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Introduction

Phenotypic diversification in the intra-specific level

results from random and nonrandom factors (Reznick

et al., 1997; Hendry & Kinnison, 1999; Carroll et al., 2007).

Environmental variation can profoundly affect the

phenotypic variation within and among populations –

yet the developmental and evolutionary mechanisms

behind this correlation are poorly understood (Badyaev,

2005)-, and therefore nonrandom factors such as selection

and phenotypic plasticity can be of great importance to

account for phenotypic diversity at this taxonomic level

(Hendry & Kinnison, 1999; Carroll et al., 2007; Ezard et al.,

2009; Perez & Monteiro, 2009). Moreover, it is now widely

documented that evolutionary change can occur on

ecological timescales. Organisms can undergo adaptive

phenotypic evolution over a few generations, leading to a

rapid diversification of populations that are under

different environmental conditions (Carroll et al., 2007).

Therefore, it is important to consider the importance of the

environmental dimensions behind the morphological

variation in evolutionary studies of phenotypic diversifi-

cation among populations (Schluter, 2000; Roseman,

2004; Carroll et al., 2007; Perez & Monteiro, 2009).

A common approach to evaluate the importance of

environmental dimensions behind morphological varia-

tion is based on testing statistically the association

between morphological (e.g. cranial length and body

size) and environmental (e.g. climate) variables using a

set of natural populations (e.g. Katzmarzyk & Leonard,

1998; Felsenstein, 2002). The main problem with this

approach is that geographically mediated gene flow

among populations, divergence from a shared population

history and ⁄ or local environmental conditions can cause

close populations to become autocorrelated, i.e. popula-

tions that are closer together in geographical space and ⁄ or

close in phylogeny tend to be more similar to each other

than expected by chance alone, for a given phenotypic

variable (Barbujani, 1987; Legendre, 1993; Cavalli-Sforza
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Abstract

Understanding the importance of environmental dimensions behind the

morphological variation among populations has long been a central goal of

evolutionary biology. The main objective of this study was to review the

spatial regression techniques employed to test the association between

morphological and environmental variables. In addition, we show empirically

how spatial regression techniques can be used to test the association of cranial

form variation among worldwide human populations with a set of ecological

variables, taking into account the spatial autocorrelation in data. We suggest

that spatial autocorrelation must be studied to explore the spatial structure

underlying morphological variation and incorporated in regression models to

provide more accurate statistical estimates of the relationships between

morphological and ecological variables. Finally, we discuss the statistical

properties of these techniques and the underlying reasons for using the spatial

approach in population studies.
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et al., 1994; Felsenstein, 2002; Relethford, 2004a; Ives &

Zhu, 2006). When the response or dependent variable

(e.g. phenotypic data) is modelled as a function of

explanatory or independent variables (e.g. environmental

data), the existence of autocorrelation perturbs signifi-

cance tests as well as parameter estimates of the standard

statistical techniques, which can led to a misunderstand-

ing of the relationship between these variables. For

example, if a population attained a large body size by

climatic factors (e.g. low temperature), the neighbouring

populations may have a similar size due to gene flow with

the former, even though they are not directly affected by

the climate with exactly the same intensity. Therefore,

similar size among these populations should not be taken

as proof of a response to a local climatic influence

(Felsenstein, 2002). In this case, more complex models

incorporating the autocorrelation structures based on

geography (i.e. spatial regression techniques) and ⁄ or

phylogenetic relationships (i.e. phylogenetic comparative

methods) must be used instead of the standard, well-

known regression or correlation techniques (Rohlf, 2001;

Garland et al., 2005; Ives & Zhu, 2006; Bini et al., 2009;

Freckleton & Jetz, 2009).

The statistical problems generated by autocorrelation in

a data set are widely recognized and taken into account in

ecological and evolutionary inter-specific studies (Rohlf,

2001; Ives & Zhu, 2006). Moreover, several recent papers

review the spatial and phylogenetic statistical techniques

used to solve this problem at the inter-specific level

(Garland et al., 2005; Dormann et al., 2007; Bini et al.,

2009). Conversely, at the intra-specific level the influence

of autocorrelation is generally underestimated and the

associations between traits and environmental variables

are evaluated using standard correlation or regression

(Sokal, 1984; Felsenstein, 2002). As a consequence, the

main objective of this paper was to review the available

spatial regression techniques – which incorporate the

autocorrelationstructuresofdatasetsbasedongeography–

used to test the association between morphological and

environmental variables at the intra-specific level. We

argue that any study aimed at evaluating the environ-

mental influence on phenotypic evolution within a

species ought to apply an adequate methodology that

account for spatial autocorrelation in data. In addition, we

empirically illustrate the use of such spatial regression

techniques to test the association between cranial form

variation among worldwide human populations and a set

of environmental variables (i.e. mean annual tempera-

ture, average annual rainfall and elevation), using a

cranial data set of recent human populations widely

employed in biological anthropology (Howells, 1973,

1989). Finally, we discuss the performance of generalized

least squares, trend surface, autoregression and spatial

eigenvector mapping (SEVM) techniques as well as the

conceptual and methodological reasons underlying the

use of a spatial approach in population studies.

Spatial and comparative analyses
in population biology

Spatial variation among populations is a central research

issue in evolutionary biology, particularly within the

framework of studies interested in neutral variation

(Sokal et al., 1989a; Barbujani, 2000; Relethford, 2008).

This is due to the fact that most neutral evolutionary

processes occur in a spatial context (Epperson, 2003),

where the genetic variation originated by random

mutations within local populations will disperse through

geographically mediated gene flow. Several approaches

can be used to analyse the resulting patterns of spatial

variation, that usually involve the estimation of param-

eters such as the geographical distance at which genetic

or phenotypic data can be considered independent (Sokal

& Oden, 1978; Barbujani, 2000; Manel et al., 2003).

The magnitude of spatial autocorrelation can be eval-

uated using autocorrelation coefficients, such as the

Moran’s I coefficient, which is commonly applied in

population studies (Sokal & Oden, 1978; Barbujani,

2000; Diniz-Filho et al., 2009), and given by

I ¼ n

S

� � P
i

P
j ðyi � �yÞðyj � �yÞwijP

i ðyi � �yÞ2

" #
;

wheren is the number of local populations, yi and yj are

the values of the biological trait measured in populations

i and j, �y is the average of y, and wij is an element of a W

or weighting matrix. In this W matrix, the elements are

equal to 1 if the pair i, j of local populations is within a

given distance class interval (indicating samples that are

‘connected’ in this class); otherwise wij = 0. S indicates

the number of entries (connections) in the W matrix.

The value expected under the null hypothesis of the

absence of autocorrelation is )1 ⁄ (n ) 1). Moran I is

usually calculated by using several distance classes, and

in this case multiple W matrices are built by connecting

pairs of local populations situated at increasing geo-

graphical distances. This sequence of coefficients is

plotted against geographical distances, generating a

correlogram that describes the complexity of spatial

patterns, in the original variable as well as in the

residuals (see below; Sokal & Oden, 1978; Legendre &

Legendre, 2003). These parameters can be linked to

evolutionary processes, such as dispersion (Sokal et al.,

1989a). More complex micro-evolutionary inferences

can be performed by comparing patterns of geographical

variation for different alleles and loci using multiple

correlograms (Sokal & Oden, 1978; Sokal & Wartenberg,

1983; Sokal et al., 1989a).

Graphic representations and randomization tests of

biological and geographical distances among a set of

populations are also employed (Smouse et al., 1986;

Hutchison & Templeton, 1999; Relethford, 2004b;

Ramachandran et al., 2005). Mantel (1967) introduced

a method for deciding whether the matrix of biological
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distances correlated with the matrix of geographical

distances (see Smouse et al., 1986). The basic Mantel

Z-statistic is the sum of cross-products of the values in

two matrices:

ZYX ¼
X

ij
ðXijYijÞ;

where X and Y are unfolded distance matrices (i.e. the

distance matrices are unfolded column by column to

form a long vector, excluding the diagonal term)

(Smouse et al., 1986; Legendre & Legendre, 2003). The

ordinary product–moment correlation coefficient, r, is

monotonically related to Z (Smouse et al., 1986). Several

other approaches are also available (see Sokal & Oden,

1978; Peres-Neto & Jackson, 2001; Manel et al., 2003;

Relethford, 2008).

Although these approaches are slightly different, their

ultimate goal is to describe and explore the spatial

structure underlying neutral genetic or phenotypic var-

iation. In population studies of several species, the spatial

statistics have shown that many genetic and phenotypic

variables are spatially correlated, such that geographically

close populations tend to be biologically similar

(Barbujani, 1987; Cavalli-Sforza et al., 1994; Hutchison

& Templeton, 1999; Relethford, 2004a; Manica et al.,

2005). Particularly, two endogenous processes have been

used to explain the spatial pattern of variation among

populations: it could emerge as the result of gene flow

restricted by the geographical distance (i.e. model

of isolation by distance) or because of the serial

founder effect (Cavalli-Sforza et al., 1994; Relethford,

2004a; Ramachandran et al., 2005; Templeton, 2007). As

a result of the spatial structure of populations, gene flow

will occur more frequently between nearby populations,

leading to high genetic affinities between groups in close

geographical proximity and the probable genetic differ-

entiation of more distant groups due to the effect of

genetic drift (i.e. the IBD model; Wright, 1943; Barbujani,

1987; Cavalli-Sforza et al., 1994; Hutchison & Templeton,

1999; Relethford, 2004a). On the other hand, the increase

in the biological distance with geographical distance could

be the result of the colonization of an area through

multiple and successive dispersion events of groups that

have a small number of individuals, a process known as

expansion of range (Slatkin, 1993). This expansion of

range leads to several events of random sampling – serial

founder events, resulting in a gradient of reduction in

biological diversity within populations in the direction

that the groups are moving away from the centre of

expansion, unless rates of migration are extremely high

(Ramachandran et al., 2005; Ray et al., 2005; but see

Templeton, 2007).

However, when we study the effects of environmental

variables over morphology, we should use other

approaches that incorporate the spatial autocorrelation

of morphological and ⁄ or environmental variables directly

into the statistical model (Sokal, 1984; Legendre, 1993;

Diniz-Filho et al., 2003, 2009; Dormann et al., 2007).

Generally, population studies use the partial Mantel’s

matrix correlation statistic (Smouse et al., 1986) to

remove the effects of spatial and ⁄ or phylogenetic varia-

tion in the relationship between two sets of data (e.g.

Relethford, 2004b; Roseman, 2004). However, partial

Mantel’s matrix correlation is just a linear correction that

removes all morphological variation correlated with

space (Oden & Sokal, 1992). Therefore, it does not

correspond to what spatial regression techniques (e.g.

generalized least squares) do because they correct for the

effect of spatial similarity among neighbour populations,

i.e. they model local-scale autocorrelations in residuals of

the regression model (Dormann et al., 2007; Perez et al.,

2009; see below).

Other techniques that directly emerge from the overall

linear modelling framework – i.e. linear regression

techniques – could be used to test whether a morphological

variable is associated with environmental variation, in

order to account for spatial structures in data (Dormann

et al., 2007; Bini et al., 2009; Diniz-Filho et al., 2009). In the

following section we describe generalized least squares,

trend surface, autoregression and SEVM techniques.

Spatial regression models

Conventional statistical analysis assumes the indepen-

dence of all observations (independence entails that no

observation in a sample can be predicted by another

observation in the same sample and that the best predictor

of any observation is the mean; Sokal & Rohlf, 1986; Zar,

1999), frequently overestimating the number of indepen-

dent observations in spatial studies (Legendre, 1993;

Peres-Neto, 2006). Overestimating the number of inde-

pendent observations could lead to incorrectly refute the

null hypothesis of nonassociation between morphological

and environmental variables (H0), i.e. inflating type I error

rates. Consequently, in this section we illustrate a set of

available techniques that can be used to take into account

the problem of nonindependence, or autocorrelation, in

the study of morphological variation among populations.

The problem of estimating the level of relationship

between morphological and environmental variables has

the general structure of a regression model (the ordi-

nary least squares model, OLS; Table 1), where the

dependent – or morphological – variable is modelled as a

function of the independent – or environmental – variable

(Sokal & Rohlf, 1986; Zar, 1999). In this model the error

term, or residuals, must be normally distributed, with

constant variance and independently distributed among

observations, i.e. the covariance matrix among residuals is

the identity matrix. In biological studies the residuals are

generally independent when the populations are not

correlated by geography and ⁄ or phylogeny.

When autocorrelation in residuals is detected (e.g.

by using autocorrelation analysis such as Moran’s I

Spatial regression techniques 239
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coefficient), there is a clear violation of the assumptions

for the standard regression model. Therefore, the residual

variation must be modified in order to improve our

understanding of morphological variation, as well as to

achieve a better parameter’s estimation and to test the

statistical model. In this scenario, spatial regression models

have been proposed to solve this problem. These models

can be grouped into two classes (Table 1) based on the

idea of incorporating autocorrelation either into the

residuals of the regression model (model residual

approach) correcting their covariance matrix, or into

the structure of the model (model structure approach)

including a new term (Diniz-Filho et al., 2003, 2007,

2009; Legendre & Legendre, 2003; Dormann et al., 2007;

Kissling & Carl, 2008; Bini et al., 2009).

In the model residual approach, known as generalized

least squares model, the error structure in covariance

matrix among residuals is designed to incorporate the

expected lack of independence of the observations due to

the spatial distribution of the populations. In this model

the covariance matrix among residuals is based on the W

matrix, ‘expected relationship matrix’ or weighting

matrix, which contains the correlation structure among

the populations. The elements of W can be estimated by

different and complex inverse functions of geographical

distance (dij) between populations, given by inverse

distance-powered functions of the form wij ¼ 1=da
ij,

where a is the parameter that regulates the model. With

a = 1 this formula generates a large decline in distance,

with a geographical distance between 0 and a given

distance, and shows a plateau with little change in

distance after this value (Fig. 1), such as it was shown for

biological distance among populations (Relethford,

2004a). Several techniques, such as SEVM (see below),

truncate the W matrix in a specific distance, being equal

to 0 the distances greater than such specific distance. This

procedure gives greater importance to small geographical

distances. There are several generalized least squares

techniques that can be found in the literature related to

spatial analyses (Wall, 2004; Rangel et al., 2006; Dor-

mann et al., 2007; Diniz-Filho et al., 2009) and they are

named after the different ways of defining the covariance

matrix among residuals (simultaneous spatial autore-

gressive, conditional spatial autoregressive and moving

average; Table 1).

Instead of modifying the error term, the model struc-

ture approach introduces new explanatory variables in

Table 1 Regression models most frequently used in spatial ecological analysis.

Model General approach Formula

Ordinary least squares (OLS) y = Xb + e, where y is the vector that describes trait variation, X is the matrix of

independent variables, b is the vector of regression coefficients, � is the error term,

and the covariance matrix C among residuals is C = r2I, where r2 is the variance

of the residuals, and I is an identity matrix

Simultaneous spatial autoregressive (SAR) Model residuals y = Xb + e and CSAR ¼ r2½ðI� qWÞT��1½I� qW��1, where W is the weighting matrix

and q is an autoregressive coefficient for response variable

Conditional spatial autoregressive (CAR) Model residuals y = Xb + e and CSAR ¼ ½ðr2WiþÞI�½I� qW��1

Moving average (MA) Model residuals y = Xb + e and CMA ¼ r2½ðIþ qWÞðIþ qWÞ�
Trend surface analysis (TSA) Model structure y = Xb + G + e, where G = LBL, where L is a matrix with the spatial coordinates of

local populations and BL are the slopes of these coordinates

Lagged-response

autoregressive (ARM-response)

Model structure y = Xb + G + e where G = qWy

Lagged-predictor or mixed

autoregressive (ARM-mixed)

Model structure y = Xb + G + e where G = qWy + cWX, where c is the autoregressive coefficients for

each explanatory variable

Spatial eigenvector mapping (SEVM) Model structure y = Xb + G + e where G = PC, where PC are the principal coordinates

The problem of estimating the level of relationship between morphological and ecological variables has the general structure of a regression

model. Here, we show the different regression models most frequently used in spatial ecological analysis: ordinary least squares, regression

techniques that incorporate autocorrelation into residuals (model residuals) and regression techniques that incorporate autocorrelation into

the structure of the regression model (model structure). All spatial analyses described in this paper can be performed using the SAMSAM software

(spatial analysis in macroecology) version 3.1 (Rangel et al., 2006), which is freely available at http://www.ecoevol.ufg.br/sam. In addition,

the spatial and phylogenetic regression analyses can be made using several R packages (e.g. APE), which are freely available at http://www.

r-project.org/. Finally, NTSYSNTSYS 2.2, available at http://www.exetersoftware.com, perform many regression techniques that consider the

autocorrelation of data.

Geographic distance (d )

D
is

ta
nc

e/
w

ei
gh

t (
w

ij)

Fig. 1 Plot of geographical distance (d) vs. distance ⁄ weight (wij).

240 S. I . PEREZ ET AL.

ª 2 0 0 9 T H E A U T H O R S . J . E V O L . B I O L . 2 3 ( 2 0 1 0 ) 2 3 7 – 2 4 8

J O U R N A L C O M P I L A T I O N ª 2 0 0 9 E U R O P E A N S O C I E T Y F O R E V O L U T I O N A R Y B I O L O G Y



the model that ‘capture’ the spatial variation, thereby

minimizing the autocorrelation in the residuals. There

are several ways of incorporating spatial variables into

the model structure to eliminate or minimize residual

autocorrelation (Table 1). The simplest way of defining

space is by using the spatial coordinates of local popu-

lations (i.e. latitude and longitude), which can be added

as spatial independent variables in the model. This

technique is known as trend surface analysis (TSA1;

Legendre & Legendre, 2003), and is better suited to

model broad-scale trends and not local autocorrelation in

residuals. The simplest equation expresses part of the

morphological variation as a plane in geographical space.

The spatial component in this equation can be changed

by adding polynomial expansions, thereby adjusting to

quadratic (TSA2) or cubic functions of spatial coordi-

nates. Another way to take into account spatial patterns

into the model structure is by using an autoregressive

model.

There are several forms used to express autoregressive

models, but the main idea is the pure autoregression

model (Diniz-Filho et al., 2009), which estimates the

variation in a trait that can be explained by space. In

spatial analysis it is possible to incorporate autoregressive

terms for the response variable (lagged-response autore-

gressive model) and for both, response and explanatory

variables (lagged-predictor or mixed autoregressive

model) (Table 1).

Finally, another approach to incorporate space into

models structure is to extract principal coordinates (i.e.

eigenvectors) from the weighting matrix – i.e. the matrix

expressing the spatial relationship among local popula-

tions – and to use part of these vectors to establish the

regression model (Table 1). This approach is called SEVM

(Griffith, 2003; Griffith & Peres-Neto, 2006). The basic

difference between the various applications of this

approach lies on the principal coordinates that are

extracted to represent geographical space. The principal

coordinates of a spatial matrix express the relationships

among local populations at decreasing spatial scales, so

that first principal coordinates with large eigenvalues

tend to express broad-scale structures, whereas principal

coordinates with small eigenvalues tend to express local

patterns. Thus, the advantage of eigenvector mapping is

its flexibility in dealing with patterns at multiple scales,

and the possibility of iteratively improving the modelling

process by adding or removing these principal compo-

nents (PCs) (Diniz-Filho & Bini, 2005; Griffith & Peres-

Neto, 2006).

An example of spatial regression
techniques in human population analyses

Understanding the importance of nonrandom factors and

environmental dimensions in the origin of the worldwide

pattern of morphological variation among human pop-

ulations has long been a central goal of evolutionary

anthropology (Roberts, 1953; Howells, 1973, 1989; Beals

et al., 1984; Relethford, 1994, 2004a; Ruff, 1994;

Katzmarzyk & Leonard, 1998; Roseman, 2004; Harvati

& Weaver, 2006). Craniofacial form and shape variation

has been widely investigated across modern human

populations (Beals et al., 1984; Relethford, 1994, 2004a;

Roseman, 2004; Harvati & Weaver, 2006). These studies

point out that cranial shape variation is mainly influ-

enced by neutral evolutionary processes, such as muta-

tion, gene flow and genetic drift (Relethford, 1994,

2004a). Conversely, variation in craniofacial size and

form (i.e. shape plus size) has been related to nonrandom

factors, like natural selection (Beals et al., 1984;

Roseman, 2004; Harvati & Weaver, 2006). Specifically,

several works pointed out that temperature could be the

principal environmental dimension shaping the world-

wide pattern of form and size variation among popula-

tions. However, some investigators suggested the

possibility that the observed association between cranio-

facial form and temperature could be due to a spurious

correlation of each with the neutral patterns of inter-

regional difference generated by spatial structure of

the populations (i.e. autocorrelation; Sokal, 1984;

Relethford, 1994). Here, we employ spatial regression

techniques in order to establish whether craniofacial form

is significantly associated with climatic variables (i.e. mean

annual temperature, average annual rainfall and eleva-

tion), independent of the spatial structure. The existence

of a significant correlation between these variables could

be used to support the importance of nonrandom factors,

such as natural selection, driving the morphological

divergence among human populations (e.g. Roseman,

2004; Harvati & Weaver, 2006; Perez & Monteiro, 2009).

We analysed 45 linear cranial measurements collected

from a sample of 1367 male individuals from 30 popu-

lations distributed worldwide (Fig. 2; Howells, 1973,

1989). All the samples belong to recent modern human

populations that inhabited different geographical and

ecological regions around the world (Howells, 1989);

distributed from 70�N latitude to 45�S latitude, and from

30 to )8 �C of mean annual temperature (Fig. 2). The

geographical locations of the samples (local populations)

were reported by Howells (1989). The geographical

coordinates of each local population were transformed

to a geodesic system and used to compute a matrix of

great circle geographical distances between them. The

mean annual temperature, average annual rainfall and

elevation at each local population were obtained and

used as estimators of climate variation across the globe

(Beals et al., 1984; Katzmarzyk & Leonard, 1998; Harvati

& Weaver, 2006). These variables were obtained for each

of the 30 populations (i.e. geographical localization or

close to) using Internet climatic databases (i.e. http://

www.worldclimate.com; Relethford, 2004b) and geo-

graphical maps.

Rather than performing a separate analysis on each of

the 45 craniometric variables, we used the original

Spatial regression techniques 241
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variables to perform a PC analysis of a covariance matrix

using mean values; and the resulting first PC score was

used as the general form vector. The calculation of PC

score generates a data reduction and avoids redundancy

(Marcus, 1990; Thalib et al., 1999). This first PC score,

accounting for 45% of the total among mean samples

variation, has strong correlations with the size measure-

ment, the arithmetic mean of all variables (r = 0.982). In

addition, this procedure is essentially the same as the one

used in others works of spatial techniques applied to

population morphometrics (e.g. Sokal & Uytterschaut,

1987; Relethford, 2008). Although the other PC scores

represent important shape variation among human

populations, and because the main objective of this

paper was to review the statistics of spatial regression

techniques, in the following analyses we restrict the tests

to the first PC score to simplify the explanation. Although

we used a univariate approach to study variation among

human populations, the spatial regression techniques can

be generalized to use multivariate multiple regression

models (Rohlf, 2001; Perez et al., 2009).

We first generated a spatial correlogram (Sokal &

Oden, 1978; Barbujani, 2000) to explore the spatial

autocorrelation of form variation. Although there are

alternative approaches to describe spatial patterns (e.g.

semi-variograms; Relethford, 2008), correlograms have

been repeatedly used in previous exploratory autocorre-

lation analyses of inter-population variation, mainly

based on genetic data (e.g. Sokal & Oden, 1978; Sokal

et al., 1989b; Barbujani, 2000). Here, Moran’s I coeffi-

cients were calculated for five geographical distance

classes, whose intervals were defined such that each class

contains approximately the same number of connections

among local populations. The statistical significance of

the autocorrelation coefficients, Moran’s I, was calcu-

lated with 4999 randomizations (for details, see Legendre

& Legendre, 2003).

The spatial correlograms of form variation (i.e. PC1

score) are shown in the Figure 3. These correlograms

show a cline in the PC1 score affecting the entire

worldwide distribution, starting from about 6000–

7000 km (Fig. 3a). Perhaps because of the relatively

large and irregular distances among close populations,

Moran’s I in the first distance class is not very high, as is

usually observed for clinal patterns. The cline observed in

the PC1 score can be explained by several processes, such

as migration from a single direction or one side, gene

flow among populations or environmental influence

acting in geographically close and similar environments

(see Sokal et al., 1989a,b; Legendre & Legendre, 2003).

Anyway, the most important issue is that a similar cline is

also observed in the residuals of morphometric against

climate variation obtained with the OLS techniques

(Fig. 3b). Therefore, the residuals of neighbour popula-

tions are similar, and that suggests the importance of

spatial endogenous processes such as gene flow to

explain the PC1 variation. Consequently, evolutionary

spatial factors, local environmental conditions or histor-

ical factors are important in accounting for craniofacial

variation among worldwide populations (Cavalli-Sforza

et al., 1994; Eller, 1999; Relethford, 2004a; Manica et al.,

2005).

We then regressed the PC1 score against climate (i.e.

mean annual temperature, average annual rainfall and
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Fig. 2 Geographical location of the 30 samples used in this study.
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elevation) using three forms of generalized least squares

models based on autoregressive processes (SAR, CAR and

MA), first- and second-order trend surface (TSA1 and

TSA2), lagged-response and lagged-predictor autoregres-

sive models (ARM-response and ARM-mixed), and

SEVM techniques. To define the spatial structures to be

used in these spatial regression models, we employed one

weighting matrix (W) estimated assuming an inverse

relationship between craniofacial variation and geo-

graphical distances among populations (e.g. isolation-

by-distance model; Relethford, 2004a). This W matrix

was calculated as the inverse function of great circle

geographical distances between populations, wij ¼ 1=d1
ij,

generating a large decline in distance with a geographical

distance between 0 and 6000 km, and showing a plateau

with little change in distance after ca. 8000–10 000 km

(see Relethford, 2004a). We estimated the r2 and the

standardized regression slopes of the spatial models and

assessed their significance by using the t-statistic (Akaike

information criterion could be an alternative measure to

r2 for comparing model fit; Freckleton, 2009).

The success of these techniques for eliminating residual

autocorrelation is not always guaranteed, because of

model-fit problems and variation in the robustness of

each technique against violations in some of their

assumptions. For example, if the W matrix (i.e. the

expected spatial structure) does not capture the true

spatial processes underlying genetic variation, then the

residual can still possess spatial autocorrelation (Diniz-

Filho et al., 2003). Therefore, it is important to use some

exploratory autocorrelation coefficient, such as Moran‘s

I, to test whether the assumption of the spatial indepen-

dence of the residuals of each spatial regression is still

being violated or not (see Gittleman & Kot, 1990). For

SEVM, the matrix was truncated based on the W matrix –

i.e. the distances greater than 6092 km were equal to 0 –

and the selection of the principal coordinates to be used

in the model was based on minimizing residual Moran’s I

(see Griffith & Peres-Neto, 2006). We tested Moran’s I in

regression residuals at the five geographical distance

classes and also computed the Euclidian distances

between each residual correlogram and the null expec-

tation, as a measure of the amount of autocorrelation still

present in model residuals (so that a better technique will

have a relatively small distance between the residual

and null correlograms, indicating minimization of the

autocorrelation).

The OLS analysis suggests that climate has a significant

effect on patterns of form variation calculated with the

first PC for cranial measurements (Table 2). The slope

value of temperature is the largest one, followed by

elevation and rainfall (although these last two are not

statistically significant). The temperature shows a clear

negative association with the PC1, with larger crania

found in cooler regions, although some populations from

Oceania are outliers in this relationship (Fig. 4). This is

shown by the correlogram, which detected autocorrela-

tion in residuals, showing a clear violation in the

assumptions of a standard OLS (Fig. 3b; Table 2).

Results from spatial regression techniques are reported

in Table 2. In general, all techniques show qualitatively

the same result, in which the most important variable

driving cranial variation is temperature; with partial

standardized slopes ranging from )0.549 to )0.642. In all

cases, these coefficients were highly statistically signifi-

cant (P < 0.001, but see below). The regression slopes of

model residual approaches (SAR, CAR and MA) are very

similar to the OLS results, and the correlograms revealed

similar levels of (high) autocorrelation in residuals.

Conversely, the model structure approaches, i.e. TSA1,

TSA2, ARM-response, ARM-mixed and SEVM, were

more effective, on average, in minimizing residual spatial

autocorrelation (Table 2). Unlike OLS, these techniques

generate residuals with normal distribution.

Our results pointed out that although random factors

are important to explain spatial inter-population differen-

tiation in craniofacial characteristics in modern humans

(supporting recent studies, e.g. Relethford, 1994, 2004a;

Roseman, 2004), there is a significant correlation between

craniofacial form and climate independent of spatial
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structure. These results also refuted the possibility that the

observed correlation between craniofacial form and tem-

perature could be due to a spurious correlation of each

with the patterns of inter-regional difference generated by

spatial structure. The large-scale pattern of Howells (1989)

data set is mainly related to climate (Fig. 4), suggesting the

importance of nonrandom factors to explain cranial

diversification among human populations.

Performance of spatial regression models

Ordinary least squares technique, which does not incor-

porate spatial information, makes the tacit assumption

that all the populations studied are equally related to

each other. In human population analyses there is a large

amount of information that suggests the importance of

geography in morphological variation, particularly in a

worldwide scale (e.g. Relethford, 2004a; Roseman,

2004), and independently of other climate and ecological

variation. Therefore, the assumptions of OLS are not

achieved by our data set. Nevertheless, under different

circumstances these assumptions might not be com-

pletely rejected. For example, if morphological traits

evolve very rapidly in response to environmental fluc-

tuations, we would never know the relationships among

populations just by looking at the traits under study

because spatial autocorrelation is absent. This could be

true for some geographical regions with broad ecological

variation and recent peopling (see Perez & Monteiro,

2009). Some authors have suggested that spatial statis-

tical techniques, as well as the phylogenetic comparative

analysis, should only be used when there is spatial or

phylogenetic autocorrelation in the morphological vari-

able (see Garland et al., 2005); however, Rohlf (2006)

pointed out that this introduces a conditional test,

affecting the type I error.

Our example suggests that model residual approaches

cannot adequately incorporate the spatial autocorrelation

structure present in data set, using the weighting matrix.

This is probably not due to problems with techniques

per se, but to the difficulty in expressing complex spatial

patterns in residuals in the weighting matrix employed

by GLS techniques. In addition, these results stress the

necessity to assume a more realistic model of spatial

structuring (e.g. migration patterns and ⁄ or shared evo-

lutionary history) for a better understanding of the

relationship between morphological and ecological var-

iation among human populations.

TSA2 and SEVM are the spatial regression techniques

that were better capable of incorporating the spatial

autocorrelation structures in our example, minimizing

residual autocorrelation. However, TSA2 incorporates

the geographical coordinates in the model structure and

adjusts the quadratic function, with a total of five

predictors (latitude and longitude and their quadratic

expansions), thereby greatly affecting the statistical

power of the regression model (inflating the type II

error; Table 2). This technique can be useful to incorpo-

rate broad-scale effects, but it is not usually very

successful in incorporating local autocorrelation in resid-

uals. In our example, the simultaneous incorporation of

geography as a broad-scale quadratic trend, plus the

Table 2 Results of the regression analyses performed between PC1 score and the environmental variables.

Regression models Technique

Slopes

r2 Elevation Temperature Rainfall Moran I < 0.05 Distance from H0

OLS 0.398 )0.231 )0.612* 0.058 3 0.288

Model residuals SAR 0.434 )0.220 )0.613* 0.060 3 0.258

CAR 0.468 )0.264 )0.635* 0.061 3 0.251

MA 0.432 )0.222 )0.614* 0.060 3 0.263

Model structure TSA1 0.467 )0.265 )0.784* 0.225 1 0.096

TSA2 0.663 )0.104 )0.613 0.023 0 0.031

ARM-response 0.313 )0.173 )0.549* 0.033 1 0.089

ARM-mixed 0.350 )0.241 )0.594* 0.038 1 0.081

SEVM 0.474 )0.203 )0.642* 0.104 0 0.065

*P < 0.001.
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Fig. 4 Plot of PC1 vs. mean annual temperature among male
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temperature (another broad-scale effect), generates a loss

of statistical power and, consequently, the partial slope

for temperature is not statistically significant (the oppo-

site of what was found using every other techniques).

On the other hand, SEVM is the most flexible

technique for dealing with patterns at multiple scales,

and can add principal coordinates to minimize the spatial

autocorrelation using explicitly the minimum Moran’s I

coefficient (Griffith & Peres-Neto, 2006; Peres-Neto,

2006). The SEVM does not present the same problems

as its phylogenetic version (phylogenetic eigenvector

method; Diniz-Filho et al., 1998) where the fit of mor-

phological and phylogenetic variation will always be

perfect (r2 = 1) and there will be no residual variation left

to investigate association with ecological variables when

we incorporate more principal coordinates to the regres-

sion model (Diniz-Filho et al., 1998; Rohlf, 2001). This is

because the phylogenetic eigenvector method uses path

length distances (patristic distances) on the tree to define

the W matrix, which have properties very different from

that of the Euclidean distance matrices usually used in

spatial analyses (Rohlf, 2001). Conversely, in the spatial

version of SEVM the distance between points in space

has a Euclidean metric and is truncated to account for

short distance effects only (Griffith, 2003; Griffith &

Peres-Neto, 2006); therefore, the fit of morphological and

spatial variation will not always be perfect.

The result of our example agrees with the recent

comparative evaluation by Bini et al. (2009) and Diniz-

Filho et al. (2009), in the sense that the performance of

spatial regression models is quite idiosyncratic and data

dependent. From our analyses, it is evident that model

structure approaches (especially SEVM) seem to work

better for our data set than those incorporating autocor-

relation in model residuals (see also Diniz-Filho et al.,

2009), a result which is opposed to those found by Bini

et al. (2009) when analysing 99 macroecological data

sets. This may be due to the strong endogeneous

component in our data set (also found in the simulated

data set used by Diniz-Filho et al., 2009), whereas, in

macroecological data, exogenous components are usually

dominant (Hawkins et al., 2007; Bini et al., 2009).

Thus, in general, the results showed here are in

agreement with previous studies in suggesting that

although model structure regression techniques are

useful in our evolutionary and ecological scenario, model

residuals could be useful in different ecological scenarios

where exogenous components are dominant.

Intra-specific spatial regression models
and inter-specific comparative
phylogenetic methods

Autocorrelation is common in nature and it mainly

occurs along three dimensions: spatial, temporal and

phylogenetic variation (Ives & Zhu, 2006; Peres-Neto,

2006). Therefore, the regression techniques have been

generalized to incorporate these different sources of

autocorrelation into the residuals or the structure of the

regression model, such as in the comparative phyloge-

netic methods (Cheverud et al., 1985; Grafen, 1989;

Martins & Hansen, 1997; Diniz-Filho et al., 1998; Rohlf,

2001; Garland et al., 2005). In comparative phylogenetic

methods, the generalized least squares technique was

proposed by Grafen (1989) and Martins & Hansen (1997)

and is now the current standard comparative tool

(Garland et al., 2005; Ives & Zhu, 2006; Rohlf, 2006;

Freckleton, 2009). On the other hand, applications of

autoregressive methods in phylogenetic comparative

analyses, starting with studies by Cheverud et al. (1985)

and Gittleman & Kot (1990), are based on the pure

autoregression model (i.e. y = qWy + e). Finally, SEVM

method is called eigenvector method (PVR; Diniz-Filho

et al., 1998) in phylogenetic comparative analysis, and it

employs principal coordinates or eigenvectors from a

phylogenetic distance matrix or from the weighting

matrix in the regression model.

Martins & Hansen (1997) and Rohlf (2001) showed

how a phylogenetic tree can be used to construct the

expected covariance matrix or weighting matrix for taxa,

when different models of evolutionary divergence are

assumed, by means of an algorithm similar to the one

used to compute a matrix of cophenetic values (Sokal &

Rohlf, 1986; Rohlf, 2001). Assuming the Brownian

motion model, the W matrix for the tree in Fig 5 is

w1 þ w1þ2 w1þ2 0

w1þ2 w2 þ w1þ2 0

0 0 w3

0
@

1
A:

Although we stress the use of spatial regression

techniques, these phylogenetic approaches could be used

to incorporate phylogenetic autocorrelation in inter-

populations studies.

Concluding remarks

Eco-evolutionary studies at the intra-specific level

have been recently revitalized (Carroll et al., 2007; Ezard

et al., 2009; Pelletier et al., 2009) as a consequence of

w1

w2

w3
w1+2

1 

2 

3 

Fig. 5 Phylogenetic tree with three terminal populations. The

quantities w1, w2, w3 and w1+2 are the lengths of the branches

supporting the populations indicated by their subscripts (modified

after Rohlf, 2001).
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recognizing that environment-related morphological

changes accompany most evolutionary changes

(Badyaev, 2005). Here, we show that morphological

diversification of Homo sapiens could be explained as the

result of nonrandom factors acting closely related to

climatic variation (also see Beals et al., 1984; Roseman,

2004; Harvati & Weaver, 2006; Perez & Monteiro, 2009).

In population studies, Sokal (1984) stressed that

conventional association analyses of morphometric and

environmental data sets must be corroborated by

incorporating spatial autocorrelation in regression mod-

els. However, to date no systematic approaches have

been used to solve this problem at the intra-specific level.

In this paper, we illustrate several regression techniques

which take into account spatial autocorrelation.

Several works have pointed out that although auto-

correlation can introduce bias in regression models, the

processes that generate spatial autocorrelation can also be

interesting on their own (Legendre, 1993; Peres-Neto,

2006). For instance, gene flow restricted by the geo-

graphical distance, which may cause spatial autocorrela-

tion in form variation among populations, is interesting

as an evolutionary process (Sokal & Oden, 1978; Sokal &

Wartenberg, 1983; Sokal et al., 1989b; Relethford, 2004a,

2008); although it causes bias in a model that tests for

relationships between morphological and environmental

variables. Therefore, spatial autocorrelation must be

studied to explore the spatial structure underlying

human genetic or phenotypic variation (Sokal & Oden,

1978; Barbujani, 2000; Relethford, 2008) and incorpo-

rated in regression models to provide more accurate

statistical estimates of the relationships between mor-

phological and environmental variables (Rohlf, 2006;

Dormann et al., 2007).

The regression techniques used in our example pro-

vided qualitatively similar results, but this does not

necessarily indicate that all techniques are absolutely

equivalent in any situation (Legendre, 1993; Legendre &

Legendre, 2003). Under certain circumstances, the slopes

can be qualitatively affected and the relative order of

importance of the explanatory variables may shift

between methods (see Lennon, 2000; Kühn, 2007),

although it is still difficult to predict the situation in

which this occurs (Bini et al., 2009).

This revision highlights some methodological and

conceptual topics in regression statistical techniques that

need more study. Particularly, we need more realistic

computer simulations to determine the performance of

these statistical techniques in relation to type I and II

errors (Rohlf, 2001; Diniz-Filho et al., 2009). In addition,

as all techniques assume spatial stationarity (i.e. spatial

autocorrelation and effects of ecological correlates are

constant across regions; Dormann et al., 2007), it is

necessary to develop techniques that consider the spatial

variation in autocorrelation. Finally, we require expand-

ing the discussion regarding alternative approaches to

explore the underlying environmental variables and

nonrandom factors that generate morphological varia-

tion (e.g. Desdevises et al., 2003; Peres-Neto, 2006).

The spatial regression techniques described and applied

here are uncommon in population morphometric studies

(but see Cheverud & Dow, 1985) and promise a new

avenue for understanding the origin of morphological

variation among populations. However, we remark that

the change in statistical methodology should be followed

by several conceptual advances. It must be clear that

spatial regression techniques are correlational, and the

cause of the relationship between morphology and

ecology from comparative data can only be suggested

(Pucciarelli, 1974; Garland et al., 2005). Although non-

random factors could be the probable cause of morpho-

logical divergence among populations, it is difficult to

know the specific ecological factor shaping inter-popula-

tion morphological variation. This is mainly because of

the conceptual problems underlying correlation and

causation (Shipley, 2000), and not necessarily due to

problems of statistical techniques. Spatial regressions are

mainly designed to deal with inflated type I errors due to

spatial autocorrelation, and cannot solve the problem of

broad-scale and direct-indirect associations. For this

reason, understanding the causes of the relationship

between morphology and environment requires the use

of both comparative and experimental approaches.
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