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Abstract

The toxicity and photodynamic toxicity of 10
" dyes on Bufo arenarum embryos employing lethality
as end point were evaluated. Embryos at the stage
of complete operculum (S25) were treated with the
dyes at different concentrations and using several
incubation and irradiation times. For
standardization purposes, the embryos were treated
at NOEC values for 48 h and then irradiated with
white light for 10 min (72 mW/em?, 43.2 Jicm?®).
Methylene blue, toluidine blue, rose bengal B,
acridine orange and phloxine B were found to be
nhotoactive, whereas trypan blue, remazol brilliant
blue R, pyronine Y, indigocarmine and luxol fast blue
MBS did not show photochemical toxicity. The
survival of control (only irradiated) embryos was
not affected. By comparing the NOEC and
NOEC+light values the photochemical damage
induced by dves could be easily assessed. These
results point out the possibility to evaluate the
pholotoxic effect of chemicals by means of a simple
test employing the amphibian embryo as a whole
organism.
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Introduction

Photodynamic effects on biological systems are
exerted by reactive oxygen species produced by the uptake
of a photosensitizer (PS) followed by irradiation with visible
light. In the past few years, there has been a great interest in
this process and its application for biomedical purposes, the
most known example being the photodynamic therapy (PDT)
of cancer’ %2, The uptake and localization of PSs in cell
organelles, photodamage mechanisms, and signaling
pathways of apoptotic cell death are now important issues
related to PDT research!- 3741,

On the other hand, several common dyes have
proved to show photodynamic activity, the most known being
thiazine?s 35 38. 4447 xapthene? 2%, acridine?? and
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triarylmethane® 13 dyes. It is worth to note that dyes used in
industrial activities also present mutagenic, carcinogenic and
genotoxic activity? 1% 3¢ which can resulit in a relevant risk
for both human and environmental hea!th. In this context, it
is increasingly necessary to evaluate the photochemical
toxicity of dyes and other xenobiotics in order to prevent
environmental photodamage as well as to explore the
potential of new PSs for PDT research. Several {est systems
for the detection of photodynamic effects and oxidative
stress have been reported for example the use of Allium?’,
Candida'®, Paramecium’S, Artemia®, Drosophila® sea
urchin®, intradermal tests* and cell cultures?é,

Taking into account that the bioassay using Bufo
arenarum embryos (AMPHITOX) has been employed
successfully for standardized studies on hazard
assessment!Z 13 29 including the possibility to prevent the
adverse effects of oxidative stress®!!. 3, in this work we
report the use of the amphibian embryo as a whole organism
bioassay to detect chemical and photodynamic toxicity of
some common dyes.

Material and Methods

Bufo arenarum adult females weighting around 200-
250 g were collected in Lobos (Buenos Aires province).
Ovulation was induced by intraperitoneal injection of a
suspension of one homologous hypophysis in 2 ml
AMPHITOX solution (AS)!2 33, Qocytes were fertilized in
vitro with a sperm suspension and embryos were maintained
in AS until complete operculum, the last stage of embryonic
development ($25) (Fig. 1). Batches of 10 animals in 40 ml of
AS were treated (by duplicate) with the following dyes:
methylene blue (MB), trypan blue {TryB), remazol brilliant
blue R (RemBB), indigocarmine (IC), pyronine Y (PY), luxol
fast blue MBS (LuxFB), acridine orange (AQ), phloxin B
(PhB), rose bengal B (RB) and toluidine blue O (TB) {Table
1). Nominal concentrations (w/v) were used, as the purity of
dyes samples was very variable.

Different dye concentrations {(from I to 100 mg/ 1},
incubation times (from 2 to 4 days), and light doses (from 2.5
min {10.8 J/em?] to 10 min [43.2 J/em?]) were used in this
work, and the lethal effect as end point of the bioassay was
evaluated ti]l 48 h after treatments. For standardization
purposes, the embryos were treated for 48 h with a range of
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ye concentrations and the No Observed Effect
oncentration (NOEC) values were first obtained.
mmediately after incubation with dyes, embryos were
oroughly washed with 150 ml of AS, and then irradiated
r 10 min with white light (72 mW/cm?2, 43.2 J/iem?) from an
gfa-Gevaert slide projector {Diamator 1500) equipped with
150 W Jamp. This light dose was found 10 be appropriate to
xplore the photodamage exerted by chemicals, allowing
o determine NOEC+light values.

The projector was placed at a vertical distance of 6
m from the embryos (10 animals placed into uncapped 3.5
m plastic dishes with 4 ml of fresh AS, see Fig. 1) and the
light beam was filtered through a 4.5 cm water layer to absorb
heat (Fig. 2). The light intensity at the site of irradiation was
measured with a 13 PEM 001 broadband power energymeter
(Melles Griot). The absorption peak of dves (from 490 to 670
nm) corresponded well to the range of visible wavelengths
provided by the light source (from 400 to 750 nm),

Results and Discussion

In a first survey for detecting photochemical toxicity
of the dyes used, different concentrations, incubation and
irradiation times were analyzed (Table 2). No lethal effects
were found in animals only treated with the dves at the
indicated concentrations and maintained in AS without
irradiation. Likewise, the survival of untreated control
embryos (also maintained in AS but irradiated for 30 min
[129.6 J/cm?]) was not affected. When no photochemical
toxicity was observed, the time of exposure to the dyes and
the irradiation time were expanded in order to avoid false
negative results.

Inthe case of embryos treated with 10 mg/1 MB for
48 h and jrradiated for 30 min, 100% lethality was found
directly along the irradiation time. Using only 10 min
irradiation, the same lethal effect was also observed but at 1
b after irradiation. By means of shorter irradiation time a
proportional decrease in lethality was observed (Fig. 3A).
The response of embryos to photodynamic treatments with
MB and RB showed that the lethal effect could be assessed
unzmbiguously 12-24 h after irradiation (Fi g.3A), and it was
dependent on the light dose (Fig. 3A and B).

Based on these results, the evaluation of
photochemical toxicity of some selected dyes was
standardized by determining the NOEC values for an
incubation time of 48 h, and then the response to 10 min
irradiation (43.2 J/cm?) was recorded 24 h later. The NOEC
values for chemical toxicity and NOEC+light values for
chotochemical toxicity were (in mg/L): AO 1 and 0.5; PhB 1
2nd 0.7;RB 5 and 1; TB 10 and 5, respectively. Plotting NOEC
¥s. NOEC+light values can be used to represent the position
of both photoactive and photoinactive dyes (Fig. 4). Values
on the diagonal correspond to dyes without photodynamic
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activity, whereas photodynamic dyes are located in the area
below the diagonal.

Approximately 10000 different dyes and pigments
are produced annually worldwide and extensively used in
textile, leather, plastic and printing industries, in laboratory
activities, and as food, pharmaceutical and cosmetic
additives. About 10-15% of the total dyes used in dyeing
processes may be found in wastewater®®. Although
ligninolytic enzymes from microorganism (e.g., laccase) can
degrade diverse type of dyes2! 3!, the environmental
contamination by these compounds®® and the resulting
phototoxicity represent a significant risk for human and
wildlife health. In addition, the photochemical properties of
some dyes must be also taken into account because of their
relation with pharmacological drugs showing undesired
photoactivity, some examples being phenothiazine
tranquilizers ™ ® and antimalarial acridines*, Some anxiolytic,
antirheumatic, antibacterial and antiparasitic drugs have also
revealed to be phototoxic? 22 43,

The use of (I) a vertebrate organism such as the
B. arenarum embryo, and (II) lethality as unambiguous end
point of the bioassay allowed us to evaluate more precisely
the toxicity of physico-chemical agents and environmental
contaminants!i-i% 2%, Research on the adverse effects of
xenobiotics on these animals is of special interest, not only
because of their potential as suitable sentinels of ecosystem
health, but also on account of the relation with the declining
of amphibian populations™ 4,

The photochemical lethality of amphibian embryos
induced by the dyes used in this work seems to be related to
oxidative stress, which in the case of MB photosensitization
could be prevented by previous treatment with antioxidant
agents such as glutathione and ascorbic acid3. 1t is known
that oxidative stress affects severely ionic channels and Ca?*
homeostasisi4 32 leading to disturbances in signal
transmission in the cardiovascular and central nervous
system*- %, Extreme photochemical toxicity may produce

 rapid lethal photodamage even in mammalian organisms such

as hairless mice treated with hypericin and high light dose !,
Although the presence of melanin in the amphibian embryo
epidermis could have a major protective role for UV irradiation
due to its very high absorption in the UV region?s, the
pigment does not interfere with the photochemical lethality
by visible light used in this study.

In the present work, the photoactivity of MB, RB,
TB, PhB, and AO have been assessed successfully by using
the AMPHITOX bioassay 2 13, showing results that confirm
the known photodynamic activity of these model dyes. By
comparing the chemical and photochemical toxicity ofa given
compound, the occurrence of photosensitization can be
expressed as the ratio between NOEC and NOEC+light
values. This ratio will be higher than 1 for compounds with



Research Journul Of Chemistry And Environment

Vol. 11 {1) March (2007)

photodynamic toxicity. Our results show the possibility to
evaluate accurately the photochemical properties of
xenobjotics and potential PSs by means of 2 simple and
sensitive toxicity test employing the amphibian embrvo as a
whole organism.
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Fig. 1: Bufo arenarum embryos at stage 235,
Bar: 1 cm.
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Fig. 2: Device used for light irradiation of
B. arenarum embryos subjected to
photochemical toxicity assays.
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