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1 Introduction

The low energy limits of D-dimensional string theories compactified on T d are invariant
with respect to the global O(d, d;R) group [1]. There are two distinct types of elements in
this group. On the one hand, the geometric subgroup GL(d)× R

d(d−1)
2 descends from the

diffeomorphisms and two-form shifts of the higher dimensional theory. On the other hand,
the complement of this subgroup is not associated to a symmetry of the higher dimensional
theory, and so it constitutes a symmetry enhancement produced by the toroidal truncation.

The compactification from the higher to the lower dimensional action is achieved
through Kaluza-Klein (KK) reduction. When only the massless modes are kept, KK re-
ductions involve two steps. First, the isometries of the background are imposed on the
fields, which simply amounts to removing their dependence on the toroidal coordinates.
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The second step is a rearrangement of degrees of freedom, namely field redefinitions. The
fields of the parent action, which constitute the multiplets of the higher dimensional diffeo-
morphisms, are decomposed into multiplets of the lower dimensional diffeomorphisms and
gauge symmetries. While it is in the first step that the symmetry is enhanced to O(d, d;R),
the second step is intended to make this symmetry (and others) manifest.

Recently, it was shown in [2] that the non-geometric elements of O(d, d;R), which are
parameterized by a rigid bi-vector β, act covariantly on the multiplets of the higher dimen-
sional diffeomorphisms. In other words, the β transformations preserve the structure of
the higher-dimensional fields, which permits to avoid the second step of the KK procedure.
This in turn allows to act with β transformations on the higher dimensional action, and to
assess/verify its invariance under the assumption of isometries. Even if one is actually sim-
ply dealing with the O(d, d;R) invariance of the lower dimensional theory, effectively this
looks like a symmetry of the higher-dimensional action, and so we dubbed it β symmetry of
supergravity. For all practical purposes, this can be conceived as a symmetry of the higher
dimensional theory, whose effect in lower dimensions serves to enhance GL(d)×R

d(d−1)
2 to

the full O(d, d;R) group. Interestingly, since this symmetry mixes the NSNS fields, it fixes
their relative couplings and might then become a powerful tool to compute string theory
interactions.

The β-invariance of the string effective actions to first order in α′ was proved in [2]. We
presented the β transformation rules, their first order corrections, the closure of the symme-
try algebra and the invariance of the Lagrangian, in the so called generalized Bergshoeff-de
Roo scheme [3]. In this paper, we further explore several features of the β symmetry of
string supergravities.

In section 2 we derive β symmetry from Double Field Theory (DFT) [4, 5]. We use the
background independent frame-like formulation of DFT [6, 7], restricted by the so-called
strong constraint. The formalism is manifestly invariant under the global O(D,D;R)
duality group, which contains the β elements already embedded into GL(D), ready to act
on the D-dimensional fields that parameterize the duality multiplets. Of course, they are
precisely the elements that determine the β symmetry of supergravity. Here we derive the
β transformation rules to first order in α′ in the DFT scheme of supergravity, following the
standard procedure of solving the strong constraint by annihilating the dual derivatives,
and gauge-fixing the double-Lorentz symmetry. In other words, since it is implied by DFT,
β symmetry is a necessary condition for the uplift of supergravity to DFT, at least to
this formulation. As such, it can serve as a tool to understand potential obstructions to
manifest duality covariant uplifts of supergravity interactions.

Before moving from the DFT scheme of supergravity to other more conventional
schemes, we discuss various scheme-independent results in section 3. β transformations
to lowest order are unique, and preserve the Lagrangian exactly. The two-parameter first
order corrections derived from DFT also leave the Lagrangian invariant and define a symme-
try algebra that closes off-shell. We also display a useful four-parameter trivial deformation
of the first order transformations that leave the action invariant (i.e. the variation of the
Lagrangian leads to a total derivative). While the symmetries that leave the Lagrangian in-
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variant close off-shell, we show that the transformations that preserve the action but not the
Lagrangian also close, but on-shell. These, and other scheme independent ambiguities in the
structure of the first order corrections to β symmetry are discussed in detail in this section.

While section 4 is devoted to recover all the results of [2], by performing the field
redefinitions that connect the DFT scheme with the generalized Bergshoeff-de Roo scheme,
in section 5 we show how β symmetry works in the Metsaev-Tseytlin scheme. In all
sections the results are presented for a bi-parametric theory, such that the bosonic and
heterotic strings are obtained for specific choices of the parameters. In particular, we show
that β symmetry in the Metsaev-Tseytlin scheme of the bosonic string admits a purely
metric formulation, as expected. Instead, the β-invariance of the Chern-Simons form in
the heterotic string is necessarily frame-like. We discuss both cases separately, providing
the transformation rules that leave the Lagrangian invariant, as well as the deformations
that preserve the action, and the brackets of the symmetry algebra.

We end with some conclusions in section 6. Notation, definitions and side computations
are contained in three appendices.

2 β transformations from Double Field Theory

In this section we derive the β transformations of supergravity to first order in α′ from
their action in the strong constrained and background independent frame formulation of
Double Field Theory (DFT) [6, 7]. The procedure requires solving the strong constraint in
the supergravity section, and applying a gauge fixing of the double Lorentz symmetry, after
which it systematically provides the β transformation rules of the supergravity fields in the
DFT scheme. Other supergravity schemes can then be reached from this one through field
redefinitions.

The field content of DFT involves a pair of generalized frames EMa and EM
a and a

generalized dilaton d. The symmetries that we will deal with in this paper are O(D,D),
with invariant metric ηMN , and two independent Lorentz symmetries with invariant metrics
ηab and ηab, each one acting on its respective frame. All indices are raised and lowered with
their corresponding η invariant metric. The generalized frames are constrained to satisfy
the identities

EMaE
M
b = ηab , EMaE

M
b = 0 , EMaE

M
b = ηab . (2.1)

The fields are formally defined on a doubled space and so are acted on by derivatives ∂M ,
which are strong constrained, meaning that the O(D,D) invariant contraction of derivatives
vanishes.

Infinitesimally, O(D,D) acts through a constant antisymmetric matrix hMN , and each
Lorentz group through independent local antisymmetric parameters Λab and Λab. While
the generalized dilaton is invariant, the two generalized frames transform as

δEM
a = hM

NEN
a + EM

bΛba + EM
b∆b

a , (2.2a)

δEM
a = hM

NEN
a + EM

bΛb
a − EM

b∆a
b . (2.2b)
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The last terms in these expressions account for the generalized Green-Schwarz transforma-
tion [3, 8–11], consisting on all-order higher-derivative deformations of the double Lorentz
transformations. In particular, the first order deformation is given by

∆(1)
ab = a

2FacdDbΛcd +
b

2DaΛcdFbcd , (2.3)

where we have defined
Da = EMa∂M , Da = EMa∂M , (2.4)

and

Fabc = DaEM [bE
M
c] + 2D[bE

M
c]EMa , (2.5a)

Fabc = DaEM [bE
M
c] + 2D[bE

M
c]EMa . (2.5b)

The parameters a and b interpolate between generalized Green-Schwarz transformations
with respect to the two different Lorentz factors. They were originally found in [12],
and give rise to a two-parameter family of theories which contains the bosonic string
(a, b) = (−α′,−α′), the heterotic string (a, b) = −(α′, 0) and more general deformations like
those in [13]. Interestingly, to first order in α′ DFT is defined through a Lagrangian that
is invariant under all these symmetries [3], and transforms as a scalar with respect to gen-
eralized diffeomorphisms. This property will be inherited by the supergravity Lagrangian
that descends from it, and also by all others connected by field redefinitions.

Making contact with supergravity degrees of freedom requires performing a GL(D)
decomposition of O(D,D), with respect to which the indices split as M = (µ, µ). Selecting
the supergravity section as a solution of the strong constraint, simply amounts to setting
∂M = (0, ∂µ). The decomposition of the invariant metrics is given by

ηMN =
(
0 δµν
δνµ 0

)
, ηab = −gab , ηab = gab , (2.6)

where gab and gab are Minkowski metrics. The most general GL(D) covariant parameteri-
zation of the generalized fields is

EM
a = 1√

2

(
ēµcg

ca

(b̄µν − ḡµν)ēνcgca

)
, EM

a = 1√
2

(
ēµcg

ca

(ḡµν + b̄µν)ēνcgca

)
, e−2d =

√
−ḡe−2ϕ̄ ,

where we have introduced a two-form b̄µν , a dilaton ϕ̄ and a pair of vielbeins ēµa and ēµ
a

that generate the same metric ḡµν

ḡµν = ēµ
agabēν

b = ēµ
agabēν

b , (2.7)

which raises and lowers the GL(D) indices. Finally, the element in the algebra of O(D,D)
splits into constant components

hM
N =

(
aµν βµν

Bµν −aνµ

)
, (2.8)
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where aµν generates rigid GL(D) rotations, Bµν produces rigid shifts of the two-form and
βµν is a bi-vector that mixes the gravitational and two-form sector. In this paper we
will consider aµν = Bµν = 0 because their action in supergravity is trivial, and focus
only on β transformations. Notice that in DFT the derivatives belong to the fundamental
representation of O(D,D), and so transform linearly under O(D,D). In particular, the β
elements break the choice of section

δβ∂M · · · = hM
N∂N · · · = (βµν∂ν , 0) . . . , (2.9)

which must be restored by imposing the constraint

βµν∂ν · · · = 0 . (2.10)

To establish a connection with supergravity, we must break the double Lorentz sym-
metry to a single Lorentz transformation and gauge fix the two vielbeins to a single one

ēµ
a = ēµ

aδaa = ēµ
aδaa . (2.11)

To this end we have introduced Kronecker deltas to force the two Lorentz groups to carry
the same set of indices a, b, c, . . . , which will be the standard Lorentz indices in supergravity.
The gauge fixing applied to the flat derivatives yields

Da = − 1√
2
δaa Da , Da =

1√
2
δaa Da , Da = ēµa∂µ , (2.12)

and to the generalized fluxes (see appendix A for definitions.)

Fabc =
1√
2
δaaδ

b
bδ
c
c

(
wabc −

1
2Habc

)
, (2.13)

Fabc =
1√
2
δaaδ

b
b
δcc

(
wabc +

1
2Habc

)
. (2.14)

Because we have gauge fixed the double Lorentz symmetry to its diagonal subgroup,
the two Lorentz parameters are no longer independent. We must then explore how they
are related, and what is the most convenient way to express them in terms of the Lorentz
parameter in supergravity. To achieve this, we write the two Lorentz invariant metrics in
terms of a single one

gab = δaaδ
b
bgab = δaaδ

b
bgab , (2.15)

and also express all the Lorentz parameters (including the generalized Green-Schwarz de-
formation ∆) in terms of the same set of indices

Λab = δaaδ
b
b
Λab , Λab = δaaδ

b
bΛab , ∆(1)

ab = δaaδ
b
b∆

(1)
ab . (2.16)

In this way, we end up with two different transformations for the gauge fixed vielbein, each
one coming from the transformation of each component of the generalized frame

δEµa → δēµa = ēµb
(
βb
cb̄ca − βba − Λba −∆(1)

ba

)
, (2.17a)

δEµa → δēµa = ēµb
(
βb
cb̄ca + βba + Λba −∆(1)

ab

)
, (2.17b)
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where
∆(1)
ab = −a4DbΛcd

(
wacd −

1
2Hacd

)
+ b

4DaΛ
cd
(
wbcd +

1
2Hbcd

)
. (2.18)

These transformations must obviously coincide, which imposes the required relation be-
tween the double Lorentz parameters

Λab = −Λab − 2∆(1)
[ab] − 2βab . (2.19)

Up to redefinitions of the standard Lorentz parameter of supergravity Λab, this equation
is parametrically solved as

Λab = −Λab − βab −∆(1)
[ab] , Λab = Λab − βab −∆(1)

[ab] . (2.20)

Combining these expressions with (2.18) and keeping only terms up to first order in α′, we
find that Lorentz and β transformations of the gauge fixed fields in the DFT scheme of
supergravity read

δēµa = −ēµb
(
βa

cb̄cb + Λab −∆(1)
(ab)

)
, (2.21a)

δϕ̄ = 1
2
(
βµν b̄µν +∆(1)

a
a
)
, (2.21b)

δb̄µν = −βµν − b̄µρβ
ρσ b̄σν − 2ēµaēνb∆(1)

[ab] , (2.21c)

where

∆(1)
ab ≡ a+ b

4

(
D(aΛcdwb)cd −

1
2D(aβ

cdHb)cd

)
+ b− a

4

(1
2D(aΛcdHb)cd −D(aβ

cdwb)cd

)
+a+ b

4

(1
2D[aΛcdHb]cd −D[aβ

cdwb]cd

)
+ b− a

4

(
D[aΛcdwb]cd +

1
2D[aβ

cdHb]cd

)
.

(2.22)

In summary, we have derived the first order deformations of Lorentz and β transforma-
tions in the DFT scheme of supergravity, namely the scheme in which the fields are given
by a gauge fixing of the duality covariant components of the generalized fields in DFT.

It is instructive to cast the result in the form given in [2], which allows to find purely
flattened expressions for the transformation rules. Defining1

δēab = ēµa δēµb , δϕ̄ = 1
2δēa

a , δb̄ab = ēµaē
ν
b δb̄µν , (2.23)

the leading order transformation rules are

δ(0)ēab = −b̄acβcb + Λab , (2.24a)
δ(0)b̄ab = −βab − b̄acβ

cdb̄db , (2.24b)

1It is important to note that, contrary to the conventions in the rest of the paper, here δbab is the flat
version of δbµν and not the variation of bab.
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and the first order α′-corrections are

δ
(1)
Λ ēab =

a+ b

4 D(aΛcdwb)cd +
b− a

8 D(aΛcdHb)cd , (2.25a)

δ
(1)
Λ b̄ab = −a+ b

4 D[aΛcdHb]cd −
b− a

2 D[aΛcdwb]cd , (2.25b)

and

δ
(1)
β ēab = −a+ b

8 D(aβ
cdHb)cd −

b− a

4 D(aβ
cdwb)cd , (2.26a)

δ
(1)
β b̄ab =

a+ b

8 D[aβ
cdwb]cd −

b− a

4 D[aβ
cdHb]cd . (2.26b)

These transformations can be cast in other schemes, performing field redefinitions
{ē, ϕ̄, b̄} → {e, ϕ, b} of the form

ēµ
a = eµ

b(δab + F ab) , eµ
a = ēµ

b(δab − F ab) , (2.27a)

ϕ̄ = ϕ+ 1
2Fa

a , b̄µν = bµν −Gµν , (2.27b)

where both Fab and Gµν start at first order in α′. Therefore, for the purpose of obtaining
the first order deformations of the transformation rules, these functions can be expressed in
terms of either the new (unbarred) or the previous (barred) set of fields in the DFT scheme.
Since we are only interested in connecting with schemes that preserve the generalized
measure

√
−ḡe−2ϕ̄ = √

−ge−2ϕ, the redefinition of the dilaton is determined by that of the
vielbein.

The functions Fab and Gµν define the scheme, and the Lorentz and β transformations
in different schemes are given, up to redefinitions of the parameters, by

δeab = −(bac −Ga
c)βcb + Λab +∆(1)

(ab) −∆Fba , (2.28a)

δbab = −βab − bacβ
cdbdb − 2∆(1)

[ab] − 4β[a
cF(b]c) + 2βcdbc[aGb]d + eµae

ν
bδGµν , (2.28b)

δϕ = 1
2δea

a , (2.28c)

where all the fields belong to the new (unbarred) scheme, and

∆Fab = δFab − ΛcaFcb − ΛcbFac , (2.29)

denotes the non-covariant transformation of the field redefinition.
In forthcoming sections we will specify the functions Fab and Gµν that connect the

DFT scheme with those of Bergshoeff-de Roo (BdR) and Metsaev-Tseytlin (MT).

3 Scheme independent statements

Although the first order corrections to the β transformations depend on the scheme, there
are important issues that are independent of field redefinitions. In this section we discuss
some of these scheme independent questions: β symmetry at leading order, redundancies
in the β transformation rules at O(α′), the relation between closure of the symmetry
algebra and the invariance of the action/Lagrangian, and the effect of field and parameter
redefinitions in the closure.
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3.1 β symmetry at leading order

The two-derivative DFT Lagrangian descends to the universal two derivative NS-NS La-
grangian

L(0) = R− 4(∇ϕ)2 + 4□ϕ− 1
12H

2 , (3.1)

which must then be invariant under the transformations (2.24),

δβeab = −bacβcb , δβbab = −βab − bacβ
cdbdb , δβϕ = 1

2δea
a , (3.2)

whenever the constraint (2.10) holds, namely

βµν∂ν · · · = 0 . (3.3)

Using that βµν is constant2 and antisymmetric, the following useful identities are obtained

∇aβ
bc = 2wda[bβc]d , βabwabc = 0 , ω[ab]

cβad1 βbe2 = 0 , (3.4)

where the last one is particularly useful for the study of the symmetry algebra. It is
instructive to compute the β transformations of many of the tensors and connections that
appear in supergravity

δβ
(√

−ge−2ϕ
)
= 0 , (3.5a)

δβwcab = β[a
dHb]cd −

1
2βc

dHabd , (3.5b)

δβHabc = −3∇[aβbc] , (3.5c)

δβ(Daϕ) =
1
2β

cdHacd , (3.5d)

δβ(∇a∇bϕ) =
1
2∇(a

(
βcdHb)cd

)
− βc(aHb)cd∇dϕ , (3.5e)

δβRab
cd = −∇[a

(
βb]

eHe
cd
)
−∇[c

(
βd]eHeab

)
,

+
(
∇[aβ

[ce −∇[cβ[a
e −∇eβ[a

[c
)
Hd]

b]e , (3.5f)

δβRab = −∇c
(
βd(aHb)cd

)
−∇(a

(
βcdHb)cd

)
− 1

2∇(aβ
cdHb)cd , (3.5g)

δβR = −2∇a
(
βbcHabc

)
− 1

2∇
aβbcHabc . (3.5h)

These identities can now be used to fix the couplings of a generic combination of gauge
invariant terms, by requiring β symmetry. Indeed,

0 = δβ
[√

−gf(ϕ)
(
R+ c□ϕ+ d (∇ϕ)2 + eH2

)]
=

√
−gf(ϕ)

[
(c− 4)∇a

(
βbcHabc

)
− (12e+ 1)∇aβbcHabc + 2(c+ d)∇aϕβbcHabc

]
+1
2
√
−gβabbab

(
2f(ϕ) + f ′(ϕ)

) [
R+ c□ϕ+ d (∇ϕ)2 + eH2

]
, (3.6)

2Here, β is constant because we are dealing with tori. We thank E. Ó Colgáin for pointing out that a
non-constant β could be connected to Yang-Baxter deformations.
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determines c = −d = 4, e = − 1
12 and f(ϕ) = e−2ϕ, in perfect agreement with supergrav-

ity (3.1).
Note that β transformations realize the non-geometric sector of O(d, d) as a hidden

symmetry in the standard supergravity scheme. Instead, they become both geometric and
manifest in the so-called β-supergravity scheme [14–16], where the non-geometric sector is
realized by the B-shifts, which should then fix the corresponding couplings.

Finally, we notice that β and Lorentz transformation rules close off-shell to lowest
order as follows

[δ1 , δ2] = −δ12 , Λ12ab = 2β1[a
cβ2 b]c + 2Λ1[a

cΛ2 b]c . (3.7)

3.2 A four-parameter redundancy of first order transformations

When the variation of the dilaton leaves the measure √
−ge−2ϕ invariant, i.e. δϕ = 1

2δea
a,

the variation of L(0) can be decomposed as

δL(0) = Eab δeab + Bab δbab +Da

[
2 Dbδe

ab − 1
2H

abcδbbc

]
. (3.8)

Here we defined the operator

DaX = e2ϕ∇a

(
e−2ϕX

)
= ∇aX − 2∇aϕX , (3.9)

acting on a generic tensor X. Although it is not formally a derivative as it does not obey
the Leibniz rule, it leads to a total derivative when inserted into the action, and so can be
discarded in such context. Additionally, we introduced the tensors that define the equations
of motion of the frame Eab and the two-form Bab

Eab = −2
(
Rab + 2∇a∇bϕ− 1

4HacdHb
cd
)
, (3.10)

Bab =
1
2DcHab

c . (3.11)

A useful observation is that, if the total derivative term in (3.8) is ignored, namely if
one focuses on invariance of the action instead of the Lagrangian, δL(0) (3.8) vanishes up
to total derivatives for variations of the form

δeab = T 1
[(ab)(cd)]E

cd + T 2
(ab)[cd]B

cd , (3.12)
δbab = −T 2

(cd)[ab]E
cd + T 3

[[ab][cd]]B
cd . (3.13)

The T tensors can depend on anything as long as their symmetries are respected. In
particular, if they are linear in the parameters of the transformation, and contain no
derivatives, they account for first order deformations that leave the action invariant.

For β transformations, there are only four possible deformations of this type to first
order in α′, namely

T 1
ab
cd = κβ(a

(cgb)
d) , (3.14a)

T 2
ab
cd = γβ(a

[cgb)
d] + χgabβ

cd , (3.14b)
T 3
ab
cd = ρβ[a

[cgb]
d] , (3.14c)
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which in turn define the following four-parameter (γ, χ, κ, ρ) family of first order transfor-
mations

δ
(1)
β eab = γβc(aBb)c + χgabβcdBcd + κβ(a

cEb)c , (3.15a)

δ
(1)
β bab = −γβc[aEb]c − χβabEcc + ρβc[aBcb] . (3.15b)

This result is scheme independent, as it simply amounts to a first order invariance of the
lowest order action. Then, in any scheme, adding these first order deformations to the β
transformations, respects the invariance of the action to first order, for whatever values of
(γ, χ, κ, ρ). Let us emphasize that, when the transformations are deformed by these terms,
the invariance of the Lagrangian is only achieved up to total derivatives.

Besides these, there are still extra symmetries of the two-derivative action, of the form

δ
(1)
β eab = f[ab](β, ψi) +∇(ahb)(β, ψi) , (3.16a)

δ
(1)
β bab = ∇[atb](β, ψi) +Habch

c(β, ψi) , (3.16b)

where f, h and t are arbitrary functions, that can be interpreted as due to β and ψi field
dependent reparameterizations of Lorentz, diffeomorphisms and gauge parameters. It is
worth noticing that, while f and t describe an exact symmetry of the Lagrangian, h is in
general only a symmetry of the action. Exceptions can occur, for instance when ha ∼ βabX

b

for arbitrary functions Xb, because diffeomorphisms with parameter ξµ = βµνXν leave the
Lagrangian exactly invariant. In fact in the conventional KK reduction, the parameter
ξµ = βµνXν has only internal components and so represents a gauge transformation, which
leaves the Lagrangian invariant. We will go back to the role of reparameterizations in
subsection 3.4.

In conclusion, any first order deformation of the β transformation rules that leave the
four-derivative action invariant, is determined up to the four parameters γ, κ, χ, ρ and three
functions f, h, t.

We would like to emphasize that the deformations (3.15) cannot be eliminated (either
completely or partially) by field and/or parameter redefinitions. This readily follows from
the observation that the vanishing of the total derivative in (3.8) is a necessary condition
for the existence of field and/or parameter redefinitions that cancel (3.15).

Indeed, suppose we start with a generic transformation depending on all the parameters
a, b, γ, χ, ρ, κ, and some choice of the last four could be absorbed by a field and/or parameter
redefinition. In the scheme defined by that particular choice, the symmetry transformations
would reduce to (2.28) for some unknown F and G. Since (2.28) are related to (2.26) by
field redefinitions and (2.26) preserve the Lagrangian exactly, we conclude that there is no
such choice if the original Lagrangian was not exactly invariant. In fact, the invariance of
the Lagrangian cannot be modified by field and/or parameter redefinitions.

Moreover, it is relatively straightforward to verify that no non-trivial choice of param-
eters can cancel the total derivative. Actually, the problem can be simplified as γ, χ (κ, ρ)
lead to odd (even) powers of the field strength H, so they must cancel separately.
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3.3 Invariance of the action implies closure of the symmetry algebra

So far we have found the symmetries that leave the first order Lagrangian (in the DFT
scheme) invariant. Now we point out that invariance of the Lagrangian with respect to
a complete set of symmetries implies that the algebra of transformations closes off-shell.
Later, we will show that the deformations discussed in the previous section, i.e. trans-
formations that depend on the equations of motion and leave the action (instead of the
Lagrangian) invariant, still respect closure, but only on-shell. Again, the contents of this
section are scheme independent. Similar results along these lines can be found in [17].

The algebra of transformations that leave a Lagrangian invariant is expected to close
on general grounds. To see this, consider a generic Lagrangian depending on fields ψi
and their derivatives up to an arbitrary order, namely L(ψi, ∂µψi, ∂µ∂νψi , . . .). We assume
that terms with derivatives of different orders are independent. If L is invariant under a
complete set of local and global transformations, infinitesimally parameterized by ζA, then

0 = δζL =
∞∑
n=0

∂L

∂(∂nψi)
∂nδζψi =

∂L

∂ψi
δζψi +

∂L

∂(∂µψi)
∂µδζψi +

∂L

∂(∂µ∂νψi)
∂µ∂νδζψi + . . . ,

(3.17)

where the dots stand for contributions depending on higher-order derivatives. The above
sum vanishes if and only if the variation is performed with respect to a symmetry trans-
formation.

Now we consider the commutator of two variations

0 = [δζ1 , δζ2 ]L =
∞∑
n=0

∂L

∂(∂nψi)
∂n
(
[δζ1 , δζ2 ]ψi

)
(3.18)

+2
∞∑
n=0

∞∑
m=0

∂2L

∂(∂nψi)∂(∂mψj)
(
∂nδζ[1ψi

) (
∂mδζ2]ψj

)
.

The last term here cancels due to the symmetry under the exchange (n, i) ↔ (m, j) and the
antisymmetry with respect to 1 ↔ 2. Comparing the first term with (3.17), we conclude
that [δζ1 , δζ2 ]L vanishes if and only if [δζ1 , δζ2 ]ψi amounts to a symmetry transformation,
namely

[δζ1 , δζ2 ]ψi = −δζ12ψi , (3.19)

for some parameter (bracket) ζ12. Since we only assumed that the Lagrangian is invariant,
we conclude that invariance of the Lagrangian implies that the symmetry algebra closes
off-shell.

Now we deform the transformations that leave the Lagrangian invariant as discussed in
the previous subsection, i.e. we consider the deformations (3.15) with parameters (γ, χ, κ, ρ)
that are first order in α′. Then, the l.h.s. of (3.19) becomes, to first order,

[δζ1 + δ
(γ,χ,κ,ρ)
ζ1

, δζ2 + δ
(γ,χ,κ,ρ)
ζ2

]ψi = [δζ1 , δζ2 ]ψi + 2δ(0)
ζ[1
δ

(γ,χ,κ,ρ)
ζ2]

ψi + 2δ(γ,χ,κ,ρ)
ζ[1

δ
(0)
ζ2]
ψi . (3.20)

Here, the first term in the r.h.s. gives the bracket δζ12ψi discussed above. The last term
vanishes on-shell because the (γ, χ, κ, ρ) variations depend on the lowest order equations of
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motion. The second term is more subtle, because it involves variations of the equations of
motion. Under the standard symmetries they transform covariantly, but we have to make
sure that the same is true for the lowest order β transformations. Indeed, we find that β
transformations mix the equations of motion of the vielbein and two-form as follows

δ
(0)
β Eab = −4βc(aBb)c , δ

(0)
β Bab = βc[aEb]c , (3.21)

which then implies that the second term in the r.h.s. of (3.20) also vanishes on-shell. In
summary, the deformed transformations that leave the action invariant, close on-shell

[δζ1 + δ
(γ,χ,κ,ρ)
ζ1

, δζ2 + δ
(γ,χ,κ,ρ)
ζ2

]ψi = −(δζ12 + δ
(γ,χ,κ,ρ)
ζ12

)ψi + . . . , (3.22)

where the dots represent terms proportional to the equations of motion, and we have the
freedom to add the last term in (3.22) as it also vanishes on-shell.

3.4 Effect of field and parameter redefinitions on the symmetry algebra

In section 2 we examined the effect of field redefinitions on the transformation rules, when
moving from one scheme to another. Here we further explore the role of field and parameter
redefinitions on the bracket.

Even though field redefinitions preserve the closure of the symmetry algebra, the precise
form of the bracket could be altered. Indeed, consider fields ψi satisfying

[δζ1 , δζ2 ]ψi = −δζ12(ψ)ψi , (3.23)

where we have made explicit that the bracket ζ12(ψ) could eventually be field dependent.
Let us consider the field redefinition

ψi → ψ′
i = ψi +∆ψi = ψi +

∑
ai
j1j2...∂n1ψj1∂

n2ψj2 . . . (3.24)

Here ∂n denotes derivatives of order n = 0, 1, 2, . . . and ellipsis stand for extra field depen-
dence. So, it parameterizes a generic field redefinition with no restriction on the number
of fields and derivatives thereof. The bracket transforms the new field as

[δζ1 , δζ2 ]ψ′
i = [δζ1 , δζ2 ]ψi +

∑
ai
j1j2...∂n1 ([δζ1 , δζ2 ]ψj1) ∂n2ψj2 . . .

+
∑

ai
j1j2...∂n1ψj1∂

n2 ([δζ1 , δζ2 ]ψj2) · · ·+ . . .

= −δζ12(ψ)ψ
′
i , (3.25)

where in the first equality we used a symmetry argument similar to the one followed
in (3.18), implying that terms where δζ1 and δζ2 act on different fields cancel each other
after antisymmetrization of indices (1 ↔ 2).

Plugging the derivative expansion of the old bracket at O(α′)

ζ12(ψ) = ζ
(0)
12 (ψ) + ζ

(1)
12 (ψ) , (3.26)

into (3.24), we get the new bracket

[δζ1 , δζ2 ]ψ′
i = −δζ′12(ψ′)ψ

′
i , ζ ′12(ψ′) := ζ12(ψ′)− ∂ζ

(0)
12

∂ψi
∆ψi , (3.27)
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where we have considered that ζ(0)
12 eventually depends on the fields ψi, but not on deriva-

tives thereof. It is worth noticing here that in general the bracket gets no corrections after
a field redefinition, because the leading order bracket ζ(0)

12 is in general field independent.
Although this is the case for diffeomorphisms, Lorentz and gauge transformations, for β
transformations it is not (see appendix B).

Redefinitions of the symmetry parameters are more subtle. Sometimes it is convenient
to redefine them so that the transformation rules look more suitable. For instance, an
antisymmetric piece in δ

(1)
β eab can be canceled with an appropriate choice of the function

f[ab] in (3.16). To see the impact on the bracket, take two equivalent transformations
differing in a reparameterization

δ̃ζ = δζ + δ∆ζ , (3.28)

where δζ is a symmetry transformation with a known bracket and ∆ζ = ℓ(ζ, ψi) is a sub-
leading shift depending on the old parameters ζ as well as the fields ψi of the invariant
theory. In our case ζ will represent the collective parameter ζn = (ξµ, λν ,Λab, βµν), contain-
ing diffeomorphism, gauge, Lorentz and β parameters. The new bracket can be expressed
in terms of the old one as[

δ̃ζ1 , δ̃ζ2

]
ψi = [δζ1 , δζ2 ]ψi + 2δζ[1δ∆ζ2]ψi + 2δ∆ζ[1δζ2]ψi . (3.29)

The first term gives the old bracket, which is assumed to be known,

[δζ1 , δζ2 ]ψi = −δζ12ψi = −δ̃ζ12−∆ℓ12ψi , (3.30)

where ∆ℓ12 = ℓ(ζ12, ψi) is written in terms of the same set of functions ℓ introduced
above, and

ζ12 = g(ζ1, ζ2, ψi) , (3.31)

defines the old bracket for certain known functions g.
The second and third factors in (3.29) can be written as

2δζ[1δ∆ζ2]ψi + 2δ∆ζ[1δζ2]ψi =
[
δζ1 , δ∆ζ2

]
ψi − (1 ↔ 2) . (3.32)

We can split
[
δζ1 , δ∆ζ2

]
ψi into a variation with ∆ζ fixed and δζ̂12

ψi with ζ̂12 = δζ1(∆ζ2).
The former can be cast in terms of the old bracket as[

δζ1 , δ∆ζ2

]
ψi

∣∣∣∣
∆ζ

= −δ∆g12ψi , (3.33)

where ∆g12 = g(ζ1,∆ζ2, ψi), while δζ̂12
ψi is non trivial when ∆ζ is field dependent. Taking

into account that δ∆g12 = δ̃∆g12 and δζ̂12
= δ̃ζ̂12

up to O(α′2), the bracket after reparame-
terization turns out to be

ζ
(new)
12 = ζ

(old)
12 −∆ℓ12 + 2∆g[12] − 2ζ̂[12]. (3.34)
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4 Bergshoeff-de Roo scheme

The gravitational sector in the DFT scheme is rather unconventional because the metric is
not Lorentz invariant. There is however a Lorentz non-covariant redefinition of the vielbein
that connects it to a scheme with a Lorentz invariant metric. Actually, inserting in (2.27)
the function

Fab =
a+ b

8

(
wacdwb

cd + 1
4HacdHb

cd
)
+ b− a

8 w(a
cdHb)cd , (4.1)

one obtains the so-called generalized Bergshoeff-de Roo (BdR) scheme [3] with this sole
redefinition. Since Gµν = 0, the two-form is not redefined with respect to the DFT scheme,
and so it maintains a non-trivial Lorentz transformation for any value of a and b (2.25b).
This might look surprising, as for the bosonic string (which is obtained with a = b), the
two-form is normally Lorentz invariant. We will later clarify how this is resolved by moving
to the Metsaev-Tseytlin scheme.

The bi-parametric (a , b) BdR action [3] generalizes that of [18] as follows

SBdR =
∫
dDx

√
−ge−2ϕ

(
L(0) + aL(1)

a + bL
(1)
b

)
, (4.2)

where the lowest order Lagrangian L(0) is defined in (3.1), and the first order one can be
written in a flat index notation

L(1)
a = 1

4H
abcΩ(−)

abc −
1
8R

(−)
abcdR

(−)abcd , (4.3a)

L
(1)
b = −1

4H
abcΩ(+)

abc −
1
8R

(+)
abcdR

(+)abcd . (4.3b)

Defining the torsionful connections w(±)
abc = wabc ± 1

2Habc, these expressions contain the
Chern-Simons three-forms Ω(±)

abc and Riemann tensors R(±)
abcd,

Ω(±)
abc = w

(±)
[ad

eDbw
(±)
c]e

d + w
(±)
[ad

ew
(±)
fe

dwbc]
f + 2

3w
(±)
[ad

ew
(±)
be

fw
(±)
c]f

d , (4.4)

R
(±)
abcd = 2D[aw

(±)
b]cd + 2w[ab]

ew
(±)
ecd + 2w(±)

[ac
ew

(±)
b]ed . (4.5)

Plugging (4.1) into (2.28) and using the identities (3.4)–(3.5), we find

δ(1)eab =
a+ b

8 β(a
e
(
wb)cdHe

cd +Hb)cdwe
cd
)
+ b− a

4 β(a
e
(
wb)cdwe

cd + 1
4Hb)cdHe

cd
)
,

(4.6a)

δ(1)bab = (a+ b)
[
βecwe[a

dwb]cd − βecw[ae
dwb]cd −

1
2β[a

cwb]dewc
de − 1

8β[a
cHb]deHc

de
]

+ b− a

2

[
βecwe[a

dHb]cd − βecw[ae
dHb]cd −

1
2β[a

cwb]deHc
de − 1

2β[a
cHb]dewc

de
]
.

(4.6b)

– 14 –



J
H
E
P
1
2
(
2
0
2
3
)
0
0
6

These expressions are in perfect agreement with our previous results in equations (3.12)
of [2], where they were obtained from the requirement of invariance of the action. Actually,
since δ(1)L(0) is of the form (3.8), namely a sum of terms linear in the equations of motion
plus total derivatives, we took δ(0)L(1) precisely to that form, which allowed us to read the
first order transformations (4.6). We then verified that the total derivatives in δ(1)L(0) are
exactly canceled by those in δ(0)L(1), implying δ(0)L(1) + δ(1)L(0) = 0 concluding that the
transformations (4.6) in fact leave the Lagrangian invariant.

We have seen in the previous section that a complete set of symmetries that leave
the Lagrangian invariant must necessarily close off-shell. In [2] we confirmed this general
statement, in particular for the transformations (3.2) and (4.6), which close in combination
with the local symmetries of the theory, with the following α′-corrected brackets3

Λ12ab = 2β1[a
cβ2 b]c + 2Λ1[a

cΛ2 b]c + 2 ξµ[1∂µΛ2]ab

− 4Fc[aβ[1b]dβ
cd
2] − 4F cdβ1c[aβ2b]d −

[
a+ b

4 Hecd +
b− a

2 wecd

]
βe[1[aDb]Λcd2]

−
[
(a+ b)wef d +

b− a

2 Hef
d

] (
w[a

cd + wcd[a
)
β[1b]eβ2]cf , (4.7a)

λ12µ = 4 ξν[1∂[νλ2]µ] −
a+ b

4
(
∂µΛab[1 β2]ab − Λab[1 ∂µβ2]ab

)
− (b− a)

(
Λab[1 ∂µΛ2]ab + βab[1 ∂µβ2]ab

)
, (4.7b)

ξµ12 = 2ξν[1∂νξ
µ
2] + βµν[1 λ2]ν , (4.7c)

where ξµ stands for the vector parameter of diffeomorphisms and λµ for the one-form gauge
parameter of bµν . The presence of diffeomorphisms in the closure of the algebra might
appear in contradiction with the results in section 3.3, where we found that a complete set
of symmetries that leave a Lagrangian invariant must close among each other. Indeed, the
Lagrangian is not invariant but transforms as a scalar with respect to the Lie derivative.
However, this apparent contradiction is easily resolved by noting that only the subset of
trivial diffeomorphisms ξµ = βµνXν , i.e. those that leave the Lagrangian invariant, are
required to close the algebra.

We end this section by noting that the β transformations (4.6) admit first order defor-
mations, as discussed in subsection 3.2. For any non vanishing value of the set of parameters
(γ, χ, ρ, κ), the Lagrangian would not to be invariant, but it would transform up to a total
derivative, which then implies that the action is invariant. Activating these deformations
would then require using the equations of motion to close the symmetry algebra, as dis-
cussed in subsection 3.3.

3Here the bracket for λ12µ differs from the one in [2] by a trivial transformation proportional to
∂µ

(
Λab

[1 β2]ab

)
.
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5 Metsaev-Tseytlin scheme

The functions Fab and Gµν that connect the DFT with the Metsaev-Tseytlin scheme
(MT) are

Fab =
a+ b

8

(
wacdwb

cd + 3
4HacdHb

cd
)
+ b− a

8 w(a
cdHb)cd , (5.1a)

Gµν = −a+ b

4
(
DρHρµν +H[µ

cdwν]cd
)
, (5.1b)

where Dµ is the curved version of (3.9). These redefinitions take the bi-parametric action
in the DFT scheme to the following form [3]

SMT =
∫
dDx

√
−ge−2ϕ

(
L(0) + L

(1)
− + L

(1)
+ +DµV

µ
)
, (5.2)

where L(0) is the universal two-derivative Lagrangian (3.1), and the first order corrections
induced from DFT contain the standard MT first order terms [19] (see appendix A for
definitions)

L
(1)
− = a− b

4 HµνρΩµνρ , (5.3)

L
(1)
+ = −a+ b

8

[
RµνρσR

µνρσ − 1
2H

µνρHµσλRνρ
σλ + 1

24H
4 − 1

8H
2
µνH

2µν
]
, (5.4)

and includes in addition a total derivative DµV
µ with

V µ = a+ b

8 HµνρDσHσνρ . (5.5)

Of course, since this is what descends directly from DFT, we expect the Lagrangian to be
β invariant only with the inclusion of this term.

The terms proportional to a+b, which are common to the bosonic and heterotic strings,
contain even powers of Hµνρ and are then invariant with respect to an exchange of sign
of the two-form, bµν → −bµν . In addition, they are purely metric, in the sense that the
vielbein enters into these terms only through the metric. Notice also that in this case, the
two-form is Lorentz invariant, as expected for the bosonic string in this scheme.

On the other hand, the term proportional to a − b involves the Chern-Simons form
contained in the heterotic string, which is linear in Hµνρ, and hence is odd with respect
to the exchange of sign of the two-form. This is a frame-like contribution, as it cannot be
written purely in terms of the metric. Lorentz invariance of L(1)

− requires the non-standard
Green-Schwarz Lorentz transformation of the two-form [3]

δΛbµν = −a− b

2 ∂[µΛcdwν]d
c . (5.6)

β transformations in the MT scheme follow from inserting (5.1) into (2.28)

δ
(1)
β eab = τ(ab) + f[ab] , δ

(1)
β bab = σab +∇[atb] , δ

(1)
β ϕ = 1

2τa
a , (5.7)
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with

τab =− a+ b

2

(
∇dβc(aHb)

cd + 1
2βc(aDdHb)

cd
)
− b− a

4 βc(a

(
wb)dew

cde + 1
4Hb)deH

cde
)
,

(5.8a)

fab =− a+ b

8 βc[a

(
wb]deH

cde −Hb]dew
cde + 2DdHb]d

c
)
, (5.8b)

σab = (a+ b)
[
−1
2β

cd
(
Rabcd +

1
2HaceHbd

e
)
+ βc[a

(
Rb]

c + 2∇b]∇cϕ+ 1
4Hb]deH

cde
)]

+ b− a

2

[
βcdH

de
[a
(
wb]

c
e − wcb]e

)
+ 1

2βc[a
(
wb]deH

cde +Hb]dew
cde
)]

, (5.8c)

ta = (a+ b) βbcwabc . (5.8d)

Written in this form, equations (5.7) highlight the observation made in subsection 3.4,
about redefinitions of the symmetry parameters. In this case, we see that the f[ab] piece of
the β transformations can be absorbed into redefinitions of the Lorentz parameter and ta
into (the flat version of) the one-form that parameterizes the gauge transformations of the
Kalb-Ramond field. We will assume this redefinition of the parameters from now on. In
particular, this means that we will have to take care of the redefined brackets discussed in
subsection 3.4 when verifying closure of the symmetry algebra.

Since the terms in L
(1)
+ are purely metric, we expect the corresponding β transforma-

tions to be purely metric as well. Indeed, performing the parameter redefinitions mentioned
in the previous paragraph (i.e. ignoring f[ab] and ta), we obtain the following β transfor-
mations for the metric and the two-form

δ
(1)
β gµν = (a+ b)

(
∇σβ(µ

λHν)λσ +
1
2β(µ

λDσHν)λσ

)
+a− b

2 βλ(µ

(
wν)cdwλ

cd + 1
4Hν)ρσHλ

ρσ
)
,

δ
(1)
β bµν = (a+ b)

[
−1
2β

ρσ
(
Rµνρσ +

1
2HµρτHνσ

τ
)
+ βρ[µ

(
Rν]

ρ + 2∇ν]∇ρϕ+ 1
4Hν]στH

ρστ
)]

−a− b

2

[
βcdH

de
[µ
(
wν]

c
e − wcν]e

)
+ 1

2βc[µ
(
wν]deH

cde +Hν]dew
cde
)]

. (5.9)

As expected, the terms proportional to a+ b can be cast in purely metric expressions, with
spacetime greek indices. Instead, those proportional to a− b, involve spin connections that
necessarily require the vielbein, as they cannot be expressed only in terms of the metric.

By construction, since we derived them from DFT, these β transformations leave the
Lagrangian invariant. Hence, they close off-shell, as we proved in subsection 3.3. On the
other hand, as discussed in 3.2, if one is interested in invariance of the action, instead of
focusing on invariance of the Lagrangian, then these transformations can be supplemented
with the four-parameter family of deformations (3.15), that leave the action invariant and
determine that the symmetry algebra closes on-shell.

After reparameterization, the brackets in this scheme can be computed from the cor-
responding ones in the BdR scheme, following the discussion in subsection 3.4. Details of
the computation can be found in appendix B. The brackets ξµ12 and βµν12 are not modified,
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while those for gauge and Lorentz transformations turn into

λ12
µ = −4 ξ[1

ν∂[µλ2]ν] − (b− a)
(
Λab[1 ∂µΛ2]ab + βab[1 ∂µβ2]ab

)
−a+ b

4
(
∂µΛab[1 β2]ab − Λab[1 ∂µβ2]ab

)
Λ12
ab = Λ(0)12

ab − 4Kc[aβ
[1
b]dβ

2]cd − 4Kcdβ
[1
c[aβ

2]
b]d − 4Λ[1

[a
cf

2]
b]c −

b− a

2 ωecdβ
[1
e[aDb]Λ2]cd

−
[
2(a+ b)

(
ωef dω

cd
[a +

1
4H

ef
dH

cd
[a

)
+ b− a

2 Hef
d

(
ω[a

cd + ωcd[a
)]
β

[1
b]eβ

2]
cf ,

(5.10)

where

Kab =
a+ b

4

(
Rab + 2∇a∇bϕ+ 1

4HacdHb
cd
)
+ b− a

8 ω(a
cdHb)cd . (5.11)

Despite having computed the brackets systematically from the one obtained in [2], we have
verified explicitly that they lead exactly to off-shell closure of the symmetry algebra.

5.1 Invariance of the Metsaev-Tseytlin Lagrangian

Here we present an explicit derivation of the invariance of the bi-parametric MT La-
grangian (5.2)–(5.5) with respect to the transformations (5.7)–(5.8d). We will first focus
on the terms proportional to a + b (5.4), and then we deal with those proportional to
a− b (5.3).

5.1.1 Invariance of the even parity sector

The deformations of the β transformations that preserve the even sector of the MT action
were systematically derived from DFT, namely

δ
(1)
β eab =− a+ b

2

(
∇dβc(aHb)

cd + 1
2βc(aDdHb)

cd
)
+ γβc(aBb)c + χgabβcdBcd (5.12a)

δ
(1)
β bab = (a+ b)

[
−1
2β

cd
(
Rabcd +

1
2HaceHbd

e
)
+ βc[a

(
Rb]

c + 2∇b]∇cϕ+ 1
4Hb]deH

cde
)]

− γβc[aEb]c − χβabEcc . (5.12b)

We consider here only the deformations proportional to the parameters γ and χ, as they
preserve the expected parity of the transformations. Since this sector is common to the
bosonic and heterotic strings, the transformations can be cast in a purely metric formula-
tion. Indeed, as expected, we find

δ
(1)
β gµν =− (a+ b)

(
∇σβλ(µHν)λσ +

1
2β

λ
(µDσHν)λσ

)
+ 2γβρ(µBν)

ρ + 2χgµνβρσBρσ ,

(5.13a)

δ
(1)
β bµν =(a+ b)

[
−1
2β

ρσ
(
Rµνρσ +

1
2HµρτHνσ

τ
)
+ βρ[µ

(
Rν]

ρ + 2∇ν]∇ρϕ+ 1
4Hν]στH

ρστ
)]

− γβρ[µEν]ρ − χβµνEρρ . (5.13b)
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By construction, for γ = χ = 0 these transformations must leave the even parity Lagrangian
invariant. Here we want to show this explicitly, and for this we must verify that the
following equation holds

δ
(1)
β L(0) + δ

(0)
β (L(1)

+ +DaV
a) = 0 . (5.14)

To this end, we first replace (3.8) in the first term and the fact that [δ(0)
β , Da]W a = 0

for any W a, to re-write (5.14) as

δ
(0)
β L

(1)
+ = −Eab δ(1)

β eab − Bab δ(1)
β bab︸ ︷︷ ︸

(A)

−Da

[
2 Dbδ

(1)
β eab − 1

2H
abcδ

(1)
β bbc + δ

(0)
β V a

]
︸ ︷︷ ︸

(B)

. (5.15)

Next, we explicitly compute the lowest order variation of L(1)
+ (5.4) in the l.h.s. . For this

it is useful to introduce the following identities

δ
(0)
β

(
RabcdR

abcd
)
=
[
− 4∇a(βbeHecd) + (∇eβab − 2∇aβb

e)Hecd

]
Rabcd , (5.16)

δ
(0)
β

(
−1
2HeabH

e
cdR

abcd
)
= He

abHecd
[
∇a

(
βb
fHfcd

)
+
(
∇aβc

f − 1
2∇

fβac

)
Hbdf

]
+
[
∇eβab + 2∇aβb

e
]
HecdR

abcd , (5.17)

δ
(0)
β

(
−1
8HaefHb

efHa
cdH

bcd
)
= 1

2

[
∇aβcd + 2∇cβda

]
Hb

cdHaefHb
ef , (5.18)

δ
(0)
β

( 1
24HabcH

adeHb
efH

cf
d

)
=−1

2∇aβbcH
adeHb

efH
cf
d , (5.19)

which readily lead to the following result

δ
(0)
β L

(1)
+ = a+ b

2 Rabcd
[
∇a (βbeHecd)−

1
2∇eβabH

e
cd

]
−a+ b

8 Hf
abHfcd

[
∇a (βbeHecd) +

3
2∇[eβab]H

e
cd

]
. (5.20)

Following the steps detailed in appendix C, this can be rewritten as

δ
(0)
β L

(1)
+ = (a+ b)

[
(A′) + (B′)

]
, (5.21)

with

(A′)= −Eab∇fβ
aeHe

bf−Bab
(
Rabefβef − βdaH2b

d +
1
2βefH

bf
dH

aed
)
− 2βdaBabEdb ,

(5.22)

(B′)= −Da

[
βbe

(
Hcd

eRabcd − 1
2Hcd

a
(
Rbecd − 1

2H
cefHf

db
)
+ 2

(
Rbc + 2∇b∇cϕ

)
Heca

)]
,

which is closer in structure to (5.15). It is now easy to recover the conditions for invariance
of the Lagrangian and the action by comparing (5.21) with (5.15).
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• For the action to be invariant, it is enough to verify

(A) = (a+ b)(A′) . (5.23)

By definition, when inserting (5.12) into (A), the terms depending on γ and χ simply
drop out. The rest of the terms can be rapidly shown to verify this identity. As a
consequence, the action is invariant for whatever choice of the parameters γ and χ.

• For the Lagrangian to be invariant, on top of (5.23), also

(B) = (a+ b)(B′) , (5.24)

must hold. This is the imposition that the total derivatives that emerge from the
variation of the lowest order Lagrangian are exactly canceled by those arising in the
variation of the first order Lagrangian. In this case, when (5.12) are inserted in
(B), the identity (5.24) can be shown to hold for the specific choice γ = χ = 0 (see
appendix C).

In summary, we have shown that the transformations (5.12) leave the even parity
sector of the MT action invariant for any choice of the parameters γ and χ. Instead, the
Lagrangian was shown to be invariant for the specific choice γ = χ = 0, which is the case
that descends directly from DFT.

5.1.2 Invariance of the odd parity sector

We now repeat the analysis for the terms proportional to a − b, namely L
(1)
− . We have

seen that, up to parameter redefinitions, the first order transformations that leave the odd
parity piece of the action invariant, and respect the parity of the fields accordingly, are

δ
(1)
β eab =

a− b

4 βc(a

(
w2 c
b) + 1

4H
2 c
b)

)
+ κβ(a

cEb)c , (5.25a)

δ
(1)
β bab =− a− b

2

[
βcdH

de
[a
(
wb]

c
e − wcb]e

)
+ 1

2βc[a
(
(wH)b]c + (Hw)b]c

)]
+ ρβc[aBcb] .

(5.25b)

To verify explicitly the invariance of the Lagrangian, we must check that the following
equation holds

δ
(1)
β L(0) + δ

(0)
β L

(1)
− = 0 . (5.26)

Replacing (3.8) in the first term leads to

δ
(0)
β L

(1)
− = −Eab δ(1)

β eab − Bab δ(1)
β bab︸ ︷︷ ︸

(C)

−Da

[
2 Dbδ

(1)
β eab − 1

2H
abcδ

(1)
β bbc

]
︸ ︷︷ ︸

(D)

. (5.27)

The explicit variation of L(1)
− in the l.h.s. is shown in appendix C to take the form

δ
(0)
β L

(1)
− = (a− b)

[
(C ′) + (D′)

]
, (5.28)
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with

(C ′) = −1
2E

abβca

(
w2

b
c + 1

4H
2
b
c
)
− 1

2B
ab
[
βcdH

de
a (wbce − wcbe) +

1
2βca(Hw + wH)bc

]
,

(D′) = 1
2Db

[
Habc

(
Haefw[dc]

eβfd − 1
4βcd(Hw + wH)ad

)
+ βcaw

ab
d

(1
4H

2cd − w2cd
) ]

,

which leaves us very close to our purpose. It is now easy to recover the conditions for
invariance of the Lagrangian and the action by comparing (5.28) with (5.27).

• For the action to be invariant, it is enough to verify

(C) = (a− b)(C ′) . (5.29)

By definition, when inserting (5.25) into (C), the terms depending on κ and ρ simply
drop out. The rest of the terms can be rapidly shown to verify this identity. As a
consequence, the action is invariant for whatever choice of the parameters κ and ρ.

• For the Lagrangian to be invariant, on top of (5.29), also

(D) = (a− b)(D′) , (5.30)

must hold. This is the imposition that the total derivatives that emerge from the
variation of the lowest order Lagrangian are exactly canceled by those arising in the
variation of the first order Lagrangian. In this case, when (5.25) are inserted in
(D), the identity (5.30) can be shown to hold for the specific choice κ = ρ = 0 (see
appendix C).

In summary, we have shown that the transformations (5.25) leave the odd parity sector
of the MT action invariant for any choice of the parameters κ and ρ, while the Lagrangian
is left invariant for the specific choice κ = ρ = 0, which is the case that descends directly
from DFT.

6 Conclusions

In this paper we derived the β symmetry transformation rules of the supergravity fields
to first order in α′ from the frame-like formulation of DFT. The fact that DFT implies β
symmetry, in turn means that this symmetry is a necessary condition for DFT uplifts of
supergravity interactions. It is not sufficient because β symmetry in supergravity requires
isometries, whereas in DFT it is realized through the introduction of dual derivatives. The
road from supergravity to DFT would require relaxing the assumption of isometries, namely
the condition βµν∂ν · · · = 0, and extending supergravity with interactions containing dual
derivatives, to compensate the failure. This observation might become important when
assessing the possibility of finding a DFT formulation for the quartic Riemann terms in
maximal supergravity, which currently faces an obstruction, at least in the standard frame-
like formulation [20]. Actually, the duality structure of the O(α′3) interactions of type II
strings [21] is not well understood yet. Recent progress in this direction was achieved
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in [22], where these couplings were fixed at fifth order in fields using O(d, d) symmetry. It
would then be interesting to study the β symmetry of these higher-derivative terms.

Having derived the β transformations systematically from DFT, we then moved to more
conventional supergravity schemes. We first showed that the field redefinitions that connect
DFT with the generalized Bergshoeff-de Roo scheme of supergravity, allowed us to recover
and confirm all the results in [2]. Additionally, we performed further redefinitions to reach
the Metsaev-Tseytlin scheme. For completion, we showed through explicit computations
in this scheme that the MT Lagrangian is exactly β invariant for the bosonic and heterotic
strings to order α′, and that the transformations close off-shell, as expected.
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Note added 1. Our results confirm those of our previous paper [2] and are in direct
contradiction with supposed obstructions pointed out in [23]-v5 and [24]-v2. Contrary to
what is stated in [24]-v2, we confirm here, through explicit computations in subsection 5.1,
that the O(α′) bulk Lagrangian of the heterotic string is exactly invariant under appropriate
deformations of the β transformations. We also disagree with statements in [23]-v5, where
it is asserted that there is a unique β transformation at O(α′) that leaves the bulk bosonic
action invariant and that it does not form a closed symmetry algebra. The transformation
found in equation (31) of [23]-v5, corresponds to the particular choice a = b = −α′, γ = −α′

2
and χ = 0 in our equations (5.13a)–(5.13b). Actually, β transformations at O(α′) turn out
not to be unique, but there is a two-parameter family of deformations in the bosonic string
that lead to on-shell closure of the symmetry algebra.

Note added 2. After our manuscript appeared in arXiv:2307.02537 [hep-th], the author
of [24] found an error in his calculations, and corrected the results, producing the revised
outcome [25].

A Notation and definitions

We use µ, ν, ρ, . . . and a, b, c, . . . indices for space-time and tangent space coordinates,
respectively. The infinitesimal Lorentz transformation of the vielbein is

δΛeµ
a = eµ

bΛba . (A.1)

The spin connection

wcab = eµc
(
∂µeνae

ν
b − Γρµνeρaeνb

)
, with Γρµν = 1

2g
ρσ (∂µgσν + ∂νgµσ − ∂σgµν) ,

(A.2)
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transforms as
δΛwcab = DcΛab + wdabΛdc + 2wcd[bΛda] , (A.3)

and hence, it turns flat derivatives Da into covariant flat derivatives ∇a as

∇aTb
c = DaTb

c + wab
dTd

c − wad
cTb

d , Da = eµa∂µ . (A.4)

The Christoffel connection Γρµν turns spacetime partial into covariant derivatives as

∇µTρ
σ = ∂µTρ

σ − ΓλµρTλσ + ΓσµλTρλ . (A.5)

The Riemann tensor

Rµνρσ = ∂ρΓµνσ − ∂σΓµνρ + ΓµρλΓ
λ
νσ − ΓµσλΓ

λ
νρ , (A.6)

with flat space indices is defined as

Rabcd = 2D[awb]cd + 2w[ab]
ewecd + 2w[ac

ewb]ed . (A.7)

While the symmetry Rabcd = R[ab][cd] is manifest, other symmetries of the Riemann tensor
are hidden and determine the Bianchi identities

Rabcd = Rcdab , R[abc]d = 0 , ∇[aRbc]de = 0. (A.8)

The Ricci tensor and scalar curvature are given by the traces

Rab = Rcacb , R = Ra
a , R[ab] = 0 . (A.9)

In terms of the torsionful spin connection

w
(±)
abc = wabc ±

1
2Habc , (A.10)

the Riemann tensor defined in (4.5) satisfies the Bianchi identities

R
(±)
abcd = R

(∓)
cdab , R

(±)
[abc]d = ±1

3∇dHabc +
1
2H[ab

eHc]de . (A.11)

The curvature of the 2-form

Habc = 3 eµaeνbeρc ∂[µbνρ] , (A.12)

obeys the Bianchi identity
∇[aHbcd] = 0 . (A.13)

We define contractions of powers of the 3-form and spin connection as follows:

H2 = HabcH
abc , H2

ab = HacdHb
cd , H4 = HabcHad

eHbe
fHcf

d , (A.14)
w2
ab = wacdwb

cd , (wH)ab = wacdHb
cd , (Hw)ab = Hacdwb

cd . (A.15)

The Chern-Simons form

Ωµνρ = w[µa
b∂νwρ]b

a + 2
3wµa

bwνb
cwρc

a , (A.16)

was defined in terms of the torsionful connection in flat index notation in (4.4).
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B Bracket in MT scheme after reparameterization

As discussed in subsection 3.4, field redefinitions modify the brackets only through field
dependent contributions in the zero order bracket. Starting from the symmetry algebra in
the BdR scheme (4.7c) we observe that the only field dependent parameter is in

Λ(0)
12ab ⊃ 2β1[a

cβ2 b]c = 2 eµa eνb gρσβµρ[1 βσν2] . (B.1)

Hence, equation (3.27) implies that the only modification in the bracket, after the field
redefinition that exchanges from the BdR to the MT scheme, is

Λ′
12ab = Λ(old)

12ab −
a+ b

4
(
H2
c[aβ

[1
b]dβ

2]cd +H2cdβ
[1
c[aβ

2]
b]d

)
. (B.2)

Although it is not necessary a priori, in (5.7) we performed an extra parameter redefinition,
in order to put the β transformations in a minimal form, where

∆ζ = ℓ(ζ, ψ) → (∆ξµ,∆λa,∆Λab,∆βµν) = (0,−ta,−fab, 0) , (B.3)

with ta and f[ab] defined in (5.8b) and (5.8d). ∆g12 is instead

(∆g12)µν = 0 , (B.4)

(∆g12)µ = −a+ b

2 βµν1 t2ν = −1
2β

µν
1 βab2 ωνab = 0 , (B.5)

(∆g12)µ = 2ξν1∂[µt2ν] , (B.6)
(∆g12)ab = −2Λ1

[a
cf2b]c − ξµ1 ∂µf2ab . (B.7)

Finally, we notice that β̂µν12 = 0, ξ̂µ12 = 0, while

−2Λ̂[12]
ab := δξ1,λ1,Λ1,β1 (f2ab)− δξ2,λ2,Λ2,β2 (f1ab)

= 2 ξ[1ν∂νf2ab −
a+ b

4 β
[2
c[aDb]Λ

1]
deH

cde

−(a+ b) β[1deβ2]c[a

(
ωb]f

dωef c + ωeb]fωc
fd − 1

2Hb]f
eHdf

c

)
+(a+ b) β[1c[aβ2]

cd
(
Rb]d + 2∇b]∇dϕ− 1

8H
2
b]d −

1
2ω

2
b]d

)
+(a+ b) β[1[a

cβ2]b]
d
(
Rcd + 2∇c∇dϕ− 1

8H
2
cd −

1
2ω

2
cd

)
, (B.8)

and

−2λ̂[12]
ν = δξ1,λ1,Λ1,β1 (t2ν)− δξ2,λ2,Λ2,β2 (t1ν)

= 4ξν[1∂[ν t̂2]µ] + 2(a+ b)
[
βbc[2 ∂µΛ1]bc + ∂µ

(
ξa[1β

bc
2]ωabc

)
+Hµbcβ

bd
[1 β

c
2]d
]
. (B.9)

The first term in (B.9) cancels with (∆g12)µ and the remaining terms inside the bracket
can be put in the form

[ ] = 1
2
(
βbc[2 ∂µΛ1]bc − ∂µβ

bc
[2 Λ1]bc

)
+ ∂µ

(1
2β

bc
[2Λ1]bc + ξa[1β

bc
2]ωabc + bνρβ

νσ
[1 β

ρ
2]σ

)
, (B.10)

where the last factor is pure gauge and so can be ignored. Plugging these expressions
with (3.29) one readily finds (5.10).
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C Leading order variation of L(1) in MT scheme

In this appendix we present some details of the computations summarized in section 5.1.
The route followed here is not unique, due to Bianchi identities and other less familiar
relations, whose origin can be traced back to the constraints imposed after contractions
with β. Following the structure of subsection 5.1, we first deal with the even parity sector
in C.1, and then with the odd sector in C.2.

C.1 Variation of L(1)
+

Here we present some details of the computations leading from equation (5.20), namely

δ
(0)
β L

(1)
+ = a+ b

2 Rabcd
[
∇a (βbeHecd)−

1
2∇eβabH

e
cd

]
−a+ b

8 Hf
abHfcd

[
∇a (βbeHecd) +

3
2∇[eβab]H

e
cd

]
, (C.1)

to (5.21).
A chain of integration by parts in the first term of the r.h.s. of (C.1), followed by the

Bianchi identity ∇[aRbc]d = 0 and a further integration by parts, leads to

Rabcd∇a (βbeHecd) = −2Rab ∇cβ
ae He

bc − 2βeaRebDcH
abc + 2∇aϕR

abcdβb
eHecd

+Da

(
Rabcdβb

eHecd + 2RbcβbeHe
ca
)
, (C.2)

where, using Rabcd∇dϕ = 2∇[a∇b]∇cϕ and integrating by parts, the third term in the r.h.s.
can be rewritten as

2∇aϕR
abcdβb

eHecd =−4∇a∇bϕ
(
∇cβ

aeHe
bc +DcH

ebcβae
)
+Dc

(
4∇a∇bϕβ

aeHe
bc
)
. (C.3)

The second term in the r.h.s. of (C.1) can be expressed alternatively as

Rabcd∇eβabH
e
cd = −RabcdβabDeH

ecd +De

(
RabcdβabH

e
cd

)
, (C.4)

and the remaining terms as

1
4Hf

abHfcd
[
∇a (βbeHecd) +

3
2∇[eβab]H

e
cd

]
=

= 1
2Hf

abHfcd
(
∇aβb

eHecd +
1
2βb

e∇aHecd +
1
4∇eβabH

e
cd

)
.

(C.5)

Finally, the last two terms in (C.5) can be recast in the form

Hf
abHfcd

(
βb
e∇aHecd +

1
2∇eβabH

e
cd

)
=−HabcHbf

d
(
2βef∇[eHd]ca −Haed∇cβ

ef
)

(C.6)

=−DcH
abcβefHbf

dHaed +Dc

(
βefHabcHbf

dHaed

)
,

where in the first equality we have used the relation

1
2Hf

abHfcd∇eβabH
e
cd = −HabcHbf

d
(
βef∇eHdca −Haed∇cβ

ef
)
, (C.7)
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while in the second line we have used the Bianchi identity ∇[aHbcd] = 0 before integrating by
parts. The relation (C.7) is not a Bianchi identity, but a consequence of the β constraints,
and it readily follows after explicit evaluation of the covariant derivatives.

Using (C.2)–(C.7), we obtain the expression displayed in (5.21).
Let us pursue the computation further, to see how (5.14) is satisfied by (5.12) for

γ = χ = 0. Combining the above results with (3.8) we obtain

δ
(1)
β L(0) + δ

(0)
β L

(1)
+ = DaX

a , (C.8)

with

Xa =−a+ b

2

[
∇bϕ

(
3∇cβ

b
dH

acd −∇cβ
a
dH

bcd + βc
d∇dH

abc
)
− βbeH

cd[eRa]bcd (C.9)

−2βbcRbdHacd + 1
2∇dβc

a∇bH
bcd −∇cβd

b∇bH
acd

+1
2βc

b∇b∇dH
acd − 1

4βbcH
abdHcefHdef

]
which can be cast in the form

Xa = −δ(0)V a +DbZ
ab , (C.10)

where

V a = a+ b

8 HacdDbHbcd , Zab = −a+ b

2 βcd∇cHdab . (C.11)

To put (C.9) into the form (C.10) we used

δ
(0)
β ∇cHcab = −4Rc[aβb]c +

(
βdeHabc + βe[aHb]cd

)
Hcde , (C.12)

in addition to Riemann Bianchi identities. Noting that

DaDbZ
ab = ∇a∇bZ

ab−2 (∇a∇bϕ− 2∇aϕ∇bϕ)Zab−2
(
∇aϕ∇bZ

ab +∇bϕ∇aZ
ab
)
, (C.13)

vanishes for an antisymmetric object Zab, we get

DaX
a = −Da

(
δ

(0)
β V a

)
= −δ(0)

β (DaV
a) . (C.14)

Finally, plugging this back into (C.8) we reproduce (5.14). This completes the discussion
on the invariance of L(1)

+ .

C.2 Variation of L(1)
−

Now we focus on the variation of L(1)
− . We start by analyzing the terms that are independent

of the 3-form, namely

−1
4 Ωabcδ(0)

β Habc = −1
8∇aβbcw

a
ef

(
Rbcef + 2wbf dwcde

)
− 1

4∇bβcaw
a
efR

bcef , (C.15)
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where we have used

Ωabc = −1
2w

[a
efR

bc]ef − 1
3w

ad
ew

be
fw

cf
d . (C.16)

The first term in the r.h.s. can be rewritten as

−1
8∇aβbcw

a
ef

(
Rbcef + 2wbf dwcde

)
= −1

4β
bcwaef

(
∇bRca

ef − 2∇awb
fdwcd

e
)

= 1
4βc

awabdw
d
ef

(
Rbcef + 2wbegwcf g

)
, (C.17)

where in the first equality we noted that

Rbcef + 2wbf dwcde = 2D[bwc]ef + 2w[bc]dwd
ef , (C.18)

vanishes after contraction with βbc, which allows to move the covariant derivative to the
factors inside the parenthesis. Upon implementing Riemann Bianchi identities, the second
equality in (C.17) follows after applying the relations

βbc∇awbde = βbc
(
Rabde + wba

fwfde
)
, (C.19)

βbc∇bRca
ef = −2βbcwbd[eRcad

f ] . (C.20)

The second term in the r.h.s. of (C.15) can be cast as

−1
4∇bβcaw

a
efR

bcef = 1
4βca∇bw

a
efR

bcef − 1
4∇b (βcawaef )Rbcef . (C.21)

Using (C.19), the first term in the r.h.s. of this expression can be rewritten as

1
4βca∇bw

a
efR

bcef = 1
4βc

awab
dwdefR

bcef , (C.22)

whereas the second one is

−1
4∇b (βcawaef )Rbcef = −1

4Db

[
βca

(
waefR

bcef − 2wabd(Rcd + 2∇c∇dϕ)
)]

. (C.23)

Here we have followed similar steps to those performed in (C.2) and (C.3), supplemented
with the relation

Db

(
βcaw

ab
d

) (
Rcd + 2∇c∇dϕ

)
=

=
[
βc
a (Rad + 2∇a∇dϕ) + βaew

ab
dw

e
bc

] (
Rcd + 2∇c∇dϕ

)
= 0 , (C.24)

which vanishes by symmetry arguments. Actually, using the relation

Db

[
2βcawabd∇c∇dϕ

]
= Db

[
∇c

(
βaew

ac
dw

edb
)]

, (C.25)

it can be shown that (C.23) vanishes.
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Regarding terms quadratic in the 3-form, we get

−1
4Habcδ

(0)Ωabc = 1
8H

abcHe
afβ

df (Rdebc − 2wbegwcdg)

+1
8H

abcHfdeβaf wbe
gwcdg

−1
8H

abcwa
de
[
∇b

(
βc
fHfde

)
+∇d

(
βe
fHfbc

)]
+1
8H

abcHecfwa
de
[
∇bβd

f −∇dβb
f −∇fβbd

]
, (C.26)

where we applied

βa
fHabcHf

deRdebc = 0 . (C.27)

Using (C.19) and integrating by parts, the first line in (C.26) can be taken to the form

1
8H

abcHe
afβ

df
(
Rdebc − 2wbefwcdf

)
=

= Db

(
−1
8H

abcHaefβcdw
def
)
− 1

8DbH
bafβcaHf

dewcde

− 1
8∇

bHadcHfdcβ
efweba +

1
2H

abcHe
afβ

dfwbd
gwceg . (C.28)

The first term in the third line of (C.26) is

−1
8H

abcwa
de ∇b

(
βc
fHfde

)
= −1

8DfH
fabβcawb

deHc
de +

1
8βc

fHabcHfdewa
dgwb

e
g

Db

(
−1
8H

abcwa
deβc

fHfde

)
, (C.29)

and the second one is

−1
8H

abcwa
de∇d

(
βe
fHfbc

)
= 1

8H
abcwea

d∇d

(
βefHfbc

)
− 1

4H
abcw[ea]

d∇d

(
βefHfbc

)
.

(C.30)
Performing similar steps to those followed in (C.2)–(C.3), the first factor in (C.30) can be
cast as

1
8H

abcwea
d∇d

(
βefHfbc

)
= Dd

(1
8β

efwea
dH2a

f

)
+ 1

8β
acH2b

c (Rab +∇a∇bϕ)

−1
8β

efHfbcwea
d∇dH

abc − 1
8H

2a
fβ

efwed
gwga

d . (C.31)

Operating with the covariant derivative, followed by Bianchi identities of the 3-form and
integration by parts, the last component in (C.30) can be worked out, leading to

−1
4H

abcw[ea]
d∇d

(
βefHfbc

)
=Db

(
−1
2H

abcw[ae]
dβefHcdf

)
+ 1

2DfH
fabHbcdw[ae]

cβde

−1
4H

abcw[ea]d
(
βgfw

fdeHgbc + 2βefwfbgHd
gc

)
(C.32)

−HabcHcdf

(
w[ea]

dwgb
[eβf ]g + 1

4β
ef (waegwbgd − wea

gwgb
d)
)
.
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We notice that the last line in (C.26) is simply

1
8H

abcHecfwa
de
[
∇bβd

f −∇dβb
f −∇fβbd

]
= −1

4β
f
gH

abcHecfwa
dewgdb . (C.33)

Finally, plugging all these equations into (C.15) and (C.26), and after a proper rescaling
with a−b, we obtain (5.28). Note that we have included for convenience a vanishing quartic
factor

− 1
32βcaH

2
b
cH2ab = 0 . (C.34)

We conclude this appendix by noticing that the total derivative from δ
(1)
β L(0) in (3.8)

with the choice κ = ρ = 0 in (5.25) exactly cancels the total derivative in (5.28). This
follows straightforwardly after using the relations

Db

(
βc
bDaH

2ac
)
= 0 , Db

(
βc
b∇aw

2ac
)
= 0 , (C.35)

which are particular cases of the more general identity valid for any W a

Db

(
βc
bW c

)
= 0 . (C.36)
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