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Abstract

In this paper we analyze for the first time the γN� excitation vertex from the point of view of the 
dynamics of the � field, �μ. That is, we look for the value of the Z parameter, present in all contact invariant 
�-field interaction Lagrangians and usually regarded as redundant, and shift it to contact background non-�
resonant amplitudes (in this sense it is called “redundant”) by imposing that the �0 has no dynamics, instead 
of readjusting the background coupling constants. We do this within an unitarized model that comprises the 
�-direct amplitude plus background contributions including the �-cross term, nucleon Born and meson 
exchange ones, already implemented in previous works of πN scattering, photo-production and weak-π
production. Also we analyze the use of a πN� decay vertex interaction containing both first (I1) and second 
(I2) order derivative contributions, as required by renormalization and power counting considerations, in 
building the γN → � → πN amplitude, in contrast with other works where only I1 or I2 is adopted. It is 
shown that the description of the γN → πN process, following these prescriptions, is improved. This is a 
first step: we plan to introduce final state interactions (FSI) in the future, following our previous work in 
which FCI were introduced using the I1 interaction alone.
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1. Introduction

The effective Lagrangian describing the photoexcitation of the � (1232 MeV) within an 
effective approach respects relevant symmetries, like Lorentz and electromagnetic gauge in-
variance, by construction. The Rarita-Schwinger (RS) spinor, �μ, is a non-unitary represen-
tation of the Poincare group arising from projection of [(1/2, 0) ⊕ (0, 1/2)] ⊗ (1/2, 1/2), being 
�μ ≡ ψ ⊗ Wμ, where ψ a Dirac spinor field and Wμ a Dirac 4-vector [1]. In this way the 
field �μ will contain by construction a physical spin 3/2 sector and a spurious spin 1/2 one. 
The Lagrangian of the free �μ is set to lead to the spin 3/2 equations of motion, including the 
constraints ∂μ�μ = γμ�μ = 0, which, on shell, projects out the spurious spin 1/2 sector. As a 
consequence, an arbitrary parameter A is introduced, resulting in a type II constraint which fixes 
this sector as a function of the spin 3/2 sector and A. Changing A amounts to change �μ through 
the contact transformation �ν → Rμν(a)�ν, Rμν(a) = gμν + aγμγν , with a = − 1

2 (1 + A), 
A �= −1/2 which generates, when applied to the canonical RS Lagrangian, the well known fam-
ily of equivalent Lagrangians Lf ree(A) [2]. The interactions should be set so A-dependence 
is avoided in the amplitudes, which is guaranteed by introducing contact invariant interaction 
terms. This is achieved if any interaction term involves �μ through the combination Rμν(b)�ν

with b = (2Z+ (1 +4Z)A)/2. The family of Lagrangians Lf ree(A) are connected by the contact 
transformation �μ → Rμν�ν, A → A−2a

1+4a
(A �= − 1

2 to avoid the singularity) which change the 
proportion of the 1/2 states while leaving the equations of motion invariant. The same is true 
also for the interaction term, regardless the value of Z. As will be shown below, with this choice 
for R(b) the amplitudes are independent of A for any Z.1 This is a general property that is even 
valid when we have Z-independent interactions from the beginning.

Criteria for fixing the value for Z (we use Z for strong vertexes while Z′ for electromagnetic 
ones) have been discussed extensively in the past [3], but unconclusively. On the other hand, in 
a previous work within the framework of Chiral Perturbation Theory (CHPT) [4], it was shown 
that Z parameters present in the πN� Lagrangians are redundant in the sense that contributions 
depending on it can be absorbed into the πN Lagrangian. To show this, a � functional integra-
tion was done on the total �-Lagrangian, which is equivalent to making the transformation (for 
A = −1) �μ → GμνR

να(− 1
2 − Z)(∂αφ)ψ with φ, ψ and G being the π and N fields, and �

propagator, respectively, to get an “equivalent” Lagrangian where the � field is eliminated while 
the Z parameter is shifted to the πN sector. The price to be paid is that one gets a nonlocal 
Lagrangian where it is hard to maintain the various symmetries and to organize the Lagrangian 
according to the naive dimensional analysis. In that reference was concluded that it is needed to 
treat the � as a dynamical degree of freedom, in agreement with the usual approach where Z
is present. Nevertheless, as γμGμν and Gμνγν do not contain pole-� contributions, the Z de-
pendent terms are again shifted to contact πN ones, with coupling constants to be fitted. These 
authors have chosen by convenience (since, in fact, for the choice A = −1 there is not shifted 
contributions to the πN sector) Z = −1/2 with b(A = −1, Z = −1/2) = 0 without affecting 
the background by presence of the �. This choice is supported by the fact that, as stated, it is 
not relevant to the physics, as shown by the introduction of the previous mentioned non-local 
Lagrangian. With this choice the authors have calculated πN phase shifts [5] within a naive iso-
bar model, where ρ and σ exchange are not included as in more evolved calculations [6]. The 

1 As can be seen from the factorization in Eq. (1), it is not true the claim that the Z parameters have been introduced 
in order to preserve the contact A-invariance as done in Ref. [4].
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πN sector fitted parameters βπ(−1/2), κπ,1,2(−1/2) and λ1,...,5(−1/2) (which already contain 
contact terms) have been fitted to reproduce the phase shifts that really have not any contribution 
from de �-sector for Z = −1/2. Of course, if based in the ‘irrelevance’ of Z they chose another 
Z �= −1/2 value, the contact amplitude in the πN sector would be affected (b �= 0) and they 
should refit its parameters to reproduce the data. The Z-redundance for the � interaction was 
also analyzed in a more general fashion in Ref. [7], where it is shown that all off-shell param-
eters which appear in the chiral effective Lagrangian Z-dependent contributions with explicit 
� isobar degrees of freedom can be absorbed into redefinitions of certain low-energy constants 
(LEC’s), to be fixed by the experiments [7,8].

The first-order interaction derivative in the pion field I1 [9] respects chiral invariance and 
dominates at small energies. Among all possible second order derivative interactions I2 we will 
adopt the one called “consistent” in the literature [10], obtained from Lf ree

� (A) by making the 
transformation �μ → �μ − g2(∂μφ)ψ , that preserves the counting of degrees of freedom when 
m� → 0, as can be seen from the constraint analysis [11]. LI2 is denominated “spin 3/2” gauge 
invariant interaction since it remains unchanged under the transformation �μ → �μ + ∂μχ , 
where χ is an arbitrary spinor, and leaves Lf ree(m� = 0) also invariant. As a consequence, in 
πN elastic scattering at tree level, it decouples the off-shell spin 1

2 contribution present in the 

�-propagator for any value of A. Besides, since I2 is obtained from Lf ree
� (independent of Z) 

it is clear that it doesn’t appear a dependence with Z in the combination R(a) × I2 in LI2 . In 
contrast to the consistent interaction I2, the I1 couples to the 1/2 components in the propagator 
and in general it depends on Z through the combination R(b) × I1 in LI1 .

For comparative purposes, we remark that when one adds one-loop radiative corrections to 
the πN scattering amplitude corresponding to I2, we are forced to introduce also the interaction 
I1 together with I2, acting as counterterm to avoid divergences [12] which reintroduces the un-
wanted coupling to the 1/2 sector. Nevertheless, the presence of the virtual spin 1/2 contribution 
in the � propagator is totally analogous to that of the spin-0 sector in the W propagator, where 
the projectors P0 (spin 0) and P1 (spin 1) appear, and the W → π decay vertex goes as pμ

π , pμ
W

[3] being pμ
π , pμ

WP 0
μν �= 0: it would be impossible for the pion to decay without the off-shell 

spin-0 piece of the W propagator.
From CHPT both interactions could be considered to be of the same order. In fact, each 

pion momentum gives a contribution to the power counting in the expansion parameter δ ∼
(m − mN ∼ 2mπ)/�χPT (�χPT = 1 GeV) or δ2 ∼ mπ/�χPT , and depending of its value both 
interactions are of the same order since momentum coming from ∂μ�ν behaves as order ∼ 1 at 
threshold [10,12]. Both interactions I1 and I2 share formal problems related with the appearance 
of negative indefinite norm states when quantization is achieved. In fact, it was shown in Ref. [11]
that, when background fields are present, some physical negative norm states arise for I2, which 
shows that I2 has problems just like I1. Nevertheless, perturbative series make perfect sense in 
amplitude calculations, and one should consider both I1 and I2 together (the Lagrangians LIk

, 
depending on a coupling constant gk , together with the kinematical one Lf ree, will be defined 
in the next section). We consider I2 of higher order in consideration to the dimension of the 
coupling constant and the number of derivatives in the interaction term, in line with [13].

Since the I2 interaction is “spin 3/2” gauge invariant and Z-independent, it is the most phys-
ically sound. On the other hand, I1 has been repeatedly adopted in many past and present 
works, and it is always possible to make a transformation I1(�μ → �μ + ig2(∂μφ)ψ) →
I2 + contact terms and consider that the I1 contribution is shifted to the background. Then 
the background could be fitted to get coincidence with the data. Nevertheless, if the background 
3
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is fixed using low energy phenomenology, it would be possible to keep I1 and fix g1, Z by other 
criteria: this is our point of view. This does not mean that one needs I1 to reproduce data, but it 
is a different way of fixing the background. Recently in Ref. [11] we introduced a new criterion 
to look for Z in b(A, Z) based on the dynamics of the time component �0, absent in Lf ree

� (A), 
that was applied to the πN� vertex.

We calculated in Ref. [14] the total π−p and elastic (for which background contributions 
are far more relevant than in the π+p due to isospin coefficients) scattering cross sections. It 
was shown that each interaction term fits poorly the data, while a judicious mixture of both 
interactions leads to a better description of this channel while keeping a good description of the 
π+p one, and without ad-hoc manipulations of the background [15].

In this paper we analyze the particular case of pion photoproduction where, in addition to 
some non-resonant contributions to the amplitude generated from a Lagrangian of the form 
Lnon.res. = Lf ree

N,M + LNM + LγNM + LγNN ′π (M = π, ρ, ω), we have a resonant one γN →
� → πN ′ obtained from Lres. = Lf ree

� + LγN�(Z′) + LπN�(Z). Thus, we need to combine 
electromagnetic photoexcitation vertexes, propagators and strong decays.

The first approach analyzing different contributions in the γN� interaction Lagrangian was 
done in Refs. [16,17]. There is concluded, on the basis of field theoretic arguments originally 
formulated by Fierz and Pauli [18], that only appears a first order derivative contribution with a 
Z′

1 = 0 and the second order one is dropped. One consequence of this result is that the dynamical 
freedom of two independent electromagnetic multipoles at the γN� vertex is lost. Thus, the 
electric quadrupole (E2) to the magnetic dipole (Ml) amplitude ratio (EMR) for the � radiative 
decay is fixed kinematically, and it gives

EMR = −(m� − mN)/(3m� + mN) = −6%,

which is very different from the experimental and quark model values [3]. More recently, the 
Sachs parametrization for the γN� vertex introduced by Jones and Scadron [19] was used in 
several works where the values of the parameters Z and Z′ mentioned above are assumed without 
any analysis. This parametrization implies contributions from second and four order derivatives 
in the γN� Lagrangian, with a common Z′ value. For example, Refs. [20,21] seem to adopt the 
values A = −1, Z = Z′ = −1/2, while in Ref. [22] the values A = −1/3, Z = Z′ = 1/2 were 
used. In all mentioned references the usual first order derivative pion field πN� interaction I1
was adopted.

Following the above discussion, the Z, Z′-dependent terms included in the γN → � → πN ′
amplitude could in fact be absorbed as contact vertices in LγNN ′π where the parameters should 
be fitted to reproduce the data. Then γN → � → πN ′ is free of any Z, Z′ dependence, now 
transferred to the non resonant amplitude. Nevertheless, in our model the parameters present 
in LγNM are taken from low energy phenomenology and are fixed [22]. When we absorb the 
above mentioned terms, we change LγNM → LγNM + L′

γNπ (Z, Z′) and the new parameters 
should be fitted to reproduce the data. Without avoiding the fact of redundance of Z, Z′ for the 
�-amplitude, we follow here a different approach as above for πN� vertex. We want to apply 
it now for the γN� case in order to give a value for Z′ in the non-resonant amplitude. Then, 
we obtain the parameters Z, Z′ of the contact non resonant amplitude by a procedure which is 
alternative, but equally valid, to the one in LEC’s of CHPT.

What is the purpose of doing this? In a very detailed previous works on photoproduction [20–
22] the parameter Z′ = 1/2 was used not considering the previous observation done in Refs. [4,5]
or the ψ0 criteria, which as we will see below, leads to the same Z′ = −1/2 as in Refs. [4,5]. 
4
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Then, in the first place, we want to write the tree level amplitudes by shifting the Z′-dependence 
to the contact terms and check for any improvement in the full amplitude by changing to the 
new Z′ = −1/2. We will do this by introducing corrections such as unitarization, already present 
in Refs. [20–22]. Since the introduction of regularizing form factors to treat FSI would make 
the analysis of the basic tree amplitude obscure, that procedure will be omitted here. In the 
second place, we analyse the effect of considering I1 + I2 in the decay vertex of the amplitude 
γN → � → πN ′.

On the other hand, the γN → � Sachs parametrization vertex is self (electromagnetic) gauge 
invariant by construction since it cannot be obtained from Lf ree through minimal coupling, and 
also is spin 3/2-gauge invariant since its second order contribution could be obtained from Lf ree

making the transformation γν�μ → γν�μ + iγ5∂νAμ, being Aμ the photon field. Nevertheless, 
because is not so clear that the Sachs fourth order contribution can be derived from Lf ree and 
since this parametrization was used with different values of Z′, we will enable the factor R(b′)
and we will recover the spin 3/2 gauge invariance for the appropriate value of Z′.

The paper will be organized as follows. In Section 2 we show the Lagrangians involved in the 
construction of the resonant contribution of the pion photoproduction amplitude. In the Section 3
the amplitudes are built and the differences obtained for the contact terms with different values 
of Z′ are discussed. In Section 4 the numerical results are shown. Finally, our conclusions are 
summarized in Section 5.

2. γN� and �πN Lagrangians

We will work with the free A-dependent Lagrangian and the A and Z-dependent strong 
interactions above mentioned [14]. It is clear that the A-dependence in any physical amplitude de-
rived from these Lagrangians should cancel. This is achieved since the factors R−1

(− 1
2 (1 + A)

)
present in the � propagator (coming from the invertion of the free Lagrangian) cancel up with 
those in R(b) from the interactions, since it can be shown that (idem for Z′)

R

(
b = 1

2
(1 + 4Z)A + Z

)μν

= R

(
−1

2
(1 + A)

)μα

R

(
−1

2
(1 + 2Z)

)ν

α

. (1)

Then we can use reducted A-independent Lagrangians

Lf ree = ψμ(x)K(∂)μν�ν(x), (2)

LI1(Z1) = g1ψ̄∂μφ† · TR

(
−1

2
(1 + 2Z1)

)μν

�ν + h.c., (3)

LI2 = −g2 �̄∂μφ† · Tεμνρβγβγ5∂ρ�ν + h.c. (4)

with

K(∂)μ′ν′ = εμ′ν′αβ∂αγ βγ5 + imσμ′ν′ (5)

being σμ,ν = i
2 [γμ, γν], ε0123 = 1, γ5 = iγ 0γ 1γ 2γ 3, and T† are the N → � isospin excitation 

operators defined in the Appendix A.2 Note that, as mentioned above, LI2 is obtained from Lf ree

through the transformation �μ → �μ − g2(∂μφ)ψ .

2 We adopt the Bjorken and Drell conventions.
5
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For the electromagnetic lagrangian terms we adopt the Sachs parametrization introduced by 
Jones and Scadron [19]. Those terms read:

LγN�(Z′) = i�̄μR

(
−1

2
(1 + 2Z′))

) λ

μ

[
e(GM − GE)ελναβ

(
∂αAν

) (
∂βψ

)
+ GEiγ5εμδαβεδ

να′β ′
(
∂α∂α′

Aν
)(

∂β∂β ′
ψ
)]

+ h.c.

= −ie�̄μR

(
−1

2
(1 + 2Z′))

) λ

μ

×
[
(GM − GE)F̃λβ + GEiγ5

(
˜

∂α∂β ′ F̃ δβ ′
)

λβ

]
∂βψ, (6)

where F̃μν = 1
2εμναβ(∂αAβ − ∂βAα) is the dual electromagnetic tensor and GE ≡ GE(k2 =

0) and GM ≡ GM(k2 = 0) are the electric (E) and magnetic (M) form factors at k2 = 0, as 
corresponds for photoproduction. γ5 = i

4!εμναβγ μγ νγ αγ β in our convention for εμναβ .
By inverting the kinetic operator K(∂)μν we get the reducted propagator, which can be put 

in terms of the well known projectors P 3/2, P 1/2
11 , P 1/2

22 , P 1/2
21 and P 1/2

12 on the spin 3/2 and 1/2 
sectors (see Appendix A) or alternatively developing them as

G(p)μν = − /p + m�

p2 − m2
�

[
P 3/2

μν − 2

3m2
�

(/p + m�)(P
1/2
22 )μν + 1√

3m�

(P
1/2
12 + P

1/2
21 )μν

]
,

= /p + m�

p2 − m�

[
−gμν + 1

3
γμγν + 1

3m�

(γμpν − pμγν) + 2

3m�

pμpν

]
. (7)

We observe that the dependence on Z, Z′ persists as a free parameter of the interactions 
LI1, LγN� [2].

Nevertheless, note that

R

(
b ≡ −1

2
[1 + 2(Z,Z′)]

)ν

α

= gν
α + bγ νγα, (8)

and

G(p)μν γ ν = 1
3m�

[
γμ − 2

m�

pμ

]
, γ μG(p)μν = 1

3m�

[
γν − 2

m�

pν

]
,

which shifts the Z, Z′ dependence present in R
(
b, b′) at (1) to contact background terms without 

poles in the πN sector, as we will see in the next section, where Z, Z′ need to be fixed fitting the 
data. We will argue below that those parameters can be fixed through other criteria.

Finally, we mention that the electromagnetic Lagrangian LγN� from Eq. (6), in contrast with 
LI1 +LI2 that represents a first order derivative term plus a second order one, has a second order 
plus four order structure. We stress that LγN� for Z′ = −1/2 (the original form proposed in 
Ref. [19]) is spin 3/2 gauge invariant, as mentioned above, since it remains unchanged under 
�μ → �μ + ∂μχ , χ being an arbitrary spinor. The reason for setting Z′ �= −1/2 is to compare 
with other works adopting the same setting. The Sachs parametrization can be connected with 
the so called “normal parity” (NP) one [25] which exhibit first order plus second order derivative 
terms with g′

1, g
′
2 = f (GM,GE) but now with g′

2 �= 0, in contrast with the original work by Nath 
[17]. Nevertheless, in order to establish this connection we must assume the � to be on-shell and 
make some approximations using the RS constraints.
6
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3. Pion photoproduction cross section

The total cross section for the π -photoproduction process γ (k) + N(pi) → π(q) + N ′(pf ), 
with k, pi , q and pf being the photon, initial nucleon, pion and final nucleon 4-momentum, 
respectively, receives contribution from both, background (B) first seven terms in Fig. 1 and the 
pole resonant (R) eighth term. This total cross section will be calculated as:

σ(Eγ ) = |
q|
|
k|

m2
N

32πs

π∫
0

∑
msm′

s ,pol.

dθ∗ sin θ∗ ∣∣ū(pf ,m′
s) (MB +MR)u(pi,ms)

∣∣2 , (9)

with u(p, ms) being the Dirac spinor of the nucleon with mass mN and the integration is per-
formed over the c.m. angle θ∗ between π and N ′. In this c.m. frame, we can write all the momenta 
in terms of the photon energy in laboratory frame, Eγ , as follows:

k = (E, 0, 0, Ek) , pi = ( Ei, 0, 0 −Ek ),

q = ( Eq, q sin θ∗, 0, q cos θ∗ ), pf = ( Ef , −q sin θ∗, 0, −q cos θ∗)

where E = s−m2
N

2
√

s
, Ei = s+m2

N

2
√

s
, Eq = s−m2

N+m2
π

2
√

s
, Ef = s+m2

N−m2
π

2
√

s
. Here mπ is the pion mass and √

s = √
mN(mN + 2E) is the total energy. It is interesting to mention here that the “threshold” 

of the reaction occurs for the following minimum energy:

(E)min = (mπ + mN)2 − m2
N

2mN

� 0.149 GeV.

The idea of the manuscript is not to describe again in detail the photoproduction observables 
(total and differential cross sections, multipole amplitudes, asymmetries, etc.) since this was 
done in Refs. [8,10,20,21], and by us in Ref. [23]. These works built the amplitude with chiral 
effective Lagrangians introducing the N, �, π, ρ, ω degrees of freedom (in Refs. [8,10] the ρ, ω
contributions are absent), keeping unitarity through the rescattering contributions as in [23,20,
21], or within CHPT with the N , � and π fields [8,10]. In spite of this we use the unitaryzed 
model from Ref. [23] (referred as UIBA) which introduces the πN phase shifts to evaluate the 
effect of different Z, Z′ contact contributions. Also we wish to know the effect of using I1 + I2
in place of I1 or I2 alone in the strong vertex. According to this, we will adopt a simplified 
model (compared with that in [23]) for the amplitude without FSI, since their inclusion needs 
form factors. Additionally, it is important to remark that we choose to use the total cross section 
and some multipole amplitudes as observables.

The background (MB ) and resonant (MR) contributions to the amplitude are written, as 
usual, in the form MB = MN,s

B + MN,u
B + Mt

B + Mc
B + Mρ

B + Mω
B + M�,u

R and MR =
M�,s

R , with each contribution corresponding to a given Feynman diagram shown in Fig. 1. They 
are the nucleon s- and u-channels (MN,s

B and MN,u
B ), pion in flight or t-channel (Mt

B ), Kroll-
Rudermann or contact term (Mc

B ), the ρ and ω vector mesons exchange (Mρ
B and Mω

B ) and 
the �(1232) resonance s- and u-channels (M�,u

R and M�,s
R ). For the non-resonant background 

terms we show the propagators, Lagrangians and amplitudes in Appendix B.
The s-channel contribution of the � resonance will be evaluated as:

M�,s
R ≡ i

[
g1V

σ
1 Rσα (b(Z1)) + g2V

σ
2 gσα

]
× iGαβ(p� = pi + k,−1)Rβ

δ
(
b(Z′)

)
�δν(k)εν
7
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Fig. 1. Different contributions to the amplitude. The first seven contributions are the background while the last one is the 
resonant pole contribution.

= i [g1V1α + g2V2α] iGαβ(p�,−1)�βν(k)εν

+ ig1b(Z1)V1α

i

3m�

γ α

(
γ β − 2

m�

p
β
�

)
�βν(k)εν

+ i [g1V1α + g2V2α]
i

3m�

(
γ α − 2

m�

pα
�

)
b(Z′)γ β�βν(k)εν

+ ig1b(Z1)V1α

i

3m�

γ α

(
4 − 2

m�
/p�

)
b(Z′)γ β�βν(k)εν (10)

where the polarization vectors are εν(+1) = (0, 1, 0, 0) and εν(−1) = (0, 0, 1, 0), and the strong 
�πN vertexes obtained from the Lagrangians given in Eqs. (3) and (4) are:

V σ
1 = −qσ , V σ

2 = −iqδε
δσηργργ5(p�)η. (11)

The γN → � vertex obtained from Eq. (6) is

�μν =
[
−e(GM − GE)εμναβP αkβ − eGEiγ5εμδαβP αkβε δ

να′β ′P α′
kβ ′]

εν (12)

GM = 3

2mN(mN + m�)

GE = 6

(mN + m�)2(mN − m�)2 ,

being P = pi+p�

2 = p� − k
2 = pi + k

2 for the s-channel. From Eq. (10) it is clear that the resonant 
first term contribution is independent on Z1, Z′,(b(Z1, Z′ = − 1

2 ) = 0) and only the background 
contact terms depend on them as in Ref. [4]. The contributions of I2 are independent of Z since 
it is obtained form Lf ree that is independent of Z. In Ref. [5] the authors have additional contact 
contributions (not coming from Z′s) together with a nucleon exchange term similar to MN,s

B and 
their corresponding parameters are fitted for Z = − 1

2 to reproduce πN phase shifts. Of course, 
for another Z the shifted terms should affect now the contact terms and the fitting. In our model 
we fix the background parameters through low-energy phenomenology and have also a Kroll-
Rudermann fixed contact term that is a Z-independent contributions in MB , being necessary 
a criterion to fix b(Z1, Z′) different from fitting for the additional contact contributions. Here, 
the free parameters Z1, Z′ are set such that Lagrange multiplier field (�0) of the free theory 
do not acquire dynamics due to the interaction, as explained in Ref. [11]. This means that we 
8
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need to avoid ∂0� contributions (with � = Aμ, ψ ) in the interaction vertexes, for the factor S0
coupled to �̄0 in Lint = �̄0S0 + S̄0�

0 · · · since it could generate dynamics for �̄0 through the 
∂0(�̄0

∂S0
∂(∂0�)

) term in the equation of motion. Note that in the second term of the Lagrangian 
(6) we have only second order (∂α∂β�) contributions and thus the first order term alone (∂0�) 
is not present. After choosing Z1, Z′ they are used in our additional contact terms as done in 
Ref. [4]. Note that we do not need to fix any Z2 as mentioned above, but if we had assumed 
a form I2 × R(b) (which is, in general, not consistent) the consistent I2 obtained with the �0
criteria, would be that corresponding to the value Z2 = −1/2. We fixed Z1 = 1/2 for I1 as in 
Ref. [9], and assume the LI2 originally proposed by [10]. Following the same procedure applied 
to the first term in Eq. (6) we also get Z′ = −1/2, and this value lead to b′ = 0 and to a consistent 
electromagnetic vertex.

Note that in Ref. [23], when still the “�0 criterion” was not used, we adopted the values 
Z1 = Z′ = 1/2 to get the simplest form for LI1 and LγN� Lagrangians. In this present work, 
since we have the same Z1 value but a different Z′ = −1/2 value, we will analyze the effect of 
using Z′ = ± 1

2 in order to evaluate the importance of adopting a different criterion to fix this 
parameter. Of course, this only affects the shifted background contributions, letting the resonant 
pole one unchanged.

Now we express V σ
1 and V σ

2 in terms of the projectors Pμν following the same procedure as 
in Ref. [14] and evaluating the � propagator within the complex mass scheme (CMS) approx-
imation [26] (see next section) where the replacement m� → m̃� = m� − i ��

2 is done, being 
�� the resonance width. It is important to remark that (10) will contain a pole term proportional 
to g1 + m̃�g2, and contact terms contributing to the background. As in Ref. [14], it is better to 
redefine the couplings in terms of g and κ as follows: g = g1 + m�g2, g2 = κg

m�
where the width 

was dropped, or, equivalently g1 = (1 −κ)g, g2 = κg
m�

and g = fπN�

mπ
. From Eq. (10) we get (with 

‘cons.’ we indicate ‘consistent’ couplings)

M�,s
R =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−g1q
σ

[
P

3/2
σβ

(/p�+m̃�)m̃�

p2
�−m̃2

�

− 1
m̃�

P
1/2
11,σβ

]
I1(κ = 0)

−gqσ

[
P

3/2
σβ

(/p�+m̃�)(m̃�(1−κ)+κ /p�)

p2
�−m̃2

�

− 1−κ
m̃�

P
1/2
11,σβ

]
I1 + I2(0 < κ < 1)

−g2q
σ P

3/2
σβ

(/p�+m̃�)/p�

p2
�−m̃2

�

I2(κ = 1)(cons.)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

× �βν(k,P�)εν, for Z′ = −1

2
(cons.),

(13)

M�,s
R =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−g1q
σ

[
P

3/2
σβ

(/p�+m̃�)m̃�

p2
�−m̃2

�

+ 2
m̃2

�

(
/p�

+ m̃�

)
P

1/2
11,σβ +

√
3

m̃�
P

1/2
21,σβ

]
I1(κ = 0)

−gqσ

[
P

3/2
σβ

(/p�+m̃�)(m̃�(1−κ)+κ /p�)

p2
�−m̃2

�

+ 2
m̃2

�

(
/p�

+ m̃�(1 − κ)
)
P

1/2
11,σβ

+
√

3(1−κ)
m̃�

P
1/2
21,σβ

]
I1 + I2(0 < κ < 1)

−g2q
σ

[
P

3/2
σβ

(/p�+m̃�)/p�

p2 −m̃2 + 2
m̃2 /p�

P
1/2
11,σβ

]
I2(κ = 1)(cons.)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
� � �

9
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× �βν(k,P�)εν, for Z′ = +1

2
(not cons.), (14)

with P� = k + pi and where it must be multiplied times 

{
2
3 for γp → pπ0

√
2

3 for γp → nπ+ .

The third line in Eqs. (13) and (14) corresponds to the use of I2 strong vertex combined with 
the lectromagnetic one for Z′ = − 1

2 (b′(Z′ = − 1
2 ) = 0) and Z′ = 1

2 (b′(Z′ = 1
2 ) �= 0), respec-

tively. In Eq. (13) there are no spin 1/2 background contributions since all interactions are con-
sistent (V μ

2 p�μ = p�μ�μν = 0), while in Eq. (14) this is not the case since p�μR(b′)μν�νβ �= 0. 
In the first line of the mentioned equations we show the contribution of I1 (Z1 = 1/2) alone for 
Z′ = −1/2 and Z′ = 1/2. We remark that we have background spin-1/2 contributions in both 
cases, which are different (in spite that for Z′ = −1/2 we have an electromagnetic consistent 
vertex) due to the coupling of I1 to the 1/2 sector and also because b′(−1/2) �= 0. Finally, in 
the middle lines of that equations we combine I1 + I2 and we have also 1/2 background terms 
which are different for Z′ = ∓1/2 due to the same reasons.

Following the same procedure, we can evaluate the u-channel contribution of the �-resonance 
(which contributes to the background) using the relation:

M�,u
R (k, q) = γ0M�,s

R (−k,−q)†γ0

{
2
3 for γp → pπ0

−
√

2
3 for γp/n → n/pπ+ ,

with M�,s
R (k, q) given in Eqs. (13) and (14). Since in this case we found contributions with 

p2
� = 0, it is not convenient to write this amplitude in terms of the projectors, which contain 

factors of the form 1
p2

�

that would lead to divergences that cancel out when the projectors are 

developed. We get (omitting now isospin factors)

M�,u
R = g(εν)†�νβ(k)

[
/p�

+ m̃�

p2
� − m̃2

�

(
gβσ − 1

3
γ βγ σ − 1

3m̃�

γ βpσ

)

+ κ

m̃�

(
gβσ − 1

3
γ βγ σ

)
− (1 − κ)

3m̃�

γ βγ σ

]
qσ , for Z′ = −1

2
,

M�,u
R = g(εν)†�νβ(k)

[
/p�

+ m̃�

p2
� − m̃2

�

(
gβσ − 1

3
γ βγ σ − 1

3m̃�

γ βpσ

)

+ 2

3m̃2
�

(
/pγ βγ σ + γ βpσ

)

+ κ

m̃�

(
gβσ − 1

3
γ βγ σ

)
+ 2(1 − κ)

3m̃�

γ βγ σ

]
qσ , for Z′ = +1

2
.

As we expected, this result shows no divergence for p2
� = 0.

4. Results

Following the ideas of the previous sections we calculate here the γp → pπ0 and γp → nπ+
total cross sections and some multipole amplitude contributions in order to visualize the quality 
of our results. We used a minimal realistic model for the non resonant background including the 
N , π , ρ and ω fields, while the unstable character of the � has been taken into account through 
the CMS scheme, where we make the replacement m� → m� − i��/2 in the full propagator, 
10
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being �� the � width, which is assumed to be constant. It can be easily shown that if this 
change is done only in the denominator of the propagator or if the width � is not constant, the 
Ward identity for the �γ� vertex is violated by terms of order �/m�.3 The loss of unitarity 
produced by this prescription is compensated by an additional phase (see [23,26,28] for details). 
As explained before: i) our expressions are independent of A; ii) the values of Z1 and Z′ are 
fixed in order to R0σ (−1, Z1)V

σ
1 and R0σ (−1, Z′)�σν not containing the zero component of 

any momenta at first order (we get Z1 = 1
2 and Z′ = −1/2 [11]); iii) the I2 interaction does not 

depend on Z since it is obtained from the Lf ree Lagrangian; iv) LI2 and LγN�(Z′ = −1/2) are 
both spin 3/2 gauge invariant. Nevertheless, in a previous work where the primary interactions 
considered here were improved by including Final State Interactions (FSI) [23], we used the I1
interaction alone and the same γN� interaction. We adopted there the values Z1 = Z′ = 1

2 which 
lead to the simplest form, not leading to a spin 3/2 invariant γN� vertex. In order to compare 
those results with the present ones, we also show here our results with Z′ = 1

2 . This should only 
change, as mentioned before, the contact background terms and not the resonant contribution. 
Finally, we mention that by making the on-shell approximation [25] on the � we get the NP 
parametrization (k · ε = 0)

�μν = g′
1

(
gμν/k − kμγ ν

)+ g′
2

(
gμνk · p� − kμpν

�

)
,

where g′
1,2 ≡ g′

1,2(GM, GE). This is derived from a first order (I ′
1) plus a second order derivative 

contribution (I ′
2). In this sense, we return to the Nath proposal in Ref. [17] but now our pre-

scription for fixing Z′ in the Sachs parametrization enables a nonzero second order contribution 
and the contribution of GE . Nevertheless, it is important to note that this vertex is an approach 
obtained from the on-shell � assumption where the constraints pμ

��μ = γ μ�μ = 0 are used to 
connect both parameterizations [25].

For consistency, the strategy we follow is to use the sets of � mass, width, the strong coupling 
g and κ values previously fixed for the π+p and π−p scattering data [14]. Those values are 
m� = 1211.41; 1210.67; 1210.14 MeV, �� = 88.0; 84.60; 80.77 MeV, and g = 0.32; 0.31; 
0.30 for κ = 0, 1 and 0.45, respectively. Given those values, we now explore all possibilities: I1
alone, I2 alone and the same combination of both interactions used in πN scattering. For the non-
resonant background contributions we use the same strong parameters as before: gρ = 6.04, gω =
9.05, κρ = 3.7 and κω = −0.12. Otherwise, for the electromagnetic ones we use gγπρ = 0.101
and gγπω = 0.32 [20,21]. For the electromagnetic parameters GM,E we assume the same values 
as the previously obtained in the improved model for pion photoproduction from Ref. [23], which 
includes also rescattering: GM = 2.97 and GE = 0.055. These are fully consistent with those 
πN scattering and γN → Nπ photoproduction obtained recently in χEFT [29] calculations: 
GM = 2.95 and GE = 0.070. This indicates that our values effectively include the pionic loop 
corrections to the γN → � vertex as in the χEFT approach. The sensibility of the πN and 
γN → πN ′ cross sections with the adopted parameters has been previously analyzed in Refs. 
[23,27], paying special attention to the σ and � masses, � width and coupling constants (that 
are strongly correlated) in πN scattering, and the GE,M values in pion photoproduction process. 
From the results shown in Ref. [14] we can see that the difference in the adopted values for g, m�

and �� to reproduce the π+p cross section (the leading contribution) generates a much smaller 

3 A more accurate procedure would be the use of the energy dependent � self-energy taking into account the � mixing 
with πN states at one or higher loop bubbles to all orders [26]. Nevertheless, since we have used the UIBA unitaryzed 
model from Ref. [23], which includes phase shifts, it is enough to use the simpler CMS prescription.
11
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Fig. 2. In the upper plot we show the total cross section for κ = 0 Z′ = − 1
2 ( 1

2 ) with thick (thin) lines, both for γp → pπ0

(left) and γp → nπ+ (right) processes. In the middle plot we show the corresponding results for κ = 0.45 (some of the 
main multipole contributions are shown). In the lower plot we show our results for κ = 1. Experimental data were taken 
from Ref. [24].

dispersion of the results than that coming from different Z′ values in our present calculation. This 
clearly indicates that the theoretical uncertainties are under control. As previously explained, 
we adopt here the unitarized tree model from Ref. [23] for pion photoproduction without the 
inclusion of FSI (in spite that part of the rescattering is taken into account through the � width), 
which is enough in order to analyze the effect of using different values for the Z′ parameter in the 
shifted contact terms from the � sector. Also we analyze the effect of introducing the consistent 
I2 interaction independent of Z. We use the “ψ0” criterion to fix Z1, Z′, instead of fitting it to 
reproduce the data. We calculated the cross section for the γp → pπ0 and γp → nπ+ processes 
adopting the value Z1 = 1

2 for the strong vertex and: i) Z′ = 1
2 used in the previous work [23], 

where we considered the simplest γN� vertex, or ii) Z′ = − 1
2 which avoids any dynamics for 

the �0 component and leads to a consistent vertex.
In Fig. 2 (upper pannel) we show our results for the total cross section with Z′ = ± 1

2 for 
the γp → pπ0 (left) and γp → nπ+ (right) channels, for κ = 0 (I1), while for the middle and 
bottom ones we report the same but for κ = 0.45 (I1 + I2) and 1.0(I2) respectively. As it can 
be seen, the experimental data are better described in both channels for the background contact 
terms with Z′ = − 1

2 and combined interactions. In spite we are not making a fitting, we can 
report the χ2/dof where we consider dof = Ndata to qualify the difference with the data. We 
12
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Fig. 3. We show here the real and imaginary parts of the multipole amplitudes considered in Fig. 2. Again, thick lines are 
used for results with Z′ = − 1

2 , while thin ones for Z′ = 1
2 , and data are taken from [24].

get the values χ2/dof = 5.9, 1.38 and 4.97 (1.72, 1.62, 1.9) for γp → pπ0 (γp → nπ+) and 
κ = 0, 0.45 and 1, respectively, for Z′ = − 1

2 .
For the best result with κ = 0.45, Z′ = − 1

2 we show the multipole contributions to the total 
cross section in order of importance, and in Fig. 3 the multipole amplitudes compared with the 
corresponding data. Our results show that the adopted unitarized model (UIBA from Ref. [23]) 
works quit well. Note that when we use the values κ = 0, Z′ = 1

2 adopted in our previous work 
from Ref. [23] (upper pannel in Fig. 2) we get χ2/dof = 6.45 and 3.54 for the γp → pπ0 and 
γp → nπ+ channels, respectively, showing a worse coincidence. This would be compensated 
by the introduction of FSI as done in that work. Otherwise, for κ = 1, Z′ = − 1

2 (lower pannel 
in Fig. 2) which should be the analog to the corresponding calculation from Ref. [5] and both 
consistent interactions, we get a worse result than for κ = 0.45, Z′ = − 1

2 . This indicates that 
the inclusion of both interactions and our consistent method of looking for Z1, Z′ works as well 
as the crude fitting and avoids the inclusion of FSI that requires the use of form factors, which 
generate model dependence. Additionally, the present calculation provides a controlled method 
for adding the necessary 1/2 backgrounds to the consistent I2 + γN�(Z′) amplitude.

We observe that the dispersion of results is smaller for the second channel. This is because the 
interference between background and resonance contributions is very different for each channel 
since we have some contributions (pion in flight and contact term) absent in the first one but 
present in the other, while the ω exchange is present in the first but absent in the second one. Also 
the M�,u

R has different signs for each channel. The above results do not change appreciably if we 
try to fit GM (GE = 0.025GM fixed for simplicity from the experimental REM ratio) since the 
adopted value GM = 2.90 is very close to that reported experimentally and, due to the mentioned 
ratio, we have a GM overall factor in Eq. (12) that makes the resulting cross section oscillate 
around the previous results without changing appreciably the χ2/dof values.

5. Conclusions

We have implemented two new ideas for the γN → N ′π pion photoproduction process: i) A 
method for choosing the value for the Z′ parameter present in the shifted contact terms coming 
13
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form the �-sector in the contact invariant γN� vertex. ii) The use of first order plus second 
order derivative strong interactions in the �πN vertex already used to describe πN scattering.

In i) we have adopted the same method used to fix the parameters Z1 of the contact terms 
generated from the contact invariant I1 interaction as in a previous work: choosing them so 
the interactions do not generate dynamics for the �0 component of the � field, since it is a 
Lagrange multiplier of the constrained problem. We have chosen here a consistent Z-independent 
interaction I2. We have compared the use of I1 + I2 with different coefficients for I1 and I2, 
adopting the value Z′ = 1

2 , previously used in a calculation where, as usually, I1 was considered 
alone; Additionally, we adopted Z′ = − 1

2 in accordance with the new fixing procedure described 
above. As it can be seen in the results shown in Figs. 2 and 3 the calculations with Z′ = − 1

2
improve notably the description of the data over the previous choice Z′ = 1

2 , at least at tree 
level including unitarity by means of the method described in Ref. [23] but without including 
rescattering effects, already considered before in that reference. On the other hand, we have 
understood why the values chosen in Refs. [4,5], Z2 = Z′ = −1/2, lead to correct values for 
Z (or a valley) around which additional Z changes do not get appreciable modification on the 
contact term parameters or LEC’s. The value Z′ = −1/2 also corresponds to the original spin 3/2 
gauge invariance version of the electromagnetic Lagrangian. We have enabled also the Z′ = 1/2
value for which this invariance is violated only to compare with previous calculations. We also 
remark that it is not as clear how to obtain the fourth-order contribution to the Sachs vertex 
through a transformation on Lf ree, analogously to what is done with the second-order one.

Once again, it is important to note that we are not fitting any parameter in this work, we took 
the parameters previously adopted (coupling constants and Z1) in the description of πN scatter-
ing [14] and GE,M from [23]. We have certain dispersion between the results for κ = 0, 0.45 and 
1 that switch between the calculations with I1 alone, I1 + I2 and I2 alone, respectively. Once the 
change to Z′ = − 1

2 is achieved, we clearly see that the results for κ = 0 and 0.45 are close and 
lead to better description for γp → pπ0 and γp → nπ+ channels, while for κ = 1 the depar-
ture from the data is larger. This indicates that the presence of the 1/2 contribution coming from 
P

1/2
11 is necessary and is suppressed for the κ = 1 case where we have two consistent interac-

tions. Thus, the electromagnetic vertex �μν in the Sachs parametrization has (at least in the most 
important GM − GE term) the same gauge invariant spin 3/2-structure that V σ

2 . This is not the 
same situation than the πN scattering case where both initial and final vertexes have both types 
of interactions. We note that this method of including both I1 and I2 interactions is a robust way 
of adding a background to the I2 interaction alone together with the Sachs parametrization, that 
has the same spin 3/2 gauge symmetry. This is very different than adding “ad-hoc” background 
contributions to reproduce the cross section data as done in Ref. [15].

Summarizing, the use of the Sachs parametrization is consistent with the choice Z′ = − 1
2

and the best coincidence with data is achieved for κ = 0.45, while results obtained using the 
interaction I1 or I2 alone show a larger departure from experimental data. This also could be seen 
as a confirmation of the use of spin 3/2 gauge invariant interactions (I2, LγN�(−1/2)) and, as we 
can transform I1 → I2 +contact term, a controlled way of fixing the contact parameters when the 
other parameters of the background are already fixed by low energy phenomenology. This is also 
useful since in the past many calculations where done using I1 alone. This is in full consistence 
with the previous πN scattering case, where κ = 0.45 should be chosen. In the future, other 
parameterizations could be probed for the electromagnetic vertex using independent parameters 
for the first and second derivative contributions in the NP parametrization. Nevertheless, this 
could be difficult since, as it was shown, both parameterizations should be connected if one wish 
14
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to maintain the �0 criterion implemented for the Sachs one. In addition we have shown that the 
procedure of integrating out the �-field (which leads to a nonlocal Lagrangian plus additional 
Z-dependent terms in the πN sector) is not an argument against our procedure of looking for Z
through preserving the Lagrange multiplier character of �0 in the Lagrangian.

A. Mariano and C. Barbero are grateful for financial support from CONICET (Argentina) 
CCT La Plata, Argentina and UNLP. D. Badagnani thanks ICPA and UNTDF. D.F. Tamayo 
Agudelo thanks UdeA.

6. Appendix

6.1. Spin projectors and isospin excitation operators

We have introduced P k
ij which projects on the k = 3/2, 1/2 sector of the representation space, 

with i, j = 1, 2 indicating the subsectors of the 1/2 subspace, which are defined as:

(P 3/2)μν = gμν − 1

3
γμγν − 1

3p2

[
/pγμpν + pμγν /p

]
,

(P
1/2
22 )μν = pμpν

p2 ,

(P
1/2
11 )μν = gμν − P 3/2

μν − (P
1/2
22 )μν

= (gμα − pμpα

p2 )(1/3γ αγ β)(gβν − pβpν

p2 ),

(P
1/2
12 )μν = 1√

3p2
(pμpν − /pγμpν),

(P
1/2
21 )μν = 1√

3p2
(−pμpν + /ppμγν). (15)

On the other hand we define the isospin � excitation operators as

T† · φ+,−,0 =

⎛
⎜⎜⎝

1 0
0 1√

3
0 0
0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0 0
0 0

− 1√
3

0

0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

0 0√
2
3 0

0
√

2
3

0 0

⎞
⎟⎟⎟⎟⎠ ,

that acts on |p,n〉 =
(

1
0

)
, 
(

0
1

)
and 

∣∣�++,+,0,−
〉=
⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠ , 

⎛
⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎠ , 

⎛
⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎠ , 

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠ states.

6.2. Lagrangians and amplitudes involved in non resonant background

The propagators and interaction used to built amplitudes will be summarized here. First, 
the propagators which come from the inversion of the kinetic operators present in the free La-
grangians are:
15
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S(p) = /p + mN

p2 − m2 (nucleon),

�(p) = 1

p2 − m2
π

(pion),

Dμν(p) =
−gμν + pμpν

m2
V

p2 − m2
V

(vector-meson),

while the strong interacting Lagrangians are:

LπNN(x) = −fπNN

mπ

ψ̄(x)γ5γμτ · (∂μφ(x)
)
ψ(x),

LV NN(x) = −g
V

2
ψ̄(x)

[
γμ

{
ρμ(x) · τ
ωμ(x)

}
− κV

2mN

σμν

(
∂ν

{
ρμ(x) · τ
ωμ(x)

})]
ψ(x).

The electromagnetic Lagrangians are:

LγNN(x) = −ψ(x)

[
êγμAμ(x) − κ̂

2mN

σμν

(
∂νAμ(x)

)]
ψ(x),

Lγππ (x) = −e
[
φ(x) × ∂μφ(x)

]
3 Aμ(x),

LγπNN(x) = −e
fπNN

mπ

ψ̄(x)γ5γμ(τ × φ(x))3ψ(x)Aμ(x),

Lγπρ(x) = − gγπρ

mπ

εμαλν

(
∂μAα(x)

) (
∂λφ(x)

) · ρν(x)

= + gγπρ

mπ

εμαλν

(
∂μAα(x)

)
φ(x) · (∂λρν(x)

)
Lγπω(x) = − gγπω

mπ

εμαλν

(
∂μAα(x)

) (
∂λφ(x)

)
3 ων(x)

= +gγπω

mπ

εμαλν

(
∂μAα(x)

)
φ(x)3

(
∂λων(x)

)
,

where the last two equivalent forms were obtained from:

∂λ
[(

∂μAα(x)
)
φ(x) · ρν(x)

]= (∂λ∂μAα(x)
)
φ(x) · ρν(x) + (∂μAα(x)

) (
∂λφ(x)

) · ρν(x)

+ (∂μA(x))φ(x) · ∂λρν(x)(
∂μAα(x)

) (
∂λφ(x)

) · ρν(x)
.= − (∂μAα(x)

)
φ(x) · ∂λρν(x),

since the total derivative does not contribute because it does not affect the action, nor the second 
derivative in the photon due the antisymmetric tensor. Next, we get the background amplitude 
obtained from the previous Lagrangians, which correspond to nonresonant background amplitude 
that is the sum of Born, contact, pion-in-flight and meson exchange terms (p, q and k denote here 
the nucleon, pion and photon momentum, respectively)

MB = ie
fπNN

mπ

γ5/qS(p + k)

(
ê/ε∗ + i

κ̂

2mN

σμνk
νεμ

){
1, γp → pπ0

∓√
2, γp/n → n/pπ±

+ ie
fπNN

mπ

(
ê/ε∗ + i

κ̂

2mN

σμνk
νεμ

)
S(p − q)γ5/q

{
1

∓√
2

+ ie
fπNN

γ5/ε
∗
{

0√
2
mπ

16
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+ ie
fπNN

mπ

(k + p − p′) · ε∗�(p − p′)γ5(/p − /p
′)
{

0
−√

2

− gγπρgρ

2mπ

εμ∗εμαλνq
α(k = q + p − p′)λDνβ

ρ (p − p′)

×
[
γβ − i

κρ

2mN

σβν(p − p′)ν
]{

1
∓√

2

− gγπωgω

2mπ

εμ∗εμαλνq
α(k = q + p − p′)λDνβ

ω (p − p′)

×
[
γβ − i

κω

2mN

σβν(p − p′)ν
]{

1
0

.
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