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This paper presents a modified grand canonical ensemble which provides a new simple and efficient
scheme to study few-body fluid-like inhomogeneous systems under confinement. The new formalism
is implemented to investigate the exact thermodynamic properties of a hard sphere (HS) fluid-like
system with up to three particles confined in a spherical cavity. In addition, the partition function of
this system was used to analyze the surface thermodynamic properties of the many-HS system and
to derive the exact curvature dependence of both the surface tension and adsorption in powers of the
density. The expressions for the surface tension and the adsorption were also obtained for the many-
HS system outside of a fixed hard spherical object. We used these results to derive the dependence of
the fluid-substrate Tolman length up to first order in density. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4729249]

I. INTRODUCTION

The thermodynamic and statistical mechanical properties
of a fluid composed of many particles confined in small pores
have been extensively investigated from both a theoretical and
experimental point of view.1–3 In these systems the fluid fills
the cavity inhomogeneously and under extreme conditions,
the confinement is responsible for the dimensional crossover
of the particles.4 On the contrary, the knowledge about the sta-
tistical mechanical properties of fluid-like systems composed
of few bodies is rather poor. Notoriously, few-body systems
have played a key role in the development of various fields
of physical science including classical, relativistic, and quan-
tum mechanics. Of course, the fundamental advantage of the
few-body systems over the many-body ones is that only the
former are (in most cases) analytically tractable. In this sense,
we claim that the importance of studying few-body systems
within the framework of the statistical mechanics of inhomo-
geneous fluids relies in the fact that it provides exact solutions
in a subject where exact results are quite scarce. We find this
fact remarkable because these solutions provide new insights
to better understand the properties of many-body systems.

The grand canonical ensemble (GCE), in which the vol-
ume, temperature, and chemical potential are fixed, is cer-
tainly the most used scheme in the formulation of theories
of fluids. In particular, the density functional theory (DFT)
formulated in the GCE, is one of the most successful ap-
proaches used to describe the properties of inhomogeneous
fluids. Indeed, DFT calculations make it possible to analyze
the adsorption of fluids on substrates and in porous matrices
as well as study the interfacial phenomena. Other theories as
the scaled particle theory (SPT) are also formulated in the

a)Electronic mail: iurrutia@cnea.gov.ar.

GCE. In this context, hard spheres (HS) systems play a distin-
guished role in developing of both, DFT and SPT approaches,
and perturbation theories of fluids.5 Moreover, HS systems
are of particular interest as they constitute a simplified model
for both simple fluids and colloidal particles.6

In this work, we present a novel formulation that makes
it possible the study of few-body inhomogeneous fluids using
a GCE scheme in which the maximum number of particles
is considered as a parameter of the system. We employ the
proposed GCE to perform an exact study of the HS system
with at most three particles confined in a spherical cavity. In
addition, on the basis of the new results, we analyze the sur-
face thermodynamic properties of the many-HS system spher-
ically confined. We present our result for the exact curvature
dependence of surface (or boundary) tension and adsorption,
obtained in powers of the density. The formulation proposed
here is found to be a valuable tool for describing highly con-
fined fluids constituted by few bodies. Moreover, it will poten-
tially serve to improve the DFT and SPT descriptions associ-
ated with the surface-related thermodynamic properties and
their curvature dependence.

II. PARTITION FUNCTION OF THE FEW-BODY
OPEN SYSTEM

Consider a one-component fluid containing a non-fixed
number of particles which evolve inside a region of the space
that we will refer to as B. Such a region is determined by
an external potential ϕ(r) that takes finite values in B and di-
verges outside it. The boundary of B is assumed to be at a
constant and uniform temperature T. In these circumstances
we expect the fluid will attain an equilibrium state in which its
physical properties either remain constant or fluctuate around
a fixed value. Furthermore, for an inhomogeneous fluid
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system in an equilibrium state we make the following usual
assumptions: (i) if the exact expression for the grand canon-
ical partition function (GCPF) � is known, then the exact
grand potential function is given by

� = −β−1 ln �, (1)

where β = (kBT)−1 is the inverse temperature (being kB and T
the Boltzmann’s constant and the temperature, respectively);
(ii) a given thermodynamic property of the system, namely,
X, can be identified with its mean (Gibbsian) ensemble value
〈X〉. Additionally, it is expected that 〈X〉 to be equal to the
time averaged value of X over an interval τ , X̄τ = 1

τ

∫
τ
X(t)dt

(at least for a value of τ large enough). Typically, X may be
the energy E, the pressure p, the number of particles N, etc.
Standard statistical mechanical demonstrations show that the
derivatives of the grand potential are related to the mean en-
semble values 〈X〉 of most thermodynamic quantities. Other
thermodynamic quantities may be computed from the grand
potential and its derivatives by applying usual thermodynamic
relations.5, 7

In order to study few-body inhomogeneous systems, we
now consider a container B with at most M particles, which
in what follows will be a fixed parameter. The GCPF of this
system is given by

�M =
M∑
j=0

Ij z
jZj , (2)

where M is the cut off value for the maximum number of
particles. The indistinguishability factor Ij is either equal to
Ij = 1/j ! for indistinguishable particles or Ij = 1 for distin-
guishable particles. In addition, z = �−3exp βμ is the activity
being � = h/(2πm kBT)1/2 the thermal de Broglie wavelength,
while μ, m, and h are the chemical potential, the mass of each
particle and the Planck’s constant, respectively. Finally, the
configuration integral (CI) of a system with j particles is

Zj =
∫

. . .

∫ ∏
el

∏
elm dj r, (3)

with Z0 = 1. Here, el = exp [−βϕ(rl)] and elm

= exp [−βφ(rlm)] are the Boltzmann’s factors corre-
sponding to the external and pair interactions, respectively.
Note that, the integration domain in Eq. (3) is the complete
space due to the fact that the spatial confinement of the
particles in the region B is considered in the el terms.

Because of �M is the GCPF of our system, in Eq. (1)
we can replace � with �M to define �. The knowledge of
Zj for 1 ≤ j ≤ M along with Eqs. (1) and (2) provide the
exact statistical-thermodynamic properties of the system. In
Eq. (2), the expression for �M is an incomplete (or restricted)
version of the usual GCPF obtained from � = lim

M→∞
�M. A

different restricted GCE was introduced by Yang and Lee8 in
their study of the condensation of gases. It was used later by
Woods et al.9 to study the adsorption of fluids in cavities. We
emphasize that in their analysis M represents the maximum
number of particles that fit in B, instead of an externally im-
posed parameter as we have assumed in our formalism. An
interesting property of �M, Eq. (2), is that for a cavity B with
a fixed size and temperature we obtain lim

z→∞�M ∝ Ij z
jZj ,

where j denotes the maximum number of particles that hold
in B (under the constraint 1 ≤ j ≤ M).

III. THE FEW HS SYSTEM IN A SPHERICAL
CONFINEMENT

Few-body fluid-like systems of HS with one or two par-
ticles confined in cavities with different geometries, includ-
ing the spherical, cuboidal, and cylindrical cases, were an-
alytically solved in the canonical ensemble in Refs. 10–12.
Those works make it possible to explore on exact grounds the
corresponding open systems with M = 2. Further, the three-
body HS system was exactly solved for the case of a spherical
confinement.13, 14 In the current work, we focus on the study
of the HS open system with M = 3 in a spherical cavity. In-
homogeneous systems with a spherical geometry are ubiq-
uitously present in nature in the form of bubbles and drops.
One remarkable characteristic of this symmetry is that it does
not place any preferential direction on the space. In spite of
the relevance of the spherical geometry several fundamental
questions are still unresolved regarding the curvature depen-
dence of the thermodynamic properties in spherical systems.
In view of this, much efforts have been directed in recent years
to address this fundamental issue.

In our description, we consider an external hard-wall po-
tential, which is null in a spherical region B and diverges out-
side it. The Boltzmann’s factor is el = 
(R − rl), where 
(r)
is the Heaviside function, rl is the distance from the center of
the pore to the particle l, and R is the effective radius of the
pore.13 The volume of B is V = Z1 = 4π

3 R3 while A = 4πR2

is the surface area of its boundary. By using the expressions
for Z2 and Z3 presented in Refs. 10, 13, and 14 and assum-
ing indistinguishable particles, i.e., Ij = 1/j !, we obtain the
exact expression for �3

�3 = 1 + Z1z + Z2
z2

2
+ Z3

z3

6
. (4)

After fixing the diameter of the particles to be σ = 1 to lighten
our notation, the expressions for Z2 and Z3 are given by

Z2

=
{(

2π
3

)2 (
R − 1

2

)3
(1 + 6R + 6R2 + 4R3), if R ≥ 1

2

0 , if 0 ≤ R< 1
2 ,

(5)

Z3 =

⎧⎪⎪⎨
⎪⎪⎩

h − �τ , if R ≥ 1

h , if 1√
3

≤ R < 1

0 , if 0 ≤ R < 1√
3
,

(6)

with

h = π2

70

[
1

9
q(65+183R2−342R4+240R6)−9

2
p1(5+12R2)

+p2R(105 − 280R2 + 840R4 − 1152R6 + 640R8)

]
,

(7)
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q =
√

3R2 − 1, p1 = arctan (2q) , p2 = arctan (q/R) ,

(8)

�τ = 128

189
π3 (R − 1)5

(
1 + 5R + 69

10
R2 + 5R3 + R4

)
.

(9)

Concerning the basic geometrical properties of the spherical
confinement we find that, a cavity with R < 1

2 can contain
at most one particle, while for the cases R < 1√

3

.= 0.57735,

R <

√
3
8

.= 0.612372, and R < 1√
2

.= 0.707107, a maximum
of two, three, and four particles can be fitted in the cavity, re-
spectively. These values imply that by evaluating �3 we have
not only solved the restricted system with M = 3 and any
value of R, but also we have obtained the exact solution of the

unrestricted system for R <

√
3
8 because in this case �(R)

= �3(R).
The thermodynamic fundamental relations for the grand

potential are

� = U − T S − μN, (10)

d� = −S dT − PWAdR − N dμ, (11)

here S is the entropy, dV is equal to A dR, PW represents the
(mean) pressure on the wall also called the work-pressure, and
dW = PWdV is the total reversible work performed by the
system on its environment. Given that the system is athermal,
it is preferable to use temperature-independent quantities like
β� to conduct the analysis of its properties. Therefore, some
of the usual thermodynamic and statistical mechanical rela-
tions for systems under spherical confinement can be written
as

βPW = −A−1 ∂ β�

∂R

∣∣∣∣
β,z

, (12)

N ≡ 〈N〉 = −z
∂ β�

∂z

∣∣∣∣
β,R

, (13)

σN
2 ≡ 〈N2〉 − N2 = z

∂N

∂z

∣∣∣∣
β,R

. (14)

Here, σN is the standard deviation in the number of particles
which quantifies the spontaneous fluctuation of N. Since the
energy of the system is equal to that of the classical ideal gas,
i.e., βU = 3

2N , using Eqs. (10) and (13) we can also calculate
S. At this stage, the exact properties obtained for the system
are functions of z and R. One important point is the fact that
the few-body HS open system is in chemical equilibrium with
a bulk HS fluid. Unfortunately, the exact properties of the bulk
HS fluid are not analytically known, and thus, to present our
results in terms of the bulk density ρb (instead of z) we adopt
the simple and accurate Carnahan-Starling (CS) equation of
state, which for z gives4, 15

zCS = ρb × exp

[
8ηb − 9η2

b + 3η3
b

(1 − ηb)3

]
, (15)

where ηb = π
6 ρbσ

3 is the corresponding packing fraction.
We remark that Eq. (15) is the unique approximated rela-

0 0.25 0.5 0.75 1
0

2

4

6

8

R

ΒP
W

FIG. 1. Pressure on the wall against the radius of the pore obtained for values
of the activity z, and bulk density ρb listed in Table I (z and ρb increase from
bottom to top). The dashed line indicates the radius R = 0.612 for which a
maximum of three particles can be fitted in the cavity.

tion introduced in this section. Although it is exact only up
to third order in density accurately describes the bulk sys-
tem for all the fluid-phase density range. As a reference, we
mention that in the bulk HS system the fluid (disordered) and
solid (ordered) stable phases coexist at βP � 11.576, being
the fluid and the solid bulk-densities ρbf � 0.943 and ρbs

� 1.041, respectively.16, 17

Figure 1 displays the pressure on the wall as a function
of the radius of the cavity, considering different values of ρb.
Table I summarizes the exact values of z used in plotting each
curve together with the corresponding approximated values
of ρb obtained from the numerical inversion of Eq. (15). The
dashed vertical line in Fig. 1 corresponds to R = 0.612, that
is, the maximum value for which our results are exact even
for the unrestricted system. From this graphic it is evident that
the pressure on the wall has a non-monotonic behavior with
loops characterized by regions of negative and positive slopes,
which are related to the mechanical instability of the system.
In Fig. 2 we plot the relative adsorption in the pore per unit
volume as a function of ρb, that is �ρ = ρ̂ − ρb where ρ̂ =
N/V . There, the arrow indicates increasing values of R. The
negative adsorption in the case of the curves corresponding
to R = 1, 1.2, and 1.5 is a consequence of the cut off in the
maximum number of particles contained in the pore. This also
applies to regions with positive adsorption and negative slope
observed in this plot for R = 0.65, 0.7, 0.8, and 1.

Figure 3 shows the filling of the cavity as a function of ρb

for different radii of the pore. For each value of R considered
the saturation value of N corresponds to the maximum number

TABLE I. Activity values z, used for the curves plotted in Fig. 1 and the
corresponding bulk density values, ρb.

z 0.1 0.2 0.5 1 2 5 10

ρb 0.072226 0.11583 0.18962 0.25142 0.31323 0.39028 0.44353
z 20 50 100 200 500 103 105

ρb 0.49217 0.54981 0.58888 0.62452 0.66704 0.69619 0.84313
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0 0.25 0.5 0.75 1

0

1

2

3

Ρb

FIG. 2. Relative adsorption in the pore as a function of the bulk density plot-
ted for different radii of the pore R = 0.2, 0.4, 0.5, 0.525, 0.55, 0.575, 0.6,
0.61237, 0.65, 0.7, 0.8, 1, 1.2, and 1.5. The arrow marks the direction of
increasing values of R. The asterisk indicates the curve for R = 0.61237.

of particles that holds in the cavity (at most three particles). As
it can be observed, N(ρb, R) is a non-decreasing function. It is
noticeable that for 0.5 < R < 0.61237 the curves change their
concavity several times with the increase of ρb. This property
determines the behavior of σ 2

N (ρb) through Eq. (14). Figure 4
illustrates the relation between the mean number of particles
in the cavity and its fluctuation σN . Each curve corresponds
to the parametric plot (N(z), σ N(z)) for a fixed value of R.
We find that all the curves corresponding to R < 0.5 collapse
onto the semi-circumference centered at N = 0.5. For 0.5
< R < 0.577 and N increasing in value 1.5 < N ≤ 2 the curves
approach to the second semi-circumference centered at N
= 1.5. In the range 2.5 < N ≤ 3 a third semi-circumference
centered at N = 2.5 is fitted by the curves corresponding to R
> 0.577. In addition, we have analyzed the case M = 2
and obtained a picture similar to that displayed for the case
M = 3 but with only two semi-circumferences centered at N
= 0.5 and N = 1.5 (the graphic is not shown here). One impor-
tant consequence of the graphic shown in Fig. 4 is that it can
be straightforwardly extended to obtain the representation for
the case with a value M > 3. Basically, it will involve a se-

0 0.25 0.5 0.75 1
0

1

2

3

Ρb

N

FIG. 3. Mean number of particles vs. bulk density for different radii of the
pore. The arrow, the asterisk and the values of R were described in Fig. 2.

0 0.5 1 1.5 2 2.5 3
0

0.25

0.5

0.75

1

N

Σ
N

FIG. 4. Standard deviation in N as a function of N for different radii of the
pore. The arrow, the asterisk and the values of R were described in Fig. 2.

quence of M semi-circumferences of unit diameter centered
at half-integer values of N along the abscissa axis. In particu-
lar, for a given R the curve will start at the origin (N, σ N) = (0,
0) and will collapse either onto the semi-circumference that
ends at the value N equal to the maximum number of particles
that fit in the cavity or onto the M-th semi-circumference in
case R is large enough.

It is to be noted that the outmost curve which connects
N = 0 with N = M can be analytically obtained by con-
sidering the limit of a very large cavity, V → ∞ (infinite
dilution). In this low-density limit we can replace Zi with
Zi

1 = V i = (
4π
3 R3

)i
and hence N and σ N become functions

only of the parameter a = z Z1. By following this procedure
we effectively reduce the system to an ideal gas (with up to
M particles). The exact analytic expressions for σ N(a) and
N(a) with M = 3 are parametrically plotted (using a as a pa-
rameter) in the outmost curve in Fig. 4. As a closing remark,
this analysis shows that any system with at most one particle
is described by the first semi-circumference, irrespective of
the nature of the particle and the confinement.

IV. THE MANY HS SYSTEM ONTO
A SPHERICAL WALL

In what follows, we draw attention to the implications
that the expression for �, obtained for the system with M
= 3, has on the surface-thermodynamic properties of the
many-body system. In particular, we will address on the HS
system in contact with a hard spherical wall in the low-density
limit. For each magnitude of the system, our main goal is to
find its exact power series in ρb up to the three-body term,
with the dependence on the curvature included through the
coefficients of the series. Our procedure is based on the ideas
developed in Ref. 12, which enable us to express the analyti-
cally known terms Zi(R) as a function of the set of measures
{V,A,R}. We begin by placing the dividing surface at R and
we use the same decomposition rule adopted in Ref. 13 (Eqs.
(28) and (29) therein). For the unknown Zi terms we assume a
generic dependence Zi(V,A,R). As a result, we obtain an ex-
pression for β� that is a function of V,A,R, and z. We then
fix M = 4 in Eq. (2) and calculate the magnitude X. By fol-
lowing standard procedures based on the inversion and com-
position of the power series we expand the expression for X as
a power series in the variable ρb. Then, we truncate the series
to the first term in which Z4 appears. The exact series of z(ρb)
truncated to third order in density, z = ρb + 4π

3 ρ2
b + 47π2

36 ρ3
b ,
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0 0.5 1 1.5 2 2.5
0.5

0.4

0.3

0.2

0.1

0

ΒP

ΒΓ

FIG. 5. Fluid-substrate surface tension vs. pressure. The filled circles and
squares correspond to simulation and thermodynamic integration data from
Ref. 21 and 22, respectively. The dashed line shows SPT values.20 The para-
metric plot of the power series βP(ρb) and βγ ∞(ρb) is shown by the contin-
uous line.

is sufficient for our purposes as we have verified that the
inclusion of the fourth order term does not modify our re-
sults. In addition, to obtain the planar-surface property we
consider in the series the limit R → ∞. Thus, we determine
in the planar limit the expressions for the fluid-substrate sur-
face tension γ ≡ ∂�/∂A|V,R and the adsorption per unit area
� ≡ V (ρ̂ − ρb) /A,

βγ∞ = −π

8
ρ2

b

(
1 + 149π

210
ρb

)
+ O(ρ4

b ), (16)

�∞ = π

4
ρ2

b

(
1 − 113π

420
ρb

)
+ O(ρ4

b ). (17)

Equations (16) and (17) exactly reproduce the first two terms
(the only known up to present) of the series expansion of
βγ ∞(ρb) and �∞(ρb) (Refs. 18 and 19) and are consistent
with the Gibbs adsorption isotherm �∞ = −∂γ ∞/∂μ to order
ρ3

b .
In Fig. 5 we show a plot of the surface tension vs. pres-

sure in the low pressure region, which is also the low-density
region. Our results are represented parametrically (βγ ∞(ρb),
βP(ρb)) using both, Eq. (16) and the exact third order virial
series βP = ρb + 2π

3 ρ2
b + 5π2

18 ρ3
b . The dashed line included in

this figure plots previous SPT results taken from Fig. 2 in
Ref. 20. Since all the plotted SPT versions are nearly indistin-
guishable in the range of pressure considered, we only include
the results of the CS-SPT and CS-SPTM (they collapse on a
unique curve) to make easy the examination of consistency
between SPT and our result. Also, the simulation and thermo-
dynamic integration data from Refs. 21 and 22 are indicated
by filled circles and squares. We note that simulation results
fall nicely on the SPT curve. On the other hand, the exact low-
density series adequately fits numerical results over the range
0 < βP � 0.6.

As it is well known, the relevant problem in statistical
mechanics regarding the dependence of the surface thermo-
dynamic properties on the curvature remains unresolved, even
for the HS fluid in contact with hard spherical walls. However,
following the procedure described above and writing the mag-

nitude X/X∞ as a double power series in the variables R−1 and
ρb, we obtain

γ (R)/γ∞ = 1 + δ∞ 2R−1 + δkR
−2 + O(R−3), (18)

�(R)/�∞ = 1 + ξj 2R−1 + ξkR
−2 + O(R−3). (19)

The complete expressions for γ (R) and �(R) in the limit
of both small ρb and large R is presented in Appendix. In
the latter two equations, 2R−1 and R−2 are the mean and
Gaussian curvatures of the spherical cavity, respectively. The
coefficient δ∞ denotes the radius-independent wall-fluid Tol-
man length. In fact, neither of the coefficients in these equa-
tions depends on R. We verified that Eqs. (18) and (19) hold
for fluids in contact with a hard spherical wall, irrespective of
whether the fluid is inside the cavity (R > 0) or outside of a
fixed hard sphere (R < 0, also known as an empty cavity in a
bulk fluid).13 To first order in density the coefficients δ∞, δk,
ξj and ξk can be computed from

δ∞
.= 0.34299 ρb, δk

.= −0.05555 + 0.19933 ρb,

ξj
.= 0.51448 ρb, ξk

.= −0.05555 + 0.29899 ρb. (20)

No numerical simulation results have been published up to
present for these magnitudes. The expressions for both δ∞
and δk determined by the above procedure are consistent with
those recently reported in Ref. 13, derived from an exact
calculation for a few-body system treated within the frame-
work of the canonical ensemble. Figure 6 displays the Tol-
man length vs. density. There, the continuous line with the
open circle shows the power series of δ∞(ρb) around ρb

= 0 truncated to the linear order, Eq. (20). This figure also
includes the estimates of δ∞ obtained by Siderius et al.20 and
Chatterjee et al.23 using six different versions of SPT, which
are plotted using different styles of non-continuous lines. The
first observation we make is that the general trend of the SPT
curves is well reproduced by our result. In what follows we
will concentrate in the low-density region of this figure for
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FIG. 6. Tolman length vs. density. The continuous curve with the open cir-
cle corresponds to the linear dependence in ρb from this work. The six SPT
versions from Refs. 20 and 23 are shown by non-continuous curves: SPT3
(dotted line), SPT6 (short dashed line), CS-SPT (dashed line), SPT6M (short
dashed-dot line), CS-SPTM (dashed-dot line), and ESPT (dashed-dot-dot line
that lies above all other lines). The graphic includes at the top left corner a
close up of the curves around ρb = 0.
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which we know the exact values of the δ∞-intercept and the
slope at ρb = 0 of the true δ∞(ρb) function. By adopting the
nomenclature used in Ref. 20, we note that the SPT proposals
CS-SPTM, SPT6, SPT6M, and SPT3 are nearly indistinguish-
able as ρb becomes 0. In view of this, we address our anal-
ysis of these four curves directly to the study of CS-SPTM.
Interestingly, among the six SPT theories, the CS-SPT and
CS-SPTM are the unique ones that provide analytic formulae
for δ∞(ρb), and thus we can determine the corresponding se-
ries expansion. For CS-SPT and CS-SPTM we obtain slopes
of 0.0970 and 0.2675, respectively. The comparison of CS-
SPT and its modified version CS-SPTM with the exact result,
0.34299, reveals that the modified approach to SPT signif-
icantly improves the description of the δ∞ behavior at low
density. Regarding the ESPT curve for δ∞(ρb), its behavior is
unknown in the range 0 < ρb < 0.1.

V. SUMMARY

In this work, we have introduced a new formalism to an-
alyze the statistical mechanics of few-body open systems. It
is based on a grand canonical ensemble with a restriction in
the maximum number of particles. The main feature of the
new GCE formalism is that it incorporates the fluctuation in
the number of particles, measured by σ N. On the basis of this
new grand canonical scheme, we have calculated the parti-
tion function of the HS fluid-like system composed of at most
three particles confined in a spherical cavity. Using this parti-
tion function we obtained the analytic expressions for several
thermodynamic properties of the system. Among all the prop-
erties analyzed for this system, the dependence of σ N on N is,
in virtue of its simplicity, symmetry, and beauty, the most in-
teresting one. We are convinced that it should deserve more
attention in future studies about the statistical mechanics of
confined fluids.

We have also investigated the thermodynamic properties
of the many-body system of HS in contact with a hard spher-
ical wall. By adopting a power series representation we re-
ported new expressions for both the surface tension and ad-
sorption, as a function of the density and curvature. In the
planar wall limit R → ∞ our results are consistent with those
from previous results published in the literature. We used the
new expression for the surface tension to obtain the fluid-wall
Tolman length up to the first order in density. We conclude
that the general trend of δ∞ derived from the new formal-
ism adequately agrees with SPT results presented by Siderius
et al.20 In particular, from the comparison of our exact result
with that obtained within the framework of SPT, we found
that the highest level of consistency in δ∞(ρb) at zero density
occurs for the CS-SPTM, SPT6, SPT6M, and SPT3 versions al-
though the slope obtained in these cases differs by about 20%
from the exact value. We feel that our findings concerning
the description of HS systems are important as they represent
new analytic results that contribute to better understand the
long-standing problem of the thermodynamics of confined HS
systems and their surface-related properties. Moreover, our

results may provide new insights for future improvements on
DFT which are based on a reference fluid of HS.
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APPENDIX A: POWER SERIES FOR βγ AND �

We present here the expressions for βγ and � up to the
third order in density

βγ =
(
a2 − c2k

R2

)
ρb

2 +
(

a3 + 8

3
πa2 − 2c3j

R

− 3c3k + 8πc2k

3R2

)
ρb

3, (A1)

� =
(
−a2 + c2k

R2

)
2ρb

2 +
(

− 9a3 + 16πa2

3
+ 8c3j

R

+ 9c3k + 16πc2k

3R2

)
ρb

3, (A2)

with a2 = −π
8 , a3 = 137π2

560 , c2k = − π
2432 , c3j = 9π

√
3+16π2

1536 ,

c3k = 781π2

36288 . In both equations the coefficients of ρb
3 were

truncated at order R−2.
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