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We study the temperature behavior of light scalar and pseudoscalar meson masses within
a three-flavor nonlocal chiral quark model that includes the coupling of quarks to the
Polyakov loop. Chiral restoration and deconfinement transitions are described.
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1. Introduction

The understanding of the behavior of strongly interacting matter under finite tem-
perature and/or density has become an issue of great interest in recent years. In
this context, it is important to study how hadron properties (masses, mixing angles,
decay constants, etc.) get modified when hadrons propagate in a hot and/or dense
medium. Since the origin of the light scalar and pseudoscalar mesons is related to
the phenomenon of chiral symmetry breaking, the temperature and/or density be-
havior of their properties is expected to provide relevant information about chiral
symmetry restoration.

The theoretical study of strong interactions in the nonperturbative regime can
be addressed by developing effective models that are consistent with lattice QCD
results and extrapolable to regions not accessible by lattice calculation techniques.
Among the various models proposed so far, we concentrate here in chiral quark mod-
els that include nonlocal interactions1,2. These theories can be viewed as extensions
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of the widely studied Nambu−Jona-Lasinio model3. In fact, nonlocality arises natu-
rally in the context of several successful approaches to low-energy quark dynamics,
and also lattice QCD calculations indicate that quark interactions should act over
a certain range in momentum space4. Recently, the description of confinement has
been addressed within this these models through the inclusion of the Polyakov loop,
which is taken as an order parameter for the deconfinement transition. The aim of
the present work is to study in this context the finite temperature behavior of light
scalar and pseudoscalar meson masses. Details of this analysis can be found in Ref.5.

The basic theoretical formalism is presented in Sect. 2. In Sect. 3 we determine
a compatible set of model parameter values, and analyze meson masses at zero and
finite temperature. The main outcomes are summarized in Sect. 4.

2. Theoretical formalism

We consider a nonlocal covariant SU(3) quark model which includes the coupling
of quarks to a background color gauge field. The Euclidean effective action for the
quark sector of this model is given by5

SE =
∫

d4x

{
ψ̄(x) [−iγµDµ + m̂] ψ(x)− G

2
[
jS
a (x) jS

a (x) + jP
a (x) jP

a (x)
]

−H

4
Tabc

[
jS
a (x)jS

b (x)jS
c (x)− 3 jS

a (x)jP
b (x)jP

c (x)
]

+ U [A(x)]
}

, (1)

where ψ ≡ (u d s)T , whereas m̂ = diag(mu,md, ms) stands for the current quark
mass matrix. For simplicity we consider isospin symmetry, hence mu = md = m̄.
The currents jS,P

a (x) are given by

jS,P
a (x) =

∫
d4z g̃(z) ψ̄

(
x +

z

2

)
ΓS,P λa ψ

(
x− z

2

)
, (2)

where ΓS = 11, ΓP = iγ5, g̃(z) is a form factor responsible for the nonlocal character
of the interaction, and λa are the eight Gell-Mann matrices, plus λ0 =

√
2/3 11.

The constants Tabc in Eq. (1) are given by Tabc = (1/3!)εijkεmnl(λa)im(λb)jn(λc)kl,
while the effective potential U accounts for gauge field self-interactions.

The partition function associated with the effective action in Eq. (1) can be
bosonized by introducing the scalar and pseudoscalar meson fields σa(x) and πa(x),
together with auxiliary fields Sa(x) and Pa(x). Then, using the Matsubara formal-
ism, the bosonized effective action can be extended to finite temperature.

The coupling of fermions to the color gauge fields arises from the covariant
derivative Dµ ≡ ∂µ − iAµ in the fermion kinetic term. We assume that the quarks
move in a constant background field A0. Then the traced Polyakov loop, taken as
order parameter of confinement, is given by Φ = 1

3Tr exp(iβφ), where β = 1/T ,
φ = iA0. In the so-called Polyakov gauge the matrix φ is shown to be diagonal,
φ = φ3λ3 + φ8λ8, which leaves only two independent variables, φ3 and φ8.

Let us work within the mean field approximation (MFA), keeping only the
nonzero vacuum expectation values (VEVs) σ̄0 and σ̄8 (the remaining VEVs of the
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bosonic fields vanish owing to charge conservation and isospin symmetry). Within
the MFA the grand canonical thermodynamical potential reads6

ΩMFA(T ) = − 2
∑

f,c

∫

p,n

Tr ln
[
p2

nc + Σ2
f (pnc)

]

− 1
2

∑

f

(σ̄f S̄f +
G

2
S̄2

f ) − H

4
S̄u S̄d S̄s + U(Φ, T ) , (3)

where f = u, d, s, c = r, g, b, and we have used the notations
∫

p,n
=

∑
n

∫
d3p/(2π)3

and pnc = (~p , ωn − φc), where ωn are fermionic Matsubara frequencies and φc is
defined by the relation φ = diag(φr, φg, φb). The quark constituent masses Σf (pnc)
are here momentum-dependent quantities, given by

Σf (pnc) = mf + σ̄f g(pnc) , (4)

where g(p) is the Fourier transform of the form factor g̃(z). For convenience we
have defined mean field values σ̄f given by σ̄u = σ̄d =

√
2/3 σ̄0 + 1/

√
3 σ̄8, σ̄s =√

2/3 σ̄0 + 2/
√

3 σ̄8 (similar relations hold for S̄f ). Within the stationary phase
approximation, the mean field values S̄f and σ̄f turn out to be related by6

σ̄u + G S̄u +
H

2
S̄uS̄s = 0 , σ̄s + G S̄s +

H

2
S̄2

u = 0 . (5)

The effective potential U(Φ, T ) can be fitted by taking into account group theory
constraints and lattice results. We take here the form given in Ref.7. In addition,
it is seen that assuming that φ3 and φ8 are real-valued7 one has φ8 = 0. Thus we
have to determine the value of φ3 together with the mean field values σ̄u and σ̄s.
This can be done through the minimization of the (regularized) thermodynamical
potential ΩMFA(T ), which leads to a set of three coupled “gap equations”.

In order to obtain the meson mass spectrum one has to consider the mesonic
fluctuations around the mean field values. It is convenient to introduce a new basis
defined by ξij = [λa (ξa− ξ̄a)/

√
2]ij , where ξa = σa, πa and i, j run from 1 to 3. The

resulting quadratic terms in SE at finite temperature can be written as5

Squad
E =

1
2

∫

q,m

[
G+

ij,kl(~q
2, ν2

m)σij(qm)σkl(−qm) + G−ij,kl(~q
2, ν2

m)πij(qm)πkl(−qm)
]
,

(6)
where qm = (~q , νm), νm = 2mπT being bosonic Matsubara frequencies. The func-
tions G±ij,kl in Eq. (6) are given by

G±ij,kl(~q
2, ν2

m) = C±ij (~q
2, ν2

m)δil δjk +
(
(r±)−1

)
ij,kl

, (7)

where C±ij (~q
2, ν2

m) are loop integrals5 and r±ij,kl = Gδil δjk ± (H/2) εikh εjlh S̄h. In
the basis of physical fields, the quadratic action for the pseudoscalar sector reads5

Squad
E

∣∣∣
P

=
∫

q,m

{
Gπ(~q 2, ν2

m)π+(qm)π−(−qm) + GK(~q 2, ν2
m)

[
K0(qm) K̄0(−qm)

+ K+(qm)K−(−qm)
]

+
1
2

∑

P=π0,η,η′
GP (~q 2, ν2

m) P (qm)P (−qm)
}

. (8)
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The physical fields η and η′ are related to the U(3) states η0 and η8 through mixing
angles θη and θη′ , which in principle are different to each other. An equivalent
expression to Eq. (8) can be found for the scalar meson sector.

Now from the quadratic effective action it is possible to obtain the scalar and
pseudoscalar meson masses by solving the equations

GM (−m2
M , 0) = 0 , (9)

with M = π, K, σ, etc. The mass values determined by these equations correspond
to the spatial “screening-masses” of the mesons’ zeroth Matsubara modes, and their
inverses describe the persistence lengths of these modes at equilibrium with the heat
bath (i.e. they drive a behavior exp(−mP r) in the conjugate 3-space coordinate r).

3. Meson masses at zero and finite temperature

Let us determine the model parameters to be used in our numerical calculations.
For simplicity we consider a model with a Gaussian form factor, namely

g(p) = exp
(−p2/Λ2

)
. (10)

This introduces a new free parameter Λ, which plays the rôle of an ultraviolet cut-
off momentum scale. For T → 0 it is seen that the coupling of fermions to the
background gauge field vanishes, therefore the traced Polyakov loop is essentially
determined by the effective potential U . Thus we end up with five free parameters,
namely the current quark masses m̄ and ms, the coupling constants G and H and
the cut-off scale Λ. Here we have chosen to take the value of m̄ as input, whereas the
remaining four parameters have been fixed from the measured values of the pion,
kaon and η′ masses and the pion decay constant fπ. Taking m̄ = 5 MeV, we obtain

ms = 119 MeV , Λ = 843 MeV , GΛ2 = 13.35 , HΛ5 = −273.7 . (11)

Table 1. Model predictions and empirical values for meson masses (all in MeV)

mP Our Model Empirical mS Our Model Empirical

mπ 139∗ 139 ma0 900 980
mK 495∗ 495 mκ 1380 1425
mη 523 547 mσ 566 400-1200
mη′ 958∗ 958 mf0 1280 980

(*) Input values

Our numerical results for meson masses are presented in Table I, together with
the corresponding empirical values quoted by the PDG8. Input values are marked
with an asterisk. From the table it is seen that the model predictions are in rea-
sonable agreement with the measured values. In addition, the obtained mass ra-
tio ms/m = 23.8 is close to the corresponding current algebra prediction, namely
ms/m = (2m2

K −m2
π)/m2

π ' 25. We notice that in the case of the κ scalar meson
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the equation Gκ(−x2, 0) = 0 has no solution in the real x axis, thus we have defined
the mass mκ as the point where the absolute value of Gκ(−x2, 0) becomes minimal.

Now taking the parameters in Eq. (11) one can solve the gap equations to cal-
culate the mean field values σ̄u, σ̄s and φ3 at finite temperature. As expected, it is
found that there is a crossover phase transition in which the chiral symmetry is re-
stored, and consequently one finds a sharp peak in the chiral susceptibility that can
be used to define a transition temperature Tc. In our model we find Tc = 202 MeV,
in much better agreement with lattice results, T

(latt)
c = 160 − 200 MeV9, than the

value recently obtained in the local SU(3) PNJL model, T
(PNJL)
c = 259 MeV10.

In addition one finds a deconfinement phase transition, which occurs at about the
same critical temperature. These results are qualitatively similar to those found in
Ref.11 in the context of an ILM-motivated nonlocal SU(3) model.
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Fig. 1. Scalar and pseudoscalar meson masses as functions of the temperature.

Let us analyze the behavior of meson masses with temperature. These can be
determined by solving Eqs. (9). In Fig. 1(a) we quote the curves for the masses
of pseudoscalar mesons π and η and scalar mesons σ and a0, which are chiral
partners of the former. It is seen that above Tc the masses of chiral partners become
degenerate, as expected from chiral restoration. When the temperature is further
increased all four masses are found to rise continuously, showing that they are
dominated by thermal energy. In general, it is seen that the functions GM (−k2, 0)
are well defined for low k. If k is increased, at some “pinch point” the integrals
in C±ij (−k2, 0) become divergent and need to be regularized. Here we follow the
prescription discussed in Ref.6, conveniently extended to finite temperature. The
pinch point can be interpreted as a threshold above which mesons could decay into
two massive quarks. This threshold is represented with the dotted curve in Fig. 1(a).

In Fig. 1(b) we plot the curves for the masses of the pseudoscalar mesons K,
and their scalar partners κ. The dashed stretch corresponds to the region in which
Gκ(−k2, 0) = 0 has no solution for real k. As a consequence of the large current
strange quark mass, K and κ meson masses match only at T ' 225 MeV, somewhat
above Tc. Finally, in Fig. 1(c) we quote the temperature dependence of f0 and η′

masses, for which the degeneracy is achieved only at T ' 300 MeV.
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4. Summary

We have studied the finite temperature behavior of scalar and pseudoscalar me-
son masses in the context of an SU(3) nonlocal chiral model. The effect of gauge
interactions has been introduced by coupling the quarks with a background gauge
field, and the deconfinement transition has been studied through the behavior of the
traced Polyakov loop. For a model including an exponential form factor, we have
fixed the average non-strange quark mass m̄ to a phenomenologically sound value
of m̄ = 5 MeV, whereas the remaining parameters have been determined from the
pion, kaon and η′ meson masses and the pion decay constant fπ. Using this set of
parameters we have obtained adequate predictions for the masses of the remaining
scalar and pseudoscalar mesons.

For finite temperature the former model parameters have been kept fixed, while
those appearing in the Polyakov loop potential have been taken from a fit to lattice
results. As expected, the model shows a fast crossover phase transition, correspond-
ing to the restoration of SU(2) chiral symmetry. The transition temperature is found
to be Tc = 202 MeV, in agreement with lattice results. In addition one finds a de-
confinement phase transition, which occurs at about the same critical temperature.
Concerning the behavior of meson masses, it is seen that beyond Tc pseudoscalar
masses get increased, becoming degenerate with the masses of their chiral partners,
as expected from chiral restoration. The temperature at which chiral partners meet
depends on the strange quark composition of the corresponding mesons.
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