,
4He or 7Li, D + 4He, and D + 4He + 7Li. We use the estimation δεD

(εD)0
= κ δv

v0
presented in Table 1 to obtain the best fit value.

Potential ( δv
v0

± σ) × 103 χ2
min

N−1

D (ND = 10)

Reid 8.90+9.20
−10.00 1.00

Nijmegen 9.60+9.70
−10.80 1.00

Argonne 12.10+12.26
−13.63 1.00

Bonn 18.10+20.12
−20.45 1.00

4He (N4He = 13)

Reid −2.95+8.35
−12.30 1.00

Nijmegen −2.70+12.30
−10.60 1.00

Argonne −2.00+6.83
−8.00 1.00

Bonn −1.40+6.33
−6.00 1.00

7Li (N7Li = 8)

Reid 28.80+1.20
−1.00 1.00

Nijmegen 28.90 ± 1.10 1.00

Argonne 28.90+1.12
−0.97 1.00

Bonn 29.00+1.03
−0.99 1.00

D + 4He (ND+4He = ND + N4He = 23)

Reid 5.49+7.71
−8.79 0.98

Nijmegen 4.70+7.70
−8.60 0.98

Argonne 1.80+7.51
−6.93 0.99

Bonn 0.40+5.91
−6.15 0.99

D + 4He + 7Li (ND+4He+7Li = ND + N4He + N7Li = 31)

Reid 28.30+1.10
−0.80 1.27

Nijmegen 28.60+0.80
−1.10 1.25

Argonne 28.40+0.93
−0.89 1.38

Bonn 28.30+0.92
−0.93 1.71

In the literature, there have been two different methods to determine the primordial abundance
of 4He that yield quite different results (see the first ten rows of Table 3). Since 2007, new
atomic data were incorporated to the calculations of the 4He primordial abundance, a quantity
that depends on the HeI recombination coefficients. Therefore, new calculations were performed
using the new atomic data, resulting into higher values of the 4He abundance (see the last three
rows of Table 3). In order to study the variation of v upon the primordial abundance of helium
[32], we have performed the analysis for three different groups of helium data:

i) group I: data extracted from Olive et al. [66], Peimbert et al. [68], Peimbert [69], Luridiana
et al. [67] (low values of primordial abundance of helium, NI

4 = 4, ΘI
4 = 1.10)
He He
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Table 7
Best fit parameter values and 1σ errors for the BBN constraints on δv

v0
(in units

of [10−3]), keeping ηB fixed at WMAP value using only the 4He abundance. We

use the estimation δεD
(εD)0

= κ δv
v0

presented in Table 1 to obtain the best fit value.

Potential ( δv
v0

± σ) × 103 χ2
min

N−1

Group I (NI
4He

= 4)

Reid −50.40+4.50
−4.30 1.00

Nijmegen −46.50+3.90
−4.00 1.00

Argonne −37.50+3.56
−3.45 1.00

Bonn −28.70+2.76
−2.85 1.00

Group II (N II
4He

= 6)

Reid −17.40+3.50
−3.00 1.00

Nijmegen −15.60+3.10
−2.50 1.00

Argonne −11.80+2.53
−1.96 1.00

Bonn −8.70+1.83
−1.56 1.00

Group III (N III
4He

= 3)

Reid 74.80 ± 34.60 1.00

Nijmegen 46.80+22.20
−15.90 1.00

Argonne 28.50+8.59
−8.33 1.00

Bonn 19.90+5.69
−5.63 1.00

Table 8
Best fit parameter values and 1σ errors for the BBN constraints on δv

v0
, allowing ηB to vary (in units of [10−10]) and

considering two different data set (D + 4He, N1 = 23 and D + 4He + 7Li, N2 = 31). We use the estimation δεD
(εD)0

= κ δv
v0

presented in Table 1 to obtain the best fit value.

Potential ( δv
v0

± σ) × 103 (ηB ± σ) × 1010 χ2
min

N−2

D + 4He

Reid −0.40+17.60
−11.80 5.834+0.636

−0.514 1.00

Nijmegen −0.40+15.60
−14.13 5.834+0.572

−0.467 1.00

Argonne −0.60+8.32
−7.24 5.834+0.323

−0.263 1.00

Bonn −0.20+9.22
−9.04 5.834+0.470

−0.362 1.00

D + 4He + 7Li

Reid 29.40 ± 1.80 6.621+0.474
−0.512 1.17

Nijmegen 29.10+1.63
−1.69 6.546+0.436

−0.469 1.23

Argonne 28.70+1.34
−0.82 6.240+0.342

−0.210 1.42

Bonn 28.20+1.34
−1.85 5.970+0.361

−0.401 1.74

ii) group II: data extracted from Izotov et al. [75], Izotov et al. [74], Thuan and Izotov [73],
Thuan and Izotov [72], Izotov and Thuan [71], Izotov et al. [70] (N II

4 = 6, Θ II
4 = 0.65)
He He
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Fig. 2. 1σ , 2σ and 3σ likelihood contours for ηB (in units of [10−10]) and δv
v0

, and one-dimensional likelihood. Top

figure: likelihood contours obtained by using the D + 4He data for the fit; bottom figure: likelihood contours obtained

by using D + 4He + 7Li data. In this figure we considered δεD
(εD)0

= −1.83 δv
v0

, obtained using the Reid 93 potential.

iii) group III: data extracted from Peimbert et al. [76], Izotov et al. [78], Izotov and Thuan [77]
(hight value of primordial 4He, N III

4He
= 3, Θ III

4He
= 2.80)

In Table 7 we present the results for each one of the potential considered.
Once again, the results for the different potentials are quite similar. If we considered the

low values of 4He in the statistical test, we found a values for δv
v0

lower than zero, even at 6σ .

However, when we performed the χ2-test using the group II, we found null variation of v at the
level of six standard deviations. This level is reduced to 4σ if the statistical analysis is performed
with the highest values of 4He. This analysis shows how the variation of the Higgs vacuum
expectation value is strongly dependent on the primordial abundance of 4He.
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Fig. 3. 1σ , 2σ and 3σ likelihood contours for ηB (in units of [10−10]) and δv
v0

, and one-dimensional likelihood. Top

figure: likelihood contours obtained by using the D + 4He data for the fit; bottom figure: likelihood contours obtained

by using D + 4He + 7Li data. In this figure we considered δεD
(εD)0

= −1.66 δv
v0

, obtained using the Nijmegen potential.

3.2. Variation of v and allowing ηB to vary

Finally we considered the baryon to photon ratio as an extra parameter to adjust. We com-
puted, once again, for each value of κ (see Table 1), the primordial abundances as functions of
the Higgs vacuum expectation value and ηB . Using two different set of data, D + 4He and D +
4He + 7Li, we performed the χ2-test to obtain the best-fit parameters. Our results are presented
in Table 8.

Considering the available data of D and 4He, we found, after performing a χ2-test, that the
variation of the Higgs vacuum expectation value is null within one standard deviation, mean-
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Fig. 4. 1σ , 2σ and 3σ likelihood contours for ηB and δv
v0

, and one-dimensional likelihood. Top figure: likelihood contours

obtained by using the D + 4He data for the fit; bottom figure: likelihood contours obtained by using D + 4He + 7Li

data. In this figure we considered δεD
(εD)0

= −1.23 δv
v0

, obtained using the Argonne v18 potential.

while, the value of η is lower than the predicted value of WMAP (ηWMAP
B = (6.108 ± 0.219) ×

10−10) [17], but still consistent with it at the level of 2σ , for all the potentials used in the analy-
sis of the dependence of the deuterium binding energy with the Higgs vacuum expectation value.
When we included the observable data of 7Li in the analysis, we found that the variation of v can
explain the discrepancies between the theoretical abundances and the observations.

The above discussed results are shown in Figs. 2 to 5, for three values of the standard de-
viation σ , that is at one, two and three σ . In the same figure we show the one-dimensional
likelihood, δv

v0
and ηB for each potential used to determined the proportional constant of the

relationship δεD = κ δv .

(εD)0 v0
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Fig. 5. 1σ , 2σ and 3σ likelihood contours for ηB (in units of [10−10]) and δv
v0

, and one-dimensional likelihood. Top

figure: likelihood contours obtained by using the D + 4He data for the fit; bottom figure: likelihood contours obtained

by using D + 4He + 7Li data. In this figure we considered δεD
(εD)0

= −0.66 δv
v0

, obtained using the Bonn potential.

4. Conclusion

In this work we have studied the dependence of the deuterium binding energy as a function of
the Higgs vacuum expectation value, while ΛQCD remains fixed. For the analysis, we used four
effective potentials: the Reid 93 potential, the Nijmegen potential, the Argonne v18 potential and
the Bonn potential, to represent the nucleon–nucleon interaction. It is found that the binding
energy depends linearly on v/ΛQCD, and that the calculated value lies within the range obtained
by various authors, e.g. Flambaum and Shuryak [29], Beane and Savage [35], Epelbaum et al.
[36]. We have calculated primordial abundances of BBN and focused on the discrepancy between
standard BBN estimation for 4He, D and 7Li and their observational data. We found that, by
allowing variations of v/ΛQCD, one may solve this discrepancy.
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