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a b s t r a c t

We present a robust variable step-size affine projection algorithm (RVSS-APA) using a

recently introduced new framework for designing robust adaptive filters. The algorithm

is the result of minimizing the square norm of the a posteriori error vector subject to a

time-dependent constraint on the norm of the filter update. The RVSS-APA is then

successfully tested in different environments for system identification and acoustic

echo cancellation applications.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

The affine projection algorithm (APA) is an adaptive
scheme that estimates an unknown system based on
multiple input vectors [1]. In real-world adaptive filtering
applications, perturbations such as background and
impulsive noise can deteriorate the performance of many
adaptive filters under a system identification setup. In
echo cancellation, double-talk situations can also be
viewed as impulsive noise sources.

Many different approaches have been proposed in the
literature to deal with this problem [2–4]. Most of them
are either directly or indirectly related with the optimiza-
tion of a combination of L1 and L2 norms as the objective
function. The former provides a low sensitivity against
perturbations and the latter improves the convergence
speed of the adaptive filter. Recently, a new framework for
the construction of robust adaptive filters was introduced
[5]. Throughout this paper, the term robust represents
ll rights reserved.

@fi.uba.ar (H. Rey),
‘‘slightly sensitive to large perturbations (outliers)’’. The
main idea is to find the filter estimate as the result of the
minimization of the square norm of the a posteriori error
vector subject to a constraint on the norm of the adaptive
filter update.

Finally, we present certain definitions and the notation
used throughout the paper. Let wi ¼ ðwi,0 wi,1 . . . wi,M�1Þ

T

be an unknown linear finite-impulse response system.
The input vector at time i, xi ¼ ðxi xi�1 . . . xi�Mþ1Þ

T , passes
through the system giving an output yi ¼ xT

i wi. This
output is observed, but it is usually corrupted by a noise,
vi, which will be considered additive. In many practical
situations, vi ¼ WiþZi, where Wi stands for the background
measurement noise and Zi is an impulsive noise or an
undetected near-end signal in echo cancellation applica-
tions. Thus, each input xi gives an output di=xi

Twi+vi. We
want to find ŵi, an estimate of wi. This adaptive filter
receives the same input, leading to the a priori error
ei ¼ di�xT

i ŵ i�1. When data blocks are used, we can define
the data matrix Xi ¼ ½xi xi�1 . . . xi�Kþ1�, the desired out-
put data vector di ¼ ½di di�1 . . . di�Kþ1�

T , the a priori error
vector ei ¼ di�XT

i ŵ i�1 and the a posteriori error vector
ep,i ¼ di�XT

i ŵ i.
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2. The robust affine projection algorithm

We propose to design a new adaptive filter using the
framework introduced in [5]. In order to avoid a degrada-
tion of the system performance when a large noise sample
is present, the energy of the filter update is constrained at
each iteration. This can be formally stated as

Jŵ i�ŵ i�1J
2rdi�1: ð1Þ

It is clear that independently of the actual values of the input
and the noise, condition (1) constrains ŵ i to be inside the
hypersphere centered in ŵi�1 and radius

ffiffiffiffiffiffiffiffiffi
di�1

p
. The choice

of the positive sequence fdig will influence the dynamics of
the algorithm but in any case, (1) guarantees that any noise
sample can perturb the square norm of the filter update by at
most the amount di�1. Next, a cost function is required. In
order to include the effect of past input regressors in the
optimization problem we find the filter estimate as

ŵ i ¼ arg min
ŵ i2R

M
Jep,iJ

2 s:t: Jŵ i�ŵ i�1J
2rdi�1: ð2Þ

Let

ai ¼ ðX
T
i Þ
ydiþbi ¼XiðX

T
i XiÞ

�1diþbi, bi 2 KerðXT
i Þ, ð3Þ

where ð�Þy denote Moore–Penrose pseudoinverse and Kerð�Þ
denote the kernel of a given linear transformation. Using (3),
Jep,iJ

2 can be written as

Jep,iJ
2
¼ ðŵ i�aiÞ

T XiX
T
i ðŵ i�aiÞ, ð4Þ

where ai is any vector given by (3). Given that
rankðXiX

T
i Þ ¼ KoM, (4) defines a degenerate hyperellipsoid

and ai can be seen as any point in its axis (for different choices
of bi 2 KerðXT

i Þ). When K42, this axis could be a general
affine space of dimension M�K. All points in this axis are
given by (3) which coincide with all values of ŵi giving
ep,i=0. For the optimization problem in (2) we have to
analyze two situations:

Case 1: The hypersphere (1) intersects the affine space
ep,i=0.

The minimum value of Jep,iJ
2 is zero. We see that there

are infinite solutions lying on the axis of the hyperellip-
soid. All these solutions can be put as

ŵ i ¼XiðX
T
i XiÞ

�1diþbi, bi 2 KerðXT
i Þ, ð5Þ

where as a consequence of (1), bi has to satisfy the
condition

Jbi�ŵ i�1J
2rdi�1�dT

i ðX
T
i XiÞ

�1diþ2dT
i ðX

T
i XiÞ

�1XT
i ŵ i�1:

ð6Þ

Eqs. (5) and (6) define all the solutions. However, putting
them in an easy parametric way that would allow us
to pick different values of bi might be quite difficult.
Consider the particular choice:

bi ¼ ðI�XiðX
T
i XiÞ

�1XT
i Þŵ i�1: ð7Þ

It is easy to see that bi 2 KerðXT
i Þ and satisfies (6).

Replacing (7) in (5) leads to the estimate:

ŵ i ¼ ŵ i�1þXiðX
T
i XiÞ

�1ei, ð8Þ

which is the standard APA with step-size equal to 1. This
solution must be used only when the hypersphere (1)
intersects the affine space ep,i ¼ 0. By computing the norm
of the filter update, this condition can be expressed as

eT
i ðX

T
i XiÞ

�1eirdi�1: ð9Þ

Case 2: The hypersphere (1) does not intersect the
affine space ep,i=0.

From (9), this case will take place only when
di�1oeT

i ðX
T
i X1Þ

�1ei. Replacing (4) in (2) and after some
lengthy but straightforward calculations we see that the
optimum value of ŵi can be calculated as

ti ¼ argmin
ti2R

M
ðti�ðX

T
i Þ
yeiÞ

T XiX
T
i ðti�ðX

T
i Þ
yeiÞ s:t: JtiJ

2
¼ di�1,

ð10Þ

where ti ¼ ŵ i�ŵ i�1. This is a quadratic optimization pro-
blem with a quadratic constraint. Although the character-
istics of the optimal solution are well known [6], there is
no known closed-form solution to these kind of problems
in general. For this reason we should look for suboptimal
solutions to the problem. If di�1 is small enough the
following equation satisfies the constraint in (10) and
should be close to the optimal solution:

ti ¼
ffiffiffiffiffiffiffiffiffi
di�1

p XiðX
T
i XiÞ

�1ei

JXiðX
T
i XiÞ

�1eiJ
: ð11Þ

This is because if di�1 is small all the points on the
hypersphere are closer to each other. Combining (8), (9)
and (11) we obtain that the proposed algorithm can be
written as

ŵ i ¼ ŵ i�1þmin 1,

ffiffiffiffiffiffiffiffiffi
di�1

p
JXiðX

T
i XiÞ

�1eiJ

( )
XiðX

T
i XiÞ

�1ei: ð12Þ

The only thing that remains is the choice of the delta
sequence. Similarly to the one proposed in [5]:

di ¼ adi�1þð1�aÞmin
e2

i

JxiJ
2

,di�1

( )
: ð13Þ

The memory factor a 2 ð0,1Þ can be chosen as
a¼ 1�K=kM, where k is an integer typically between 1
and 10. Although the recursion in (13) could be imple-
mented using JXiðX

T
i XiÞ

�1eiJ
2 instead of e2

i =JxiJ
2, the

second possibility is chosen because it gives better results.
This is specially true if there is impulsive noise present. In
that situation one sample of impulsive noise extends its
influence during K samples through the vector ei. This
could affect the dynamics of the sequence fdig. Using (13)
for the calculation of di allows us to bound the influence of
one sample of impulsive noise to only one time step. The
initial condition of fdig can be set as d0 ¼ s2

d=ðs
2
x MÞ, with

s2
x and s2

d standing for the power of the input and
observed output signals, respectively. From (12), the
proposed algorithm can be interpreted as a variable
step-size APA with a step-size given by

mi ¼min 1,

ffiffiffiffiffiffiffiffiffi
di�1

p
JXiðX

T
i XiÞ

�1eiJ

( )
: ð14Þ

When the condition (9) is satisfied, i.e., there is a low
chance of having large noise samples contaminating the
error vector (as long as di�1 is not too large), mi ¼ 1 and the
standard APA is performed. If this is not the case, the APA
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is performed with mio1. In [5], it was proved that the
sequence (13) is strictly decreasing towards zero, regard-
less of the values of d0 and a. Therefore, the adaptive step-
size is not only providing the algorithm with a switching
mechanism in order to perform robustly against the noise,
but as the error decreases during the adaptation, the
variable step-size will also let the algorithm to further
decrease the error when the standard APA is no longer
capable of doing so. We will show this effect later in the
Simulation results. For these reasons, the proposed
algorithm is named as robust variable step-size affine

projection algorithm (RVSS-APA). It should be noticed that
if K=1 the RVSS-APA reduces to the RVSS-NLMS presented
in [5].

Some practical considerations should be considered. In
order to update the algorithm the most computational
expensive term is XiðX

T
i XiÞ

�1ei (see (12)). It is known that
this quantity can be computed using the guidelines given
in [7] leading easily to a fast implementation of the
proposed algorithm. A regularization constant b¼ 20s2

x

[7] is added to the matrix XT
i Xi before being inverted. It

should be noted that even with this change, the constraint
(1) will still be satisfied. Finally, a major issue should be
regarded carefully. As the proposed delta sequence has
the decreasing property shown in [5], although the
algorithm becomes more robust against perturbations, it
also loses its tracking ability. For this reason, if there is a
chance of being in a nonstationary environment, an ad hoc

control should be included. The objective is to detect
changes in the true system. We use similar controls as the
ones proposed in [5], although other schemes might be
used. The advantage of the proposed schemes is that the
parameters are not coupled to each other as in other
previously proposed algorithms. Each parameter is used
to deal with a specific feature of the environment.
Therefore, this set of parameters allows the algorithm to
work well under many different scenarios. While control
1 is better suited for system identification, control 2 is
preferred for echo cancellation. See [5] for a detailed
description of the parameters and their role. To avoid
undesirable effects caused by the use of multiple
regressors, the only difference from the methods in [5]
is that the check on Di is

Di ¼ ðctrlnew�ctrloldÞ=di�1
if Di 4x
di ¼ d0

elseif ctrlnew 4ctrlold

di ¼ di�1þðctrlnew�ctrloldÞ=K

else

di ¼ adi�1þð1�aÞmin
e2

i

JxiJ
2 ,di�1

n o
end
3. Simulation results

The system is taken from a measured acoustic impulse
response truncated to M=512. The adaptive filter length is
set to M. We choose this length because it is clearly a very
harsh situation. Smaller lengths have been tested and the
compared performance with the other algorithm remains
qualitatively the same. We use the mismatch in dB,
defined as 10log10ðJwi�ŵ iJ

2=JwiJ
2
Þ, as a measure of

performance. The plots are the result of single realiza-
tions of all the algorithms without any additional
smoothing (except in Fig. 1(a) where 5 independent
runs were averaged). A zero-mean Gaussian white noise
Wi is added to the system output to achieve a certain
signal to background noise ratio, defined as SBNR¼
10log10ðs2

y=s2
WÞ, where s2

y and s2
W stand for the power of

the system output and background noise, respectively. All
the algorithms are regularized with b¼ 20s2

x .
The behavior of the proposed RVSS-APA is compared

with other strategies. We simulate a standard APA (m¼ 1),
the robust APA (RAPA) introduced in [4] (which
has a parameter k0), and the gradient-limited APA (GL-
APA) [3]. For the latter, by choosing the parameters
kT1

, kT2
, kS1

and kS2
, the remaining parameters are

calculated as

T1 ¼
10ðkT1

=20Þffiffiffiffiffi
M
p , T2 ¼

10ðkT2
=20Þffiffiffiffiffi

M
p , S1 ¼ kS1

T1, S2 ¼ kS2
S1:

As in [5], in order to measure the performance of the
nonstationary control methods, the quantitiesM¼maxDi

and R¼M=N (where N is the second largest value of Di)
are computed. In every simulation (except in Fig. 1(a))
sudden change is introduced at a certain time-step by
multiplying the system coefficients by �1. In all the cases,
M is accomplished when the sudden change is intro-
duced, while N is accomplished at any other time-step.
The value ofM is related to the detection threshold while
that ofR gives an idea on the reliability of the detection of
a sudden change.

3.1. System identification under impulsive noise

The input is highly correlated AR1 process with pole in
0.95. The nonstationary control 1 is used in this applica-
tion. An impulsive noise Zi could also be added to the
output signal yi. The impulsive noise is generated as
Zi ¼oiNi, where oi is a Bernoulli process with probability
of success P½oi ¼ 1� ¼ pimp and Ni is a zero-mean Gaussian
with power s2

N ¼ 1000s2
y .

First, in Fig. 1(a) we compare the RVSS-APA with the
standard APA for different projection orders. In this
scenario there is a high SBNR and no impulsive noise. As
it is well known, the standard APA shows faster
convergence for larger K but with a worse steady-state.
The RVSS-APA shows the same speed of convergence
as the APA with a much lower steady-state. Moreover,
the performance of the RVSS-APA with K=2,4,8 is very
similar, even with respect to the steady-state error. This
is because of the intrinsic variable step-size mechanism
of the proposed algorithm. Therefore, there is no
gain in using higher projection orders as they show
similar performance but with increasing computational
complexity.

Next, we include the other schemes. The parameters of
the RAPA and the GL-APA were chosen to match the
tracking performance of the RVSS-APA when no impulsive
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noise was present (they were not able to match the low
steady-state of the RVSS-APA without severely compro-
mising their tracking performance).

In Fig. 1(b) it can be seen that the standard APA
presents a large sensitivity to the low SBNR condition.
Although the RAPA and the GL-APA perform better, the
RVSS-APA has a steady-state more than one order of
magnitude lower, without deteriorating the speed of
convergence nor the tracking ability.

When the impulsive noise with pimp ¼ 0:05 is included,
Fig. 2(a) shows that the standard APA presents a very poor
performance. The remaining algorithms have the same
performance as in Fig. 1(b).
We see that the switching mechanism of the RVSS-APA
shows the advantage of not using the standard APA with
m¼ 1 when an impulse of noise is present or when the
mismatch is low enough (and further gain can be
accomplished). We also performed simulations under a
high SBNR of 40 dB (not shown). Although the parameters
of the GL-APA and RVSS-APA remained the same, the
value k0 of the RAPA had to be increased. When no
impulsive noise was present, the RAPA and the GL-APA
performed similarly to the standard APA. In contrast, the
RVSS-APA reached a steady-state 15 dB lower without
deteriorating the speed of convergence nor the tracking
ability. When impulsive noise was added, the results were
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qualitatively similar to the ones in the low SBNR
condition.

Regarding the performance of the nonstationary con-
trol, the results show that the RVSS-APA can recover well
from a sudden change, with a speed close to the one of the
standard APA with m¼ 1.

3.2. Acoustic echo cancellation with double-talk situations

In echo cancellation applications, a double-talk detec-
tor (DTD) is used to suppress adaptation during periods of
simultaneous far- and near-end activity. In this work, we
used it partially. In [3], the GL-APA was successfully tested
without a DTD so we did not include it. In the case of the
RAPA and the RVSS-APA, long bursts of double-talk will
affect the update of the scaling factor [4] and nonsta-
tionary control, respectively. To prevent this situation, the
simple Geigel DTD [8] controls at each time step whether
those updates should be performed. However, it should be
emphasized that the update of the filter coefficients is
performed at every iteration no matter the result of the
DTD. This will avoid an unnecessary decrease in the speed
of convergence (due to false alarms).

The far-end and near-end signals are speech sampled
at 8 kHz, and they were both used previously in [5]. The
SBNR is 25 dB while the signal to total noise ratio (STNR),
defined as STNR¼ 10log10½s2

y=ðs2
Wþs

2
ZÞ�, is set to 0 dB,

where s2
Z is the power of the near-end signal before

passing through the DTD. The span of the DTD is D=M and
the threshold is T=1.25. Under these conditions, the DTD
detected only 22% of the near-end signal which, causing
long bursts of impulsive noise. Although this might seem
a small percentage of detection, the remaining nonde-
tected samples are small enough not to disturb the
nonstationary control 2 of [5], which was used under this
environment.

In the first half of Fig. 2(b) we show that the RVSS-APA,
the RAPA with k0,2 and the GL-APA with kS1 ,2 present a
similar behavior during the double-talk situation. The
other three schemes suffer large mismatch deviations. In
the second half, the RVSS-APA, the RAPA with k0,1 and the
GL-APA with kS1 ,1 show a similar tracking performance
after the sudden change, while the other schemes that
were robust during the double-talk situation present now
a poor tracking performance. Moreover, the RAPA1 and
the GL-APA1 present a steady-state just slightly better
than the standard APA. In contrast, the RVSS-APA shows
an extra 10 dB in steady-state (with a SBNR of 25 dB) with
respect to the APA. This is another evidence of the
superiority of the proposed algorithm over the other
strategies. The large values ofM andR indicate again that
the sudden change was reliably detected.
4. Conclusions

In this work we derived a new robust version of the
APA, the RVSS-APA, based on the framework introduced in
[5]. It follows from optimizing the square norm of the a

posteriori error vector subject to a time-dependent
constraint ðdiÞ on the norm of the filter update. The
proposed dynamics for di provide the algorithm with fast
initial convergence as the standard APA with m¼ 1 but
also a robust performance against noise. As shown in the
simulations under system identification and acoustic echo
cancellation scenarios, even under severe conditions, the
performance of the proposed algorithm was very good.

References

[1] K. Ozeki, T. Umeda, An adaptive filtering algorithm using an
orthogonal projection to an affine subspace and its properties,
Electron. Commun. Jpn. 67-A (5) (May 1984) 19–27.

[2] E.V. Papoulis, T. Stathaki, A normalized robust mixed-norm adaptive
algorithm for system identification, IEEE Signal Process. Lett. 11 (1)
(January 2004) 56–59.

[3] S. Shimauchi, Y. Haneda, A. Kataoka, A. Nishihara, Gradient-limited
affine projection algorithm for double-talk robust and fast-conver-
ging acoustic echo cancellation, IEICE Trans. Fundam. E 90-A (3)
(March 2007) 633–641.
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