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Living organisms use waves that propagate through excitable media to transport information.
Ca2+ waves are a paradigmatic example of this type of processes. A large hierarchy of Ca2+

signals that range from localized release events to global waves has been observed in Xenopus
laevis oocytes. In these cells, Ca2+ release occurs trough inositol 1,4,5-trisphosphate receptors
(IP3Rs) which are organized in clusters of channels located on the membrane of the endoplasmic
reticulum. In this article we construct a stochastic model for a cluster of IP3R’s that replicates the
experimental observations reported in Fraiman et al, Biophys. J. 90, 3897 (2006). We then couple
this phenomenological cluster model with a reaction-diffusion equation, so as to have a discrete
stochastic model for calcium dynamics. The model we propose describes the transition regimes
between isolated release and steadily propagating waves as the IP3 concentration is increased.

PACS numbers: 87.16.-b 87.16.Xa 87.16.A- 87.10.Mn

I. INTRODUCTION

Oscillations and waves in the concentration of free in-
tracellular calcium (Ca2+) are seen in a variety of cells
and are known to be an important intra and intercellu-
lar signaling system [1]. It is thus of interest to deter-
mine the mechanisms underlying such complex dynamic
behavior. In many cell types, a key component of this
signaling pathway is the inositol triphosphate receptor
(IP3R), which is also a Ca2+ channel. The spatiotempo-
ral properties of signals arising through IP3R’s have been
extensively characterized by optical imaging in Xenopus

laevis oocytes [2]. In these cells, Ca2+ imaging tech-
niques have revealed that the cytoplasm does not act
as a continuous, homogeneous excitable medium. In-
stead, Ca2+ liberation occurs at discrete functional re-
lease sites spaced a few micrometers apart, composed of
several clustered IP3R’s [2–8]. The open probability of
IP3R’s depends on both the IP3 and cytosolic Ca2+ con-
centrations [9, 10]. A key feature, is the well-established
biphasic action of Ca2+ in both facilitating and inhibiting
the opening of IP3R’s, through which Ca2+ is liberated
into the cytosol. For relatively low [Ca2+], the Ca2+ re-
leased by one channel increases the open probability of
neighboring channels, whereas at high [Ca2+], it inhibits
the channels and terminates the release [11–15]. This
dependence of the open probability of the release chan-
nels on cytosolic Ca2+ creates communication between
channels.

As a result of the combination of the channels spatial
organization and of the process of Ca2+-induced Ca2+ re-
lease (CICR)([16–18]), cytosolic Ca2+ signals in oocytes
display a hierarchical spatio-temporal organization span-
ning over six orders of magnitude, which include Ca2+

“blips” that represent the release of Ca2+ through a sin-

gle or a few IP3R’s ([4, 19, 20]), “puffs” that involve the
concerted opening of several IP3R’s in a cluster ([4, 20–
22]) and Ca2+ waves that propagate globally across the
cell by successive cycles of CICR and Ca2+ diffusion be-
tween clusters ([21–23]). Ca2+ puffs reflect the dynamics
of IP3R’s within a cluster. This dynamics is ruled by the
kinetics of each channel and by the interaction among
them due to the spatiotemporal Ca2+ distribution on the
nanometer scale.

Several mathematical models have been proposed to
describe Ca2+ release through clustered IP3R’s. The ap-
proaches vary depending on the spatial and time scale
that they try to resolve. The dynamics of localized sig-
nals such as puffs has been simulated with models that
include a detailed stochastic description of the chan-
nels in the cluster and which resolve distances on the
nm scale [5, 7]. Using this fine spatial resolution and
the characteristic time scale of single channel transitions
(∼ ms) to describe Ca2+ waves which travel mm dis-
tances and last for hundreds of seconds is computation-
ally expensive [5, 24]. For this reason, mathematical
models of this type of global signals involve different ap-
proximations. For some time most such models were de-
terministic (see e.g. [25]) while stochastic models were
left to account for local signals such as puffs [5, 18, 26–
28]. It is currently clear, however, that stochastic effects
are not only relevant for local release events but are a
fundamental aspect of the Ca2+ dynamics for the full
range of observed signals, including waves [29–34]. Ef-
ficient modeling strategies are necessary to include the
intrinsic stochasticity of Ca2+ global signals describing,
at the same time, the largest scales involved. Some of
the approaches presented in the literature assumed that
clustered IP3R’s are in such close contact that [Ca2+]
could be considered homogeneous throughout the cluster
[26, 35–39]. This type of models can be further simplified



as done in [40, 41], where it is assumed that [Ca2+] at
one cluster depends only on the number of nearest release
sites where there are open channels and that each neigh-
boring (active) site adds a time-independent contribution
to [Ca2+]. Some years ago a finite element hybrid scheme
was introduced to resolve the spatial gradients close to
a channel and simulate calcium signals efficiently [42].
The algorithm was used to simulate local signals. More
recently, we introduced a model that resolves the dynam-
ics of Ca2+ in the intra-cluster region using a fine grid
and some simplifications [43]. The dynamics in the re-
gion outside the cluster is described on a coarser spatial
resolution. Coupling both regions, the model is able to
span several orders of magnitude in space and time in
an efficient way. The use of a master equation to de-
scribe the Ca2+ puff dynamics as introduced in [31] also
provides an efficient way to deal with the multiple scales
that are inherent to Ca2+ signals.

The models mentioned so far use some kinetic model
to describe the transitions between conformational states
of single IP3R’s. There is some controversy on how single
IP3R’s behave [13, 15]. Consequently, there is a variety
of IP3R kinetic models [44–47] and it is not completely
clear which one describes the behavior of the channel
under the conditions encountered in intact cells. In par-
ticular, Ca2+ is not used as the carrier in most electro-
physiology experiments [15] to prevent the feedback that
the released Ca2+ can have on the kinetics of the chan-
nel. Optical techniques allow the direct study of IP3R’s
in their native environment. However, there is less con-
trol on the concentrations of IP3 and Ca2+ to which the
channels are subjected. This, together with the clusteri-
zation of the channels makes it difficult to infer a single
IP3 kinetic model from optical images of Ca2+ signals in
intact cells.

The observation that global intracellular Ca2+ oscilla-
tions are the result of (local) random Ca2+ spikes which
involve Ca2+ release from one or several channels in a
cluster [29] indicates that IP3R clusters constitute a ba-
sic component of Ca2+ signals [31]. This is further sup-
ported by obsevarations which indicate that IP3R’s are
densely packed inside clusterst [48]. One way to over-
come the lack of an IP3R kinetic model that can read-
ily be applied under physiological conditions is then to
describe Ca2+ wave propagation using IP3R clusters as
the units of Ca2+ release. This approach is similar, in
spirit, to the “fire-diffuse-fire” model [49–51], where the
Ca2+ release sites are point sources separated by the typ-
ical mean inter-cluster distance. The model of [31] also
uses clusters as basic release units but the description of
their dynamics still needs an IP3R kinetic model. One
of the drawbacks of the original “fire-diffuse-fire” model
is that it treats Ca2+ release in a deterministic way: a
site starts to release Ca2+ whenever [Ca2+] at the site
exceeds a fixed threshold. This simple description of
CICR has been relaxed in a stochastic version of the
“fire-diffuse-fire” model [52, 53] in which the threshold
is assumed to be a random variable with a certain distri-

bution. In the present paper we follow a more realistic
approach. More specifically, we use puff information to
construct a phenomenological stochastic model of a clus-
ter as a whole which reproduces the main properties of
experimentally observed puffs. We then use this heuris-
tic model to describe the dynamics of the localized Ca2+

release sites in a modified version of the “fire-diffuse-fire
model” with which we simulate the observed range of
Ca2+ signals, i.e., from blips to waves. The model thus
constructed gives a more realistic description of the tran-
sition from localized to global signals and of propagation
failure than the original “fire-diffuse-fire” model and the
stochastic extension of [52], keeping their simplicity to a
great extent. As in the original “fire-diffuse-fire” model,
the stochastic version we test in the present paper sim-
ulates the dynamics of the released Ca2+ in terms of an
effective diffusion coefficient. We discuss, however, how
the effective cluster model may be used within a more re-
alistic description of this dynamics to study global Ca2+

signals in a way that would be less expensive than using
the approaches of [43, 54].

The organization of the paper is as follows. In Sec. II
we describe how we construct our effective cluster model.
In Sec. III we choose the parameters of the model based
on a subset of the observations analyzed in [55]. In
Sec. IV we compare the amplitude and inter-puff time dis-
tributions obtained with the model with those observed
experimentally [55] and show that they are statistically
equivalent. We also discuss how and which properties of
the cluster should be changed in the presence of different
types of buffers. In Sec. V we present our stochastic ver-
sion of the “fire-diffuse-fire” model in which each release
site is simulated using the effective cluster model of the
previous section. We also show the result of some sim-
ulations. In particular, we show that the model is able
to simulate the transition from puffs to abortive waves
to steady waves. We discuss possible improvements and
further uses of the effective cluster model and summarize
the results in Sec. VI.

II. HEURISTIC CLUSTER MODEL

In this Section we describe how we use the experimen-
tal observations analyzed in [55] to construct an effective
cluster model and determine numerical values for its pa-
rameters. These observations were obtained in Xenopus

laevis oocytes in which 270µM of the exogenous Ca2+

buffer, EGTA, had been added to prevent Ca2+ wave
propagation. The images were obtained using confocal
microscopy, 40µM of the fluorescent Ca2+ dye Oregon
Green 488 BAPTA 1 and a continuous photorelease of
IP3 to evoke the signals. The experimental histograms
of puff amplitude, A, interpuff time, τ , and puff dura-
tion show that they all vary from event to event even
at the same release site. The variability of the last two
quantities can be incorporated into a Markovian model
in which the cluster can be in a finite set of states and



make stochastic transitions among them. This type of
approach would require the existence of many open states
in order to reproduce the amplitude variability observed
at each site. In this paper we follow a different approach:
we build a phenomenological cluster kinetic model in
which the transitions into and out of the open states
are treated as if there was only one open state. The
current that flows through the channel when it is open,
on the other hand, is a random variable that is drawn
from a continuous distribution that depends on cytosolic
Ca2+. In this way we mimic the puff amplitude variabil-
ity as explained later in more detail. In the case of the
time the cluster remains “open”, we try different possi-
bilities, some of which involve choosing this time from a
prescribed distribution.

A. Cluster kinetic model

The observed distribution functions of A and τ , by
themselves, do not provide enough information to de-
cide how the transitions of the kinetic model are calcium-
regulated. Taking into account that Ca2+-mediated cou-
pling between clusters is not present in the experiments
analyzed in [55], the calcium concentration in the vicinity
of a cluster after a release event has finished is directly
related to the amplitude of the event. The calcium con-
centration before the occurrence of a puff, on the other
hand, depends on the time that has elapsed since the
previous release event at the same site has occurred (the
inter-puff time). Thus, by studying the correlation be-
tween puff amplitudes and interpuff times it is possible to
extract information on the effect of cytosolic Ca2+ on the
dynamics that is useful for the construction of the phe-
nomenological model. The data presented in [55] show
that the amplitude (interpuff time) distributions condi-
tioned to large or small previous interpuff times (ampli-
tudes) are different and reveal that the Ca2+ released
through the channels in a cluster plays mainly an in-
hibitory role on the subsequent behavior of the cluster.
Namely, interpuff intervals tend to be longer after large
puffs and puffs tend to be smaller after short intervals.
Numerical simulations of the dynamics of intracellular
Ca2+ in the vicinity of a localized Ca2+ source show that
very soon (∼ 6 ms) after Ca2+ release stops, the [Ca2+]
becomes spatially homogeneous, particularly within a re-
gion the size of an IP3R cluster [43]. In accordance with
this observation, simulations performed for current am-
plitudes within the expected values for puffs [8] show a
very weak dependence of [Ca2+] on this amplitude ∼ 6 ms
after the current has stopped. Given the large size of the
oocyte, we expect the value of [Ca2+] to be very close
to the basal concentration (∼ 50 nM) a time ∼ 6ms af-
ter the termination of an isolated puff. This implies that
for puffs as those analyzed in [55] Ca2+ exerts its in-
hibiting role during the puff or immediately upon puff
termination. Taking these considerations into account
we have based the effective cluster model on the diagram

of Fig. 1. Namely, we have assumed that the cluster can
exist in one of four different states: C–closed; O–open;
I1–inhibited 1; and I2–inhibited 2. The various transi-
tion rates are chosen so that the model agrees with the
available experimental evidence [55], but the functional
forms are themselves arbitrary. This model does not take
into account the dynamics of IP3 binding and unbinding
explicitely. This is so because, according to most IP3R ki-
netic models, these processes are much faster than those
related to calcium [44]. Thus, IP3 bound and IP3 free
binding sites may be assumed to be in equilibrium be-
tween themselves. In this way, the effect of [IP3] can
be taken into account by rescaling some of the transi-
tion rates of the model. In particular, we consider that
the transition rate from C to O, kCO, is an increasing
function of [IP3]. In this paper we assume that [IP3] is
constant and uniform for each experiment so that we use
a constant value for this rate.

Cytosolic Ca2+ also modulates the dynamics of single
IP3R’s and, thus, of the cluster as a whole. We take
this influence into account by assuming that some of the
transitions between states and the total current depend
on the [Ca2+] averaged over the region of the cluster (∼
hundreds of nanometers). To include the activatory and
inhibitory roles of Ca2+ we assume that both kCO and
kOI1 are increasing functions of [Ca2+]. To account for
the different timescales of inhibition depending on puff
amplitude, we assume that kOI2 is independent of [Ca2+]
and that the mean lifetime of I1 is longer than that of I2.
In this way, for large values of [Ca2+] the transition from
O to C is more likely to occur through I1 which typically
takes much longer than going through I2. The fact that
the transitions are irreversible and that the system must
go to C before it can reopen allows us to separate these
two types of behavior quite easily. The inclusion of the
state I2, on the other hand, allows us to regulate the
rate of reopenings after a low amplitude puff. Given that
IP3R’s need IP3 to become open and that at small values
of [Ca2+] the probability per unit time that they open
is larger than they become inhibited, we assume that

kCO = k̂CO([IP3]) [Ca2+] and kOI1 = k̂OI1 [Ca2+]3 where

k̂CO([IP3]) is an increasing function of [IP3]. In this way,
[IP3] regulates the excitability of the system, whereas
[Ca2+] plays a dual role as it does for individual IP3R’s,
increasing the transition rate from the closed to the open
state and, at relatively large values of [Ca2+], the rate of
inactivation through a transition to the state I1. As we
describe later, we investigate the model as depicted in
Fig. 1 and variants in which the transition out of the O
state is chosen differently but where kOI1/kOI2 still rules
the fraction of times it goes from O to I1 as compared to
I2. In these variants, the mean open time of the cluster
is independent of kOI1 and kOI2 and is not affected by
their funcional forms.



B. Calcium current

Once the cluster makes a transition to its open state,
we choose a random value for the current that depends on
the value of [Ca2+] averaged over the region of the cluster
immediately before the transition takes place. We have
chosen this dependence so as to reproduce the results of
the analysis of [55]. The experiments of [55] give values
of the fluorescence amplitude rather than of the Ca2+

current. The observed fluorescence amplitude at each
point and time, F , is linearly related to the Ca2+-bound
dye concentration, [CaB], as:

[CaB] = [B]T
F − Fmin

Fmax − Fmin

, (1)

where [B]T is the total dye concentration, Fmax is the flu-
orescence under saturating dye conditions and Fmin is the
fluorescence of the Ca2+-free dye. This is the first step in
the algorithm we have developed to determine the cur-
rent that underlies fluorescent images [56]. Application
of this algorithm to Ca2+ puffs observed in oocytes [8]
yields current values between 0.1 and 1.2pA and shows
that puff amplitudes increase nonlinearly with the un-
derlying current. However, the nonlinearity is weak and
is only relevant for currents above 0.8pA, which are very
rarely observed. Thus, for the sake of simplicity, we as-
sume that the amplitude of each puff is linearly related
to both the Ca2+ current and the maximum value of the
underlying [Ca2+] averaged over the region of the cluster.

A word of caution is necessary here since [Ca2+] (and
therefore, [CaB] and F ) not only depends on the under-
lying current. There are buffers in the cell (endogenous
under physiological conditions both endogenous and ex-
ogenous in optical experiments) that interfere with the
calcium distribution. The experiments analyzed in [55]
were done in the presence of the slow exogenous buffer,
EGTA. Taking into account the analyses of [57] we ex-
pect this buffer not to interfere (at least, significantly),
with Ca2+-mediated channel coupling between channels
of the cluster or with the subsequent inhibitory effect of
the released Ca2+. Therefore, we expect it not to affect
the values of the transition rates of the effective cluster
model. We also expect that the amount of dye used did
not affect those rates either. Fast or stationary buffers,
however, could interfere with CICR and Ca2+-inhibition
within the cluster [57, 58]. The main assumption that
underlies our approach is that the effects of endogenous
buffers at the single cluster level can be incorporated into
the transition rates of the effective cluster model. The
hope is that the influence of other buffers that are subse-
quently added may be accounted for through their effect
on the value of [Ca2+] within the cluster without altering
the kinetic reaction rates. In this way the effective cluster
model could be used to analyze the behavior of signals
in the presence of different amounts of buffers. We will
analyze this possibility in the future. The present paper
treats buffers in the simplest possible way. Namely, we
follow the same approach as in the original fire-diffuse-fire

model [51] which considers that the effect of buffers is to
rescale [Ca2+] and its diffusion coefficient. We will relax
this simplification in the future and analyze to what ex-
tent it is possible to decouple the effective cluster model
from the presence of different types of buffers in the cell.

The studies of [55] show that, due to the Ca2+ in-
hibitory effect, the amplitude of a puff at a site is smaller
the smaller is the previous inter-puff time interval. This
last quantity is of the order of a second for the experi-
ments analyzed in [55]. As we have already mentioned,
the Ca2+ concentration after such a long time is mainly
determined by the time that has elapsed since the end of
the release. Thus, in the model, we take into account the
dependence between the amplitude of a puff and the pre-
vious inter-puff interval by assuming that the value of A
(the [Ca2+] at the cluster upon its transition to the open
state) is more likely to be large the smaller is u (the av-
eraged [Ca2+] within the cluster) immediately before the
occurrence of the transition. Numerical puff simulations
performed with the algorithm of [43] show that the ob-
served puff amplitude distributions analyzed in [8] may
be reproduced using clusters that are 500nm × 500nm
in size and channels that open and close stochastically
with a 0.1pA single channel current. The simulations
of [43], which include buffers explicitely, show that the
free Ca2+ concentration reaches values between 1 and
40µM at distances within 180nm of a 0.1pA point source
and that the maximum value of [Ca2+] is about 60µM
in the presence of a cluster with 20 channels that open
and close stochastically. Taking these observations into
account and considering that the [Ca2+] that enters the
transition rates of the scheme of Fig. 1 is the average
concentration over the whole cluster, we assume that it
can take on values between 5 and 20µM during the oc-
currence of a puff. Furthermore, we assume that these
two values correspond to the two extreme puff amplitude
values of the experimental data that we use to choose
the transition rates of the scheme of Fig. 1. Therefore,
we relate A and u as follows:

A = Amax −
15 µM

0.0017 µM

r
+ 1

, if u − ub > 0,

A = Amax, if u − ub = 0, (2)

where r is a random variable that is uniformly distributed
between 0 and 2(u − ub). Eq. (2) guarantees that A
varies between 5µM and 20µM , that it is more likely to
take on values that are closer to 20 µM as u − ub gets
smaller and that it is independent of [IP3] as observed
experimentally [8, 59].

For the determination of the transition rates of the
kinetic model we work with Eq. (2) with Amax =
20 µM. For the simulations of the stochastic fire-diffuse-
fire model we need, instead, the number of Ca2+ ions
that are released per unit time during each release event,
σ (which is proportional to the Ca2+ current). We must
stress that in this paper we are not modeling the buffer
dynamics explicitely. We assume that their effect is
to rescale the Ca2+ concentration and diffusion coeffi-



cients. Therefore, we work with a rescaled Ca2+ cur-
rent too. Furthermore, since we will consider that each
cluster is represented by a point source, we assume that
[Ca2+] and σ are related by: [Ca2+]= ασ/4πDr where
α = 1.66 10−3 µm3µM is a unit conversion factor that
guarantees that [Ca2+] is in µM when lengths are in µm.
Thus, the Ca2+ amplitude, A, is given by:

A =
1

4

3
π (∆r)3

∫ ∆r

0

ασ

4πDr
4πr2dr =

3

8πD∆r
ασ, (3)

where D is the Ca2+ effective diffusion coefficient and ∆r
is the grid size of the simulations.

C. Effective cluster model and puff duration

For fixed values of kOI1 and kOI2 , the open time dis-
tribution of a model in which transitions from the open
state to others occurs directly as depicted in Fig. 1 is an
exponential of mean 1/(kOI1 + kOI2 ). The experiments
of [60] show that the distribution of blip durations can
be fitted by a single exponential of time constant ∼ 17ms
while the puff duration distribution is unimodal with a
maximum at twice or three times the blip duration (see
their Fig. 5). In [60] puff duration was computed as the
time it takes for the observed fluorescence to go from its
peak value during the puff to the basal level. The studies
of [8], on the other hand, show that the duration of Ca2+

release during puffs ranges between 5 and 33ms and its
distribution is also unimodal with mean ∼ 18ms. These
results were obtained by application of the algorithm
of [56] to linescan confocal experiments with temporal
resolution limited by the linescan duration which was ei-
ther 8 or 2.6ms. As shown in [60] and discussed in [8] puff
or Ca2+-release durations depend on the number of chan-
nels that open during each puff. The distribution of open
channels, on the other hand, is non-monotonic too [60].
The latter can be explained in terms of the competition
between Ca2+-mediated inter-channel communication in
the cluster and IP3 binding [61]. Furthermore, depend-
ing on the relative weight between both processes, the
distribution of the number of channels that open during
a puff can change from being almost exponential to hav-
ing a local maximum. The exponential distribution can
be obtained when the number of IP3R’s with IP3 bound
is so small that they are sparsely distributed within each
cluster. For the values of [IP3] that elicit Ca2+ waves we
may expect the distribution of the number of channels
that open during a puff to have a local maximum. Con-
sidering this non-monotonic distribution and both the
inter-cluster and inter-channel variability, it is reason-
able that both the puff and Ca2+-release durations have
distributions that are non-monotonic.

As mentioned before, for a model in which the transi-
tion from the open to the inhbited states occurs directly
as in Fig. 1 with fixed values of kOI1 and kOI2 the dis-
tribution of open times is a single exponential, which is

monotonic. As already explained, we consider kOI1 to
be a function of [Ca2+] which leads to open times that
depend on puff amplitude. Given that the amplitude dis-
tribution that we obtain with the model is non-monotonic
(see Fig. 2) we could expect the open time distribution to
be non-monotonic too. In any case, to simplify the con-
struction of the model we first determine the parameters
of Fig. 1 so as to reproduce the observed distribution
of inter-puff times considering that the transitions from
O to I1 and I2 occur with probabilities per unit time,

kOI1 = k̂OI1 [Ca2+]3 and kOI2 , respectively. Given the
constraints that we impose to determine the parameters,
we expect this approach to fix the range of values that
the ratio kOI1/kOI2 can take on (which is a function of
the values that [Ca2+] can attain), but not the values

that k̂OI1 and kOI2 can take on separately. We show
later that this is the case by comparing the open time
distributions obtained with this model and with others
in which we change the way the cluster leaves the open
state, but keep the fraction of times it goes to state I1 to
the number of times it goes to state I2 always equal to

k̂OI1 [Ca2+]3/kOI2 .

III. CHOICE OF MODEL PARAMETERS
BASED ON OBSERVED INTER-PUFF TIME

DISTRIBUTIONS

The experiments analyzed in [55] consist of sequences
of puffs that occur at the same site for a given value
of [IP3]. In order to determine the transition rates of
the effective cluster model based on the behavior of the
puff amplitudes and inter-puff time intervals observed in
these data we need to model the Ca2+ dynamics between
puffs. In this Section we do it in a very simple way. We
assume that while the cluster is not releasing calcium
(it is closed or inhibited), u (the [Ca2+] averaged over
the cluster region) decays linearly during a short time
∼ td ∼ 1 ms until it reaches a value ud = 0.42 µM and
then approaches its basal level, ub = 40 nM following a
power law [43]:

u(t) = u(t) −
u(te) − ud

td
× (t − te),

if te ≤ t ≤ te + td

u(t) = (ud − ub) ×
(

1 +
t − td

τ

)

−β

+ ub,

if te + td ≤ tb, (4)

with ud =0.42µM, td =6×10−3s, β=0.65, τ=0.9×10−3s
and where te and tb are two subsequent times at which
Ca2+ release from the cluster ends and begins, respec-
tively. The constants that appear in Eq. (4) were ob-
tained by fitting this expression to the result of a nu-
merical simulation of the reaction-diffusion system that
models the dynamics of cytosolic Ca2+ in the presence
of exogenous and endogenous buffers as described in [43]
but in the presence of a 0.4 pA point source that remains



open during 10ms and a Ca2+ pump as the one used in
Section V. The validity of this type of approximation has
been tested in [43].

We combine the effective cluster kinetic model of Fig. 1
with the interpuff Ca2+ dynamics of Eq. (4) to generate
sequences of puff amplitudes separated by interpuff inter-
vals. We do so with extensive numerical simulations in
which the transitions between states of the release unit
are modeled stochastically. In order to compare the re-
sults of the simulations with the experimental data ana-
lyzed in [55] we compute in both cases the accumulated
distribution functions of different quantities of interest.
We then compute the Kolmogorov statistics:

T ≡ supx|F1(x) − F2(x)|, (5)

where F1 and F2 are the experimental and model ac-
cumulated distribution functions, respectively. The sta-
tistical significance (p-values) of the differences between
distributions is determined from look-up tables [62]. In
the experiments, different release sites span different puff
amplitude ranges. As done in [55] we grouped the ex-
perimental data in two sets according to the maximum
amplitude observed at each site. All analyses presented
here are based on events from the small cluster group.

We adjusted the parameters of the effective cluster
model so as to minimize the value of T defined in Eq.
5 with F1 and F2 the experimental and the model in-
terpuff time distributions, respectively. To this end we
defined intervals of variation for each parameter of the
effective cluster model. In each case, the borders of the
interval differed by ±40% with respect to the mean. We
then simulated the model for 3125 different combinations
of the parameters and chose the one that produced the
smallest value of T . The obtained parameters are listed
in table I.

Parameter Value

k̂CO 18.6 µM−1s−1

k̂OI1 0.05 µM−3s−1

kOI2 40 s−1

kI1O 0.7 s−1

kI2O 2 s−1

TABLE I: Parameter values of the kinetic model of Fig. 1 that
minimize the Kolmogorov statistics (Eq. (5)) corresponding
to the accumulated interpuff time distribution (T = 0.078,

p > 0.17) where kCO = k̂CO([IP3]) [Ca2+] and kOI1 = k̂OI1

[Ca2+]3. We assume that k̂CO([IP3]) is an increasing func-
tion of [IP3] so that the value obtained here corresponds to
the [IP3] of the experiments used for the fitting. Only the

ratio k̂OI1/kOI2 can be determined from the fitting. We thus
explore other possibilities that keep this ratio constant.

IV. ABILITY OF THE CLUSTER MODEL TO
REPRODUCE OBSERVED PUFF PROPERTIES

To check that the model reproduces the interpuff time
distribution that was used for the fitting and to test its
ability to reproduce other features of the experimentally
determined distributions not enforced with the fitting, we
performed numerical simulations using the parameters
shown in Table I and computed other distributions.

A. Puff amplitude and interpuff time distributions

Histograms of puff amplitude, A, and interpuff time, τ ,
obtained with the model are shown in Fig. 2. These fig-
ures are to be compared with Fig. 3 of [55]. Both for the
model and the experiments the interpuff time distribu-
tion is concentrated within the range τ ≤ 8s. The maxi-
mum of the distribution occurs at τ ≈ 1.5s in both cases
and the standard deviation is σ = 1.37s for the experi-
ments and σ = 1.81s for the model. Regarding the ampli-
tude distribution, we must note that the scale of A differs
between model and experiments. In the experiments the
amplitude is given in terms of fluorescence, while in the
model it given in terms of the averaged [Ca2+]. Given our
model assumptions, both quantities only differ by a pro-
portionality constant. The experimental puff amplitudes
vary between 0.05 and 0.2 while the range of variation
of the model amplitudes is 5 − 20 µM so that the pro-
portionality constant is 100 µM. Both distributions are
asymmetrical with maxima occurring at A = 0.1 for the
experiments and around A = 10µM for the model. The
standard deviations are 0.032 and 3.27µM , respectively.

B. Conditional distributions

The conditional time and amplitude distributions ob-
tained with the model are shown in Figs. 3 and 4. These
figures are to be compared with Fig. 4 and 5 of [55]. The
value ranges for the conditioning were chosen so that the
conditioned variable was smaller than the first quantile or
larger than the third quantile of the corresponding distri-
bution in each case. These ranges differ slightly between
model and experiment. Fig. 3 (a) is the amplitude distri-
bution of puffs for which the preceding interpuff time is
less than 1.01s and Fig. 3 (b) the one for which it is larger
than 3.13s. In the case of the experiment, the condition-
ing corresponds to preceding interpuff times that are less
than 1.4s and larger than 3.27s, respectively. Both for the
model and the experiments the distribution conditioned
to large interpuff times is concentranted around larger
amplitude values than the one conditioned to smaller in-
terpuff times with peaks occurring at A ≈ 12µM and
A ≈ 8µM for the model and around 0.08 and 0.12 for
the experiments. Fig. 4 (a) is the distribution of inter-
puff times that follow a puff with amplitude less than
9.21µM and Fig. 4 (b) the one for which the preceding



amplitude is larger than 13.76µM . In the case of the ex-
periment, the conditioning corresponds to preceding puff
amplitudes that are less than 0.092 and larger than 0.134,
respectively. Both for the model and the experiments the
distribution conditioned to large puff amplitudes is con-
centranted around larger interpuff times than the one
conditioned to smaller puff amplitudes with peaks occur-
ring at τ ≈ 1s and τ ≈ 2s for the model and around 1s
and 3s for the experiments.

C. Open time duration

We show in Fig. 5 (a) the open time, τo, distribution
obtained with the model of Fig. 1 using the parameters
of Table I. The distribution is monotonic with mean
∼ 8.73ms and standard deviation ∼ 11ms. This dif-
fers from the distribution of Ca2+ release durations de-
termined from experiments [8] which is unimodal and
spreads between 5 and 33ms with mean ∼ 18ms. As
mentioned before, we expect the fitting of the previous

Section to only fix the ratio k̂OI1/kOI2 . If this is so,
we can choose the open time duration from an ad hoc

distribution that reproduces the experimental observa-
tions better and then decide to which of the two inhibited
states it makes the transition from the open state keep-
ing the ratio as given by Table I. With this aim, we have
studied various models that only differ from the origi-
nal one of Fig. 1 in the probability of leaving the open

state: a model with k̂OI1 = 0.005 µM−3s−1 and kOI2=
4 s−1 instead of the values of Table I, a model in which
the open time duration of each event is chosen from an
exponential distribution with mean proportional to puff
amplitude (equal to 6A/µMms) and another one in which
it is chosen from a Gaussian distribution of mean 18 ms
and a 7ms standard deviation. The exponential distribu-
tion has been selected based on the observation that puff
duration is a (weakly) increasing function of the num-
ber of open channels (and, thus, of puff amplitude) [60].
The Gaussian one has been chosen to mimic the distribu-
tion of Ca2+ release durations determined in [8]. We also
explored the behavior of the model of Fig. 1 with param-
eters given by Table I but for which events that lasted
less than 2ms were discarded. The motivation in this
case is to determine the effect of being unable to observe
the shortest events on the interpuff time distritution and,
therefore, on the parameters that we can estimate from
the fitting. We show the open time distributions that
correspond to some of these models in Fig. 5: (a) corre-
sponds to the model of Fig. 1 and parameters as in Table
I, (b) is similar to (a) but where events that lasted less
than 2ms were discarded, (c) corresponds to the case in
which the open duration is withdrawn from the ampli-
tude dependent exponential distribution and (d) to the
case in which it is taken from the Gaussian distribution
already described. We show in Fig. 6 the interpuff time
distributions obtained from simulations performed using
these models. We observe that the distributions in (c)

and (d) are undistinguishable from the one obtained with
the model of Fig. 1 and parameters as in Table I (shown
in (a)). A similar behavior is obtained for the model

with k̂OI1 = 0.005 µM−3s−1 and kOI2= 4 s−1 (data not
shown). The mean values and standard deviations of
the amplitude and inter-puff times obtained with these
models are all very similar as shown in Table II. We then
conclude that all these models reproduce equally well the
sole distribution that was used to fix the parameter val-
ues that characterize the transitions between states (all

but the individual values of k̂OI1 = and kOI2 ). The inter-
puff time distribution for the original model but in which
events that are shorter than 2ms have been discarded is
shown in Fig. 6 (b). We see that is only slightly different
from the one in Fig. 6 (a). Therefore, we do not expect
the inability to observe the shortest events to alter much
the transition rates of Table I.

Model A (µM ) τ (s) τo (ms)

Original 11.4, 3.3 2.1, 1.8 8.7, 11

Exponential 11.4, 3.3 2.1, 1.8 66, 74

Gaussian 11.4, 3.3 2.1, 1.8 17.3, 6.9

Slow original 11.5, 3.3 2.1, 1.8 94, 108

Cropped original 10.9, 2.7 2.7, 2.7 11.2, 11.4

TABLE II: Mean and standard deviations of [Ca2+] ampli-
tude, A, inter-puff time, τ , and open state duration, τo, ob-
tained combining the interpuff Ca2+ dynamics of Eq. (4)
with stochastic simulations of the model of Fig. 1 for var-
ious choices of the open time distribution. Original cor-
responds to considering that the transitions from O to I1

and I2 occur, respectively, with probabilities per unit time
kOI1 = k̂OI1 [Ca2+]3 and kOI2 with the parameters of Table I.
Exponential corresponds to a model in which the open time
duration of an event of amplitude, A, is withdrawn from an
exponential distribution of mean 6A/µMms. Gaussian corre-
sponds to a model in which the open time duration is with-
drawn from a Gaussian distribution of mean 18 ms and a 7ms
standard deviation. Simulations for the slow original model
only differ from the original one in the values of k̂OI1 and kOI2

which are equal to 0.005 µM−3s−1 and 4 s−1, respectively.
Simulations for the cropped original model are obtained us-
ing the original model and discarding open events that last
less than 2ms.

The agreement between model and experiments at the
level of the amplitude and conditional distributions dis-
played in Figs. 2–4. is very good and goes beyond the
information that was used to choose the transition rates.
The open time distribution, on the other hand, can be
chosen as needed to reproduce the observations as long as
the fraction of transitions from the open state to one or
the other inhibited ones is kept as given by Table I. We
thus conclude that the model of Fig. 1 provides a skele-
ton that captures the basic behavior of the observations
and, combined with a proper open time distribution, is
able to reproduce all of them quantitatively.



V. STOCHASTIC FIRE-DIFFUSE-FIRE MODEL

In this Section we describe how we construct the
stochastic “fire-diffuse-fire model” using the heuristic
cluster model developed before. As in [49–51], we con-
sider a one dimensional medium with equally spaced
point sources separated by a distance d. Each of these
sources represents a cluster of IP3R’s. Their dynamics is
ruled by the kinetic model of Fig. 1. Ca2+ ions diffuse
in the medium with coefficient D and are recaptured by
pumps. [Ca2+] is then a function of one spatial coor-
dinate, x, and time, t. The same type of description
applies for plane waves that propagate in three dimen-
sions along the x direction. The original “fire-diffuse-fire
model” was introduced to understand the properties of
the wave front along the direction of propagation and the
description was limited to plane waves. One of our main
motivations now is to apply the stochastic fire-diffuse-
fire model to describe the propagation of Ca2+ signals
in quasi-one dimensional regions such as neuron spines.
The spatiotemporal evolution of the calcium concentra-
tion u(x, t) ≡[Ca2+] is then given by:

∂u

∂t
= D∇2u+

+∞
∑

i=−∞

ασi(t)

At

δ(x− id)−
vpu

2

u2 + kp

+
vpu

2
b

u2
b + kp

(6)
where σi(t) is the number of Ca2+ ions released at site
i per unit time at time t, α is the unit conversion factor
introduced before and At represents the area of the clus-
ter. σi = 0 if the release site is in a closed or inactive
state. When the cluster at the i-th site makes a transi-
tion to the open state the random value of σi is chosen
combining Eqs. (2) and (3). It remains constant while
the cluster stays open. The transitions between states of
each release unit occur stochastically following the kinetic
scheme of Fig. 1 where [Ca2+] is the time-dependent con-
centration at the grid point where the site is located. As
mentioned before, σi and D are effective currents and dif-
fusion coefficients, respectively. This is the way in which
we take into account the presence of buffers in this pa-
per. The third term in Eq. (6) describes the action of
the Ca2+ ATPase that pumps free Ca2+ ions from the
cytosol into the endoplasmic reticulum which we model
as in [44] with vp = 0.9 µMs−1 and kp = 0.01 µM2. The
last term in Eq. (6) represents the leak from the ER that
has been chosen so as to compensate the action of the
pumps at the basal level, ub =[Ca2+]basal.

We simulate Eq. (6) using a forward Euler method
in time with time step dt = 50 µs, an explicit finite-
difference formula in space with a second order expres-
sion for the Laplacian and grid spacing ∆x = 0.1 µm.
The boundary conditions are no-flux. We simulate the
stochastic transitions between states of the cluster dis-
cretely in time with the same time step, dt = 50 µs. Ini-
tially, [Ca2+] is at its basal level ub = 0.04 µM and all the
release units are at the closed state, C. For the transition
rates we first use all the parameters of Table I except for

k̂CO which we vary to simulate situations with different

[IP3]. The results of Fig. 7 correspond to simulations
obtained with D = 20 µm2/s, At = 0.2 µm2 and 15 re-
lease sites separated by d = 2 µm. The sites are placed
in the middle of a 50 µm domain so as to guarantee that
the borders play no role. Regarding the parameters that
characterize the release currents we use Amax50 µM in
Eq. (2), which is larger than before, because the region
over which A is computed in Eq. (3) has smaller longi-
tudinal extent than that of a cluster. In this case, the
values that each σi can take on vary within the range
[3.5–5]105ions s−1 which correspond to currents between
0.11pA and 0.16pA. These values for the effective Ca2+

current are consistent with an 86% buffering or less given
that puff currents have been estimated to range between
0.1 and 1.2pA [8].

The aim of the simulations we show here is to illus-
trate that the model is able to display transition regimes
between different forms of propagation as the excitability
of the medium is increased. In this way we try to repro-
duce the type of signals observed experimentally as [IP3]
is increased. The observations that we seek to mimic are
obtained by injecting caged IP3 in the cell and subse-
quently releasing it with a UV flash. One of the draw-
backs of this approach is that the exact value of [IP3]
achieved at each instance is unknown. However, it is
clear that small values of [IP3] give rise to localized sig-
nals while larger values are necessary to elicit waves. The
only parameter of our heuristic cluster model that we as-

sume depends on [IP3] is k̂CO([IP3]). Furthermore, we
assume that it increases with [IP3]. Therefore we seek to
reproduce the experimental observations that correspond

to different values of [IP3] by changing the value of k̂CO.
We show the result of such simulations in Fig. 7 where

k̂CO increases from left to right. Only puffs are found
at low values, i.e., release events are localized and not
coordinated on a length scale of several cluster spacings.
At slightly higher values the release sites start to couple.

Further increasing k̂CO (or, equivalently, [IP3]) leads to
global waves that travel across a large region. In the sim-

ulation with k̂CO = 15 µM−1s−1 the site in the middle of
the domain starts to release Ca2+ at t = 0 and all sites
to its right subsequently fire with the seven-th site to its
right (located a distance 12 µm from the middle) firing
at t ≈ 0.6 s. This corresponds to a speed ∼ 20 µm/s. In

the simulation with at k̂CO = 45 µM−1s−1 all sites to the
left of the middle one fire within ∼ 0.45 s which corre-
sponds to a speed ∼ 27 µm/s. We then conclude that
the model is able to generate simulations in which the

speed increases with k̂CO within values that are similar
to those of saltatory waves [63].

In the previous Section we studied a variety of models
which main difference with respect to the one used for the
simulations of Fig. 7 is the way the Ca2+ release duration
is chosen. We show in Fig. 8 that these models are also
able to display transition regimes with wave speeds that
vary within the same range. We show in Fig. 8 (a) and
(b) simulations obtained with the “slow original model”



(a version of the original model in which k̂OI1 = 0.005
µM−3s−1 and kOI2= 4 s−1 instead of the values of Ta-

ble I). We observe that already at k̂CO = 1µM−1s−1

the activity of different clusters is coupled via CICR.
This differs from what we found with the original model

at k̂CO = 1µM−1s−1 (see first frame of Fig. 7) and is
due to the larger amount of Ca2+ ions that are released
as the cluster remains open for a larger time. Because
of the same reason, the velocity of the Ca2+ wave that

can be elicited at k̂CO = 15µM−1s−1 is larger in Fig. 8
(∼ 34 µm/s for the front that goes from x = 15 µm to
x = 21 µm in the figure) than in the second frame of
Fig. 7 (∼ 20 µm/s as described before). We show in
Figs. 8 (c) and (d) simulations obtained with the model
in which the open duration is drawn from a Gaussian dis-
tribution. In this case we are able to obtain similar tran-
sitions to those of the original model with smaller current
amplitude values (Amax = 30 µM in Figs. 8 (c) and (d)
and Amax = 50 µM in Figs. 7). The speeds of propa-

gation obtained for k̂CO = 45µM−1s−1 are also similar
for both models (∼ 28 µm/s for the front that goes from
x = 19 µm to x = 23 µm and ∼ 39 µm/s for the one that
goes from x = 19 µm to x = 11 µm in Fig. 8 (d) while
∼ 27 µm/s in the last frame of Fig. 7 as described before).
Similar conclusions may be drawn from simulations done
using the other models tested in the previous Sections
(data not shown). We then conclude that if the release
duration is most of the times smaller than 30–40ms, as
in the models considered here, the open time distribu-
tion itself does not affect the type of signal (which results
saltatory). This is reasonable given that, for the largest
speeds (∼ 30 µm/s), the time it takes for the wave to
travel between clusters is 70 ms. The speed, on the other
hand, is mainly determined by the combination of the
mean duration and the Ca2+ current since the resulting
[Ca2+] affects both the probability that a cluster becomes
open and the amplitude of the release event.

VI. DISCUSSION AND CONCLUSIONS

Intracellular Ca2+ signals are ubiquitous across cell
types [1]. They can be localized or propagate through-
out the cell [2]. In both cases, Ca2+ entry through spe-
cialized channels is involved. Therefore, the characteris-
tic time and lengthscales of the processes that underlie
global Ca2+ signals span several orders of magnitude.
This poses great challenges from a modeling perspective
and has led to the development of a variety of approaches
as described in the Introduction. Furthermore, it is clear
that stochasticity drives global Ca2+ signals. Even if
many channels are open at any given time, the large
concentration gradients that form around each of them
prevent mean-field models to be an accurate description
of the overall dynamics [31]. Efficient modeling strate-
gies are necessary to include the intrinsic stochasticity of
global signals describing, at the same time, the largest
scales involved.

Ca2+ release from the endoplasmic reticulum through
IP3R’s is a key component of the signaling toolkit. Many
properties of IP3R-mediated signals have been inferred
from optical experiments, particularly, those performed
in Xenopus Laevis oocytes. These experiments have
provided evidence that IP3R’s are organized in clusters
which are separated a few microns. Local (limited to
one or a few open channels in a cluster) or global sig-
nals are elicited depending on the amount of IP3. Global
signals are the result of cluster-cluster interactions me-
diated by the Ca2+ ions that diffuse from one site to
the other. Clusters of IP3R’s can then be viewed as the
basic release unit of IP3R-mediated signals. This is the
approach we followed when we introduced the very ideal-
ized “fire-diffuse-fire” model [49–51]: a reaction-diffusion
system for [Ca2+] with point sources representing IP3R-
clusters that became open if [Ca2+] at the site exceeded
a threshold. One of the main drawbacks of this origi-
nal proposal was the deterministic description of Ca2+

release. A stochastic version of the model was intro-
duced in [52, 53] where the threshold was set to a ran-
dom variable of a given distribution. In this paper we
have used puff information to construct a (more realistic)
phenomenological stochastic cluster model that we have
subsequently used to describe the dynamics of Ca2+ re-
lease in a modified version of the “fire-diffuse-fire model”.
The idea of using IP3R clusters as the basic Ca2+ release
unit is one of the distinctive features of the model pre-
sented in [31]. In this case, a master equation for the
cluster is derived based on an IP3R kinetic model. Our
approach is different: it builds the cluster model based on
puff observations directly and fixes its parameter values
so as to reproduce some statistics of these observations.
In particular, we have used the inter-puff time distribu-
tion to determine the transitions rates among states and
then used the puff amplitude and various contrained dis-
tributions to check the validity of the model. We have
obtained very good agreement on these other distribu-
tions. We have shown that the distribution of times the
cluster remains open can be subsequently chosen without
affecting the ability of the model to reproduce both the
constrained and unconstrained amplitude and inter-puff
time distributions. Therefore, it can be fixed so that it
reproduces the experimental observations. The effective
cluster model is not strictly Markovian: there is not a
fixed value of the [Ca2+] amplitude at the release site, A,
or of the number of ions released per unit time, σ, ass-
sociated to the open state, O. When the cluster makes
a transition to O, a random value for A is chosen using
Eq. (2) and σ is then derived by means of Eq. (3). Anal-
ogously, he open time duration may also be picked from
an arbitrary (not necessarily exponential) distribution.

In this paper we have used the effective cluster model
built in this way to simulate a variety of Ca2+ signals
within the framework of the “fire-diffuse-fire” model.
This involves several simplifications, among others, the
geometry is one dimensional, IP3R clusters are equally
spaced and the interaction with buffers is taken into ac-



count through a rescaled diffusion coefficient and current.
Its generalization to more dimensions and with a more
realistic site distribution is immediate. The presence of
buffers can be taken into account explicitely as usual by
coupling the evolution equation for [Ca2+] to others for
the various Ca2+-bound buffer concentrations. In such
a case, the free diffusion coefficient for Ca2+ would be
used instead of the effective one in the [Ca2+] evolution
equation and there would be additional terms related to
the various Ca2+-buffer reactions considered. The main
question that arises is to what extent our effective clus-
ter model depends on the specificities of the experimen-
tal situation that was used to fix its parameter values.
In particular, whether the derived model would change
in the presence of other exogenous or endogenous buffers.
We think that the structure of the model should persist in
most cases, keeping the particular dependence on [Ca2+]
and [IP3] of the rates of transition between cluster states
that we have considered. Let us assume that we use the
cluster model that we have obtained to simulate a situ-
ation where buffers other than those that were present
in the original experiments have been added. The addi-
tion of these buffers could affect the [Ca2+] within the
cluster region and that would indirectly change the tran-
sition rates. The question is if this Ca2+-mediated effect
is enough to take into account the influence of these new
buffers on the cluster dynamics. We think that it should
be enough in the case of slow buffers. The case of fast
buffers should be studied in more detail. A similar con-
cern arises with respect to the dependence of the Ca2+

current on the averaged [Ca2+] before the onset of release
(Eq. 2). We will analyze these issues in more detail in a
future work. Regarding the released current, there is an
additional aspect. As observed in [55] individual IP3R’s
seem to remain inhibited for a relatively long time before
they can reopen. Therefore, the number of IP3R’s of a
cluster that are able to open at any given time depends
on how many opened during the previous release event
at the site and on the time elapsed since then. The de-
creasing dependence with [Ca2+] of the allowed values of
the Ca2+ current given by Eq. (2) carries the implicit
assumption that the averaged [Ca2+] provides informa-
tion on the time elapsed since the previous release event.
This is correct when [Ca2+] changes at a site are exclu-
sively due to Ca2+ release from the same site, as in the
experiments that were used to fit the parameters of the
effective cluster model. In the case of the simulations of
Fig. 7, having used Amax = 50µM decreased the rela-
tive range of variation of the current values and made
the effect of the Ca2+ induced inhibition less noticeable.
This is reasonable in a model like the “fire-diffuse-fire”
in which the aim is to study the response of each site
the first time it “fires”. In particular, we are planning
to use the stochastic “fire-diffuse-fire” introduced here
to study how the signal propagation properties change in
the presence of different amounts and types of buffers and
under the type of conditioning protocols that are applied
to study synaptic plasticity. The performance of our ef-

FIG. 1: Cluster kinetic model. The states and transitions
were chosen so as to reproduce observed puff properties.
When the cluster is in the closed, C, or inhibited states, I1, I2,
there is no release. When it is in the open state, O, the release
current or [Ca2+] amplitude is chosen from a distribution.
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FIG. 2: Histograms of amplitude and interpuff times obtained
combining stochastic simulations of the cluster kinetic model
of Fig. 1 with the interpuff Ca2+ dynamics of Eq. (4) .

fective cluster model within a more detailed description
of the intracellular Ca2+ dynamics in which the clusters
can “fire” several times needs a deeper analysis that will
be the subject of a future work.
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FIG. 3: Conditional distributions obtained with the same sim-
ulations as in Fig. 2. (a) Amplitude distribution of puffs for
which the preceding interpuff time satisfies τ < 1.01 s . (b)
Similar to (a) but for τ > 3.13 s.
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FIG. 4: Conditional distributions obtained with the same sim-
ulations as in Fig. 2. (a) Distribution of interpuff times for
which the preceding puff amplitude satisfies A < 9.21 µM .
(b) Similar to (a) but for A > 13.76 µM.
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FIG. 5: Open time distributions obtained with the model of
Fig. 1 and the parameters of Table I (a), with the same model
as in (a) but for which events that lasted less than 2ms were
discarded (b), with the exponential and the Gaussian models
((c) and (d), respectively).
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FIG. 6: Interpuff time distributions obtained with the same
simulations as in Fig. 5
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