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1 Introduction

Symmetries and dualities in String theory play a fundamental role. At the perturbative level,
the very definition of the theory, including the field content, the interactions and even the
space-time dimension is determined by symmetry arguments.

The same holds by transitivity in the effective actions, at low energy. The symmetries
inherited from string theory: diffeomorphisms, Lorentz, gauge and supersymmetry impose
strong constraints on the allowed interactions at the supergravity level. However, these
symmetries alone are not sufficient to fully fix them. Fortunately, in addition to symmetries,
dualities come into play. Dualities establish connections between seemingly different quantum
field theories in backgrounds with opposite features (e.g., large/small compact spaces) or
different regimes (for instance, at strong/weak couplings).

This article deals with T-duality, whose origin can be traced back to the extended nature
of the strings. At quantum level, it is related to a symmetry in the string spectrum that
involves exchanging Kaluza-Klein (KK) modes and winding modes around closed directions
in d-dimensional toroidal compactifications. This symmetry is described by the action of a
discrete O(d, d,Z) group, but it is enhanced into O(d, d,R) at low energy, when all massive
fields are truncated.

This symmetry was explicitly realized at low energy, in the two-derivative effective
actions of string theory, by Meissner and Veneziano in [1, 2] on 1-dimensional (cosmological)
reductions. Subsequently, it was further extended to arbitrary dimensions by Maharana and
Schwarz in [3] by considering general KK reductions. Interestingly, although O(d, d) manifests
itself in supergravity only after toroidal compactifications, the fact that this symmetry
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emerges after a proper reduction already constrains the allowed couplings in the parent
higher dimensional theory in an indirect way.

This simple observation has profound implications, specially after the work of Sen [4],
where closed string field theory arguments were used to promote a tree level O(d) × O(d)
symmetry1 emerging after KK to all orders in derivatives.

Besides these arguments, the explicit verification of this symmetry beyond two-derivatives
is not a straightforward task and it took some time until an explicit verification was achieved [5].
The complexity arises from the fact that while both T-duality and Lorentz are symmetries of
the compactified theory, they cannot be simultaneously made manifest. An explicit realization
of O(d, d) requires Lorentz non covariant field redefinitions in the internal space.

An alternative approach to address T-duality is given by Double Field Theory (DFT),
where the O(d, d) is realized already before compactification at the cost of introducing extra
coordinates, dual to winding modes [6, 7]. This is an interesting approach because the
constraints on the effective action arising from T-duality are more easily implemented. Some
interesting applications concern the uplifting of non-geometric gaugings and the derivation of
general formulae for non linear uplift ansatze on gauged supergravities, leading to consistent
truncations in lower dimensions, both followings from the so called generalized Scherk
Schwarz compactifications [8, 9].

Other relevant applications are the determination of α′-corrections in the low energy limit,
where an iterative method was developed [10–14] leading to an infinite tower of couplings
(all order in derivatives) of the so called biparametric deformation of DFT [15]. Despite
some interesting consistency checks [16] showing agreement with the bosonic and heterotic
supergravities at sixth order in derivatives, it is known that extra couplings, not captured
by this method, appear at eighth order in derivative and higher (e.g. those corresponding
to type II supergravities). Actually, it is not even clear so far if such missing interactions
admit an embedding in a T-dual formulation, like DFT [17].

Recently, a different approach was introduced in [18, 19] where the non geometric sector
of the T-duality group is promoted as an effective symmetry in the canonical formulation of
supergravity, avoiding the standard procedure of the KK reduction or the introduction of
extra coordinates and so offering an alternative method, free of the obstructions raised in [17]
and provides a new perspective on incorporating the non-geometric aspects of T-duality
into the framework of supergravity.

This program focuses on infinitesimal duality transformations,2 so it deals with the
connected component of O(d, d), containing the identity element of the group. This is
organized in two sectors dubbed geometric and non geometric, respectively. The former is
generated by GL(d) and Rd(d−1)/2 (referred to as b-shifts), which are already symmetries of
the higher dimensional theory, while the latter is a symmetry only after compactification.
Notwithstanding, it was shown in [18, 19] that also the non-geometric sector, parameterized
by a constant bivector βµν , can be considered as an effective symmetry of the universal

1Actually, this O(d) × O(d) is further completed into O(d, d) when it is combined with GL(d) and b-shifts.
2We are therefore not considering the so called Buscher rules. For instance, the consequences of the discrete

O(1, 1,Z) symmetry on string theory due to circular compactifications is therefore not covered. See [20–22] for
some recent progress on α′-corrections, after exploiting this symmetry.
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NS-NS Lagrangian prior to any compactification (the invariance of the action was already
established in [25] within the context of β-supergravity. See comments below), with the
following transformation rules

δβeµ
a = −eµbbbcβca ,

δβbµν = −βµν − bµρβρσbσν ,

δβϕ = 1
2β

µνbµν , (1.1)

when these are supplemented with the constraint

βµν∂ν = 0. (1.2)

Interestingly, while diffeomorphisms, Lorentz and gauge symmetry constrain the allowed
interactions up to an arbitrary function of the dilaton and some undetermined coefficients

Lf,c,d,e = f(ϕ)
(
R+ c□ϕ+ d(∇ϕ)2 + eH2

)
, (1.3)

the requirement of beta symmetry fully fixes the dynamics at two derivative order

0 = δβ [
√
−gLf,c,d,e]

=
√
−gf(ϕ)

[
(c− 4)∇a

(
βbcHabc

)
− (12e+ 1)∇aβbcHabc + 2(c+ d)∇dϕβbcHabc

]
+1
2
√
−gβabbab

(
2f(ϕ) + f ′(ϕ)

) [
R+ c□ϕ+ d(∇ϕ)2 + eH2

]
, (1.4)

leading to the NS-NS universal Lagrangian of string supergravity

LNS = e−2ϕ
(
R+ 4□ϕ− 4(∇ϕ)2 − 1

12H
2
)
. (1.5)

This Lagrangian admits a two-parameter family of deformations consistent with string
dualities at fourth derivative order. Specific choices in the parameter space correspond to
the bosonic and heterotic supergravities.3 In [18] the α′-corrections of the transformation
rules (1.1) were obtained for the whole family of deformations by requiring invariance of the
Lagrangian. An independent derivation (from DFT) was presented in [19].

The O(d, d) sector described by β was also discussed in a related context in [23–25],
within the so called β-supergravity scheme. There, the manifest symmetries differ from the
standard formulation of supergravity and the β symmetry becomes geometric, while the
b-shifts are interpreted as non-geometric. The 2-derivative Lagrangian of the NS-NS sector
in the standard metric scheme, in the form presented in [25],4 and the same Lagrangian in
the β-supergravity scheme differ by a total derivative and field redefinitions. This is, as the
authors of loc. cit. properly stated (see section 4.1.2 in the aforementioned reference), an
indirect proof that the 2-derivative NS-NS Lagrangian of the standard metric formulation
should be invariant, at least up to a total derivative, under β-transformations.

3The trivial case is identified with the type II supergravities, whose first corrections appear at eighth order
in derivatives.

4It differs from (1.5) by a total derivative.
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The non-geometric sector of the T-duality transformations admits the interpretation of
an Abelian Yang Baxter (YB) deformation (see for instance [26, 27]). In this approach, these
transformations are implemented as a solution generating technique and the β supergravity
mentioned above plays a crucial role in the connection between generalized supergravity
e.o.m. and Classical Yang Baxter equations [28]. See [29, 30] for related works considering
the RR sector. YB deformations admit generalizations relating it to Non Abelian T-dualities
and Poisson Lie T-duality and have the nice property that can be used to generate integrable
deformations (see for instance [31–33]).

Another interesting method that achieves O(d)×O(d) symmetry in supergravity in 10
dimensions is discussed in reference [34]. In this approach, duality transformations of the
dimensionally reduced fields are used to formally promote this symmetry to higher dimensions.
This extension enables the determination of interactions in the uncompactified theory by
construction of O(d) × O(d) invariant blocks.

In this article we will extend the β symmetry to the R-R sector at two derivative order.
This extension will be carried out within the democratic formulation of type II theories,
which we will review in section 2, in order to set the notation and to ensure a self-contained
discussion. In section 3 we analyze Kaluza Klein compactifications and exhibit how duality
acts on GL(d) multiplets. Moving on to section 4, we will utilize the previously derived
expressions to establish the non-geometric sector of the duality group as an effective symmetry
of the R-R sector in 10 dimensions. We will present a detailed verification of the invariance
of the Lagrangian LR for type IIB and IIA. In addition, we also display the extension to the
massive type IIA case. Compatibility with duality relations of the democratic formulation,
closure of the symmetry algebra and consistency with equations of motion (e.o.m.) are also
discussed. Finally, we present the conclusions in section 5.

2 Democratic formulation of type II theories

The natural framework to study the O(d, d) symmetry enhancement on KK reductions of type
II theories is the so called democratic formulation [35]. This approach is preferred because it
naturally accommodates R-R potentials in an O(d, d) multiplet, allowing for a linear action
of the duality group (see e.g. [36]). Additionally, a democratic like version of DFT was used
to incorporate R-R potentials within the Double Field Theory framework [37–42]. Therefore,
it is reasonable to explore the extension of β symmetry to the R-R sector in such a scheme.

In the standard formulation of type II supergravities (see for instance [43]), p-form
potentials are present for p ranging from 0 to 4, with even (odd) p for type IIB (IIA). The
Lagrangian includes kinetic terms |F (p+1)|2 as well as Chern-Simons interactions. In the case
of IIB, the curvature F (5) is constrained to be self-dual, a condition that must be imposed
only after obtaining the equations of motion. The type IIA case admits a further deformation,
known as massive type IIA, which includes a non-dynamical curvature F (0). It is worth noting
that in D = 10 the theory actually allows for the inclusion of higher p-forms: F (6) to F (10)

and indeed these fields are included in the theory, but as Hodge duals of the former ones.
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In the democratic formulation [35], in contrast, the Lagrangian contains quadratic Kinetic
terms but not Chern-Simons. The field content now includes all allowed p-form in D = 10,

SR =
∫
d10x
√
−g LR = −1

4

∫
d10x
√
−g

∑
n

|F (n)|2 = 1
4

∫ ∑
n

F (n) ∧ ∗F (n) , (2.1)

where n runs over 1, 3, 5, 7, 9 for type IIB and 2, 4, 6, 8 for type IIA, respectively. Here we used
standard notation F (n) = 1

n!F
(n)
µ1...µn

dxµ1 ∧ . . . ∧ dxµn and |F (n)|2 = 1
n!F

(n)
µ1...µn

F (n)µ1...µn .

The field strengths are defined in a very compact way by means of formal sums of forms5

F = e−b ∧ dD . (2.3)

As an example, the projection of (2.3) to degree 5 is F (5) = dD(4)− b∧ dD(2) + 1
2b∧ b∧ dD

(0).
This simplification is achieved after a particular choice for the potentials D(n) which are
defined as a convenient combination of R-R potentials C(n) and the Kalb Ramond 2-form

D(0) = C(0) , D(2) = C(2) + b ∧ C(0) , D(4) = C(4) + 1
2b ∧ C

(2) + 1
2b ∧ b ∧ C

(0) ,

D(1) = C(1) , D(3) = C(3) + b ∧ C(1) , (2.4)

while D(p) of higher orders are introduced as the electromagnetic duals of the previous ones,
leading to the following duality relations on the corresponding curvatures

∗F (n) = (−)
n(n−1)

2 F (10−n) , (2.5)

with

∗F (n) = 1
(10− n)!n!ϵν1...νnµ1...µ10−nF

(n)ν1...νndxµ1 ∧ · · · ∧ dxµ10−n , (2.6)

which implies (for 10D Minkowski signature) ∗ ∗ F (n) = (−)n+1F (n). So defined, the field
strengths are subject to the following BI

d
(
eb ∧ F

)
= 0 . (2.7)

The compatibility of both formulations works at the level of e.o.m. and BI. It requires to
vary the action by considering the full set of forms as independent fields, which leads to

δ

(∫
d10x
√
−g LR

)
= −1

2

∫
d10x
√
−g

∑
p

1
p!δD

(p)
µ1...µp

(
∗
[
d
(
e−b ∧ ∗F

)])µ1...µp

+ . . .

= −1
2

∫ ∑
p

(−)pδD(p) ∧ d
(
e−b ∧ ∗F

)
+ . . . (2.8)

5Being e−b a formal sum of even forms, it then commutes with respect to the wedge product: e−b ∧ G =
G ∧ e−b for any form G. Notice also that eb ∧ e−b = 1, so that (2.3) is easily inverted as

dD = eb ∧ F . (2.2)
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where ellipsis stand for total derivatives and terms proportional to δgµν or δbµν . Hence,
vanishing of the e.o.m. requires

d(e−b ∧ ∗F ) = 0 , (2.9)

It is exactly at this point (after varying the action) when the degrees of freedom (d.o.f.)
are truncated by imposing (2.5).

The duality relation (2.5) switches ∗F → F in (2.9) up to a the sign (−)
n(n−2)

2 , which can
be absorbed in the exponential of the Kalb Ramond by flipping its sign. Then, e.o.m←→ BI
after (2.5) which reduces by half the number of independent equations, matching precisely
the e.o.m. and BI of the standard formulation of type IIA

d
(
∗F (4)

)
= −H ∧ F (4) , dF (4) = −H ∧ F (2) ,

d
(
∗F (2)

)
= −H ∧ ∗F (4) , dF (2) = 0 , (2.10)

and type IIB, respectively

d
(
∗F (3)

)
= H ∧ F (5) , dF (3) = −H ∧ F (1) ,

d
(
∗F (1)

)
= H ∧ ∗F (3) , dF (1) = 0 ,

d
(
∗F (5)

)
= dF (5) = −H ∧ F (3) . (2.11)

3 Duality action in Kaluza Klein compactifications

In this section, we will discuss the emergence of the duality group in toroidal compactifications
of the bosonic sector of type II theories, as outlined in [36]. We will proceed by performing a
GL(d) decomposition of the duality multiplets to uncover how the geometric and non-geometric
sectors manifest in its components. This decomposition is crucial in order to establish the
role of β as an effective symmetry in the 10-dimensional framework, in next section.

3.1 O(d, d) and the NS-NS sector

The T-duality group acts linearly on both NS-NS and R-R sectors after a KK reduction.
This is achieved after a particular organization of the d.o.f. The effective action in a toroidal
compactification is obtained by taking the following decomposition of GL(10)→ GL(n)⊕
GL(d), with d = 10 − n in the NS-NS sector

ĝµνdx
µdxν = gmndx

mdxn +Gij
(
dyi +Aimdx

m
) (
dyj +Ajndx

n
)

1
2 b̂µνdx

µ ∧ dxν = 1
2
(
bmn −BimAin

)
dxm ∧ dxn +Bimdx

m ∧
(
dyi +Aindx

n
)

+1
2Bij

(
dyi +Aimdx

m
)
∧
(
dyj +Ajndx

n
)

ϕ̂ = ϕ− 1
4 log(G) (3.1)

In this section (and only in section 3) we will use hatted notation to denote 10 dimen-
sional tensors: ĝ, b̂, ϕ̂. The field redefinitions in (3.1) ensure nice properties under the local
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symmetries (diff + gauge) of the effective theory in n-dimensions. On the other hand, global
symmetry (GL(d) and Rd(d−1)/2) in the internal space is enhanced into an O(d, d) group, for
toroidal compactifications, due to the appearance of new symmetries induced by the isometries
of the background. Making this symmetry manifest requires to accommodate scalars and
1-forms in duality multiplets (MMN ) AMn transforming in the (bi)fundamental representation

M =

 Gij −GikBkj
BikG

kj Gij −BikGklBlj

 , A =

 −Aim
Bim −BikAkm

 . (3.2)

The subgroup connected with the identity element, SO+(d, d) is generated by exponen-
tiation of the Lie algebra elements, in the fundamental representation. Its generators can
be organized by those leading to a GL(d) subgroup, the b-shifts and the β-transformations
respectively tα = {tij , tij , tij}, where the only non-vanishing components of (tα)MN are(

tij
)k

l = −δilδkj ,
(
tij
)
k

l = δikδ
l
j ;

(
tij
)
kl
= δijkl ; (tij)kl = δklij . (3.3)

A general element of the SO+(d, d) group is constructed after proper multiplication of ha, hb
and hβ, where

ha = eai
jtij =

(
e−a

T 0
0 ea

)
, hb = ebijt

ij =
(
1 0
b 1

)
, hβ = eβ

ijtij =
(
1 β
0 1

)
, (3.4)

One readily confirms that the transformation M→M′ = hMhT leads to

δaGij = 2a(i
kG|k|j) , δbGij = 0 , δβGij = −2B(i|k|β

k
j) ,

δaBij = 2a[i
kB|k|j] , δbBij = b , δβBij = −2βij −BikβklBlj . (3.5)

Similarly, the transformation of A reads, in components

δaA
i
m = −aj iAjm , δbA

i
m = 0 , δβA

i
m = −βij

(
Bjm −BikAkm

)
,

δaBim = ai
jBjm , δbBim = 0 , δβBim = −βikAkm −BikβkjBjm , (3.6)

where indices in β are lowered with the internal metric Gkl. It is worth noticing that while the
GL(d) and b-shift of the compact space are trivially promoted to the whole 10-dimensional
space, the main reason for β to admit a promotion to higher dimensions upon (1.2), is
because (3.5) and (3.6) plugged with (3.1) implies the following embedding in 10d,

δβ ĝµν = −b̂µρβ̂ρσ ĝσν − b̂νρβ̂ρσ ĝσµ , δβ b̂µν = −ĝµρβ̂ρσ ĝσν − b̂µρβ̂ρσ b̂σν , (3.7)

where β̂ij = βij , β̂mi = β̂im = β̂mn = 0 and this solution for β̂ is precisely a consequence
of the condition (1.2).

3.2 O(d, d) and the R-R sector

Let us move now to the R-R sector. The global symmetry in this sector admits a linear
realization because p-forms of the democratic formulation naturally fit in a Majorana-Weyl
representation of SO(d, d) using fermionic operators ψi.

– 7 –
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Let us very briefly comment on this construction (for further details see [36]). Let
ψi, with ψi† := (ψi)†, be a set of d dimensional fermionic operators satisfying an anti-
commuting algebra

{ψi, ψj†} = δi
j I , {ψi, ψj} = 0 , {ψi†, ψj†} = 0 . (3.8)

An O(d, d) Clifford algebra is built after identifying Γi =
√
2ψi,Γi =

√
2ψi†

{ΓM ,ΓN} = 2ηMN I , ηMN =
(

0 δij
δi
j 0

)
, (3.9)

where η is the O(d, d) invariant metric. Hence, there is a natural isomorphism between the
fermionic Fock space and p-forms of the internal space (duality group does not act on the
non-compact directions and so (10-d) indices are implicit in D)6

|D⟩ =
∑
p

1
p!D(p)i1...ipψ

i1† . . . ψip† |0⟩ , (3.10)

|0⟩ being the vacuum of the Fock space, satisfying

ψi |0⟩ = 0 , ⟨0|0⟩ = 1 . (3.11)

The sequence of field redefinitions in the R-R sector is as follows. First, each p-form
f (p) splits into a sum of q-forms f (q)

(n)i1...in

f (p) =
∑
q

1
n!f

(q)
(n)i1...indy

1 ∧ · · · ∧ dyn , (3.12)

where n = p − q and each f
(q)
(n)i1...in is a q-form in the non-compact space

f
(q)
(n)i1...in = 1

q!f
(q)
m1...mqi1...in

dxm1 ∧ · · · ∧ dxmq . (3.13)

Then, one introduces shifted curvatures F ′, formally defined as

F ′ = F
∣∣∣
dyi→dyi−Ai

. (3.14)

This redefinition simplifies the kinetic terms
∑
p |F (p)|2 after the KK decomposition by

absorbing the dependence on the metric 1-forms Ai = Aimdx
m.

The action of the duality subgroup connected to the identity, the Spin+(d, d) group,7

is generated with the spinorial representation of elements in (3.4),

Sa =
1√

det(A)
eai

jψi†ψj , Sb = e
1
2bijψ

i†ψj†
, Sβ = e−

1
2β

ijψiψj , (3.15)

where Ai
j = (ea)ij .

6Here lower and upper index (p) characterizes the degree of the form in the compact and non-compact
spaces, respectively.

7O(d, d) is the maximum subgroup of the U-duality group that closes independently on the NS-NS and
R-R sectors. Nevertheless, the T-duality transformations around single circles (represented by matrices with
negative determinant) do not preserve chirality, so only the SO(d, d) lift Spin(d, d) is separately a symmetry
of type IIA and type IIB, after compactification.

– 8 –
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Therefore, after (3.10) we find the following transformation rules for the internal p-forms
D(p)i1...ip

δaD(p)i1...ip = pa[i1
k D(p)|k|i2...ip] −

1
2ak

kD(p)i1...ip ,

δbD(p)i1...ip =
(
b ∧D(p−2)

)
i1...ip

= p!
2!(p− 2)!b[i1i2D(p−2)i3...ip] ,

δβD(p)i1...ip = −1
2
(
iβD(p+2)

)
i1...ip

= −1
2β

klD(p+2)kli1...ip , (3.16)

where in the last line we have introduced the interior product of β with (p+2)-forms.

4 β symmetry of the RR sector in 10d

After analyzing how an infinitesimal duality transformation acts on the internal p-forms
after a Kaluza-Klein reduction, we proceed similarly to the NS-NS sector. We promote
these transformation rules as an effective symmetry of the parent theory, subject to the
constraint (1.2)

δaD
(p)
µ1...µp

= pa[µ1
ν D

(p)
|ν|µ2...µp] −

1
2aµ

µD(p)
µ1...µp

; , (4.1)

δbD
(p)
µ1...µp

=
(
b ∧D(p−2)

)
µ1...µp

, (4.2)

δβD
(p)
µ1...µp

= −1
2
(
iβD

(p+2)
)
µ1...µp

. (4.3)

In this expression D(p) is assumed to be non vanishing only for p = 0, . . . , 8. Global GL(10)
acts on RR p-forms with a non trivial density contribution (last factor in (4.1)). While the
linear piece (first term in the r.h.s of (4.1)) cancels the variation of the inverse metric in any
coupling with indices properly contracted, the density piece cancels the contribution of the
measure δa(

√
−g) as long as the couplings are quadratic in D(p).8 b-shifts are also a manifest

symmetry in 10 dimensions if the action is written in terms of the curvatures (2.3). Indeed

δbF = δb
(
e−b ∧ dD

)
= −δbb ∧ e−b ∧ dD + e−b ∧ d(δbD)

= −b ∧ e−b ∧ dD + e−b ∧ d(b ∧D) = 0. (4.4)

We focus now on the non geometric sector of O(d, d) described by β. We remark once
again that while (4.1) and (4.2) are symmetries of the parent theory, we expect (4.3) to be a
symmetry only in an effective way, when it is supplemented with the constraint (1.2).

An important observation is that the β-transformations of the NS-NS sector in the KK
reduction remain unchanged even when RR-potentials are introduced. Based on this, we
propose that equation (1.1) is not affected or deformed. Consequently, equation (1.4) still
holds, indicating that both LNS and LR should remain invariant independently.

8Interestingly, the field redefinition D̃(p) = eϕD(p) transforms linearly (without density factor) under
GL(10) and the action written with these variables has the usual (duality singlet) measure

√
−ge−2ϕ. This

new scheme makes explicit the dilaton dependence of the string loop expansion, at the cost of introducing
dilaton dependence on the gauge transformations and Bianchi identities.
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In this section, we will provide a detailed verification that the β transformations, as
defined in equation (4.3), are indeed a symmetry of (2.1). Based on the previous discussion,
it is evident that any combination of

√
−g |F (p)|2 is separately invariant under GL(10)

and b-shifts in 10 dimensions. We will show that, in analogy with the NS-NS sector, β
transformations constrain the relative coefficients of the kinetic terms. To accomplish this,
we start by computing the induced transformation on the field strengths F (p), due to (4.3),

δβF = −δβb ∧ e−b ∧ dD −
1
2e

−b ∧ [iβ(eb ∧ F )] , (4.5)

where we have used

δ(dD) =
∑
p

δ
(
dD(p)

)
=
∑
p

1
p!δβ

(
∂[µ1D

(p)
µ2...µp+1]

)
dxµ1 ∧ · · · ∧ dxµp+1

=
∑
p

−1
2
1
p!∂[µ1

(
βρσD

(p+2)
ρσµ2...µp+1]

)
dxµ1 ∧ · · · ∧ dxµp+1

=
∑
p

−1
2
1
p!β

ρσ (p+ 3)
(p+ 1)∂[ρD

(p+2)
σµ1...µp+1]dx

µ1 ∧ · · · ∧ dxµp+1

=
∑
p

−1
2 iβ

(
dD(p+2)

)
= −1

2 iβ(dD) , (4.6)

where condition (1.2) was used in the third line. Hence, (4.5) follows from (4.6), after
inverting equation (2.3).

Expression (4.5) can be further manipulated by noting that

iβ [A(p) ∧B(q)] = iβ(A(p)) ∧B(q) +A(p) ∧ iβ(B(q)) + 2[AβB] , (4.7)

where A(p) and B(q) are two arbitrary forms. Here we have defined

[AβB] = 1
(p− 1)!

1
(q − 1)!A

(p)
[i1...ip−1|kβ

klB
(q)
l|ip...ip+q−2]dx

i1 ∧ · · · ∧ dxip+q−2 . (4.8)

Interestingly, we can use (4.7) inductively in order to obtain

iβ(eb) = iβ

∑
m≥0

1
m!b ∧ · · · ∧ b


= eb ∧

(
iβb+ 2[bβb]

)
. (4.9)

Similarly we can use (4.8) inductively to get

[ebβF ] = eb ∧ [bβF ]. (4.10)

So, the second term in (4.5) can therefore be expressed as

−1
2e

−b ∧ [iβ(eb ∧ F )] = −
1
2e

−b ∧
(
iβ(eb) ∧ F + eb ∧ iβF + 2[ebβF ]

)
= −1

2

(
(iβb)F + 2[bβb] ∧ F + iβF + 2[bβF ]

)
, (4.11)
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where we have used e−b ∧ eb = 1. The first term in (4.5) can be written instead as

−δβb ∧ e−b ∧ dD = (β + [bβb]) ∧ F . (4.12)

Here we have introduced

β = 1
2βµνdx

µ ∧ dxν , (4.13)

with βµν = βρσgµρgνσ. Plugging (4.11) and (4.12) we finally obtain

δF = −1
2(iβb)F − [bβF ] + β ∧ F − 1

2 iβF , (4.14)

or in components

δF (p)
µ1...µp

= −1
2β

ρσbρσF
(p)
µ1...µp

− p b[µ1|ρ|β
ρσF

(p)
|σ|µ2...µp]

+p(p− 1)
2 β[µ1µ2

F
(p−2)
µ3...µp] −

1
2β

ρσF (p+2)
ρσµ1...µp

. (4.15)

In this expression, it is implicitly assumed that F (p) is non vanishing only for p = 1, 3, 5, 7, 9
in type IIB and p = 2, 4, 6, 8 for type IIA.

With these results we are ready to analyze the invariance of the Lagrangian LR.

4.1 β-invariance of the Lagrangian in type IIA and type IIB

The variation of the R-R sector of the Lagrangian due to a β transformation is

δβ
[√
−gLR

]
=
√
−g

[
δβ (
√
−g)√
−g

LR +
∑
p

p

p!δβg
µ1ν1F (p)

µ1µ2...µp
F (p)
ν1

µ2...µp

+
∑
p

2
p!F

(p)µ1...µpδβF
(p)
µ1...µp

]
, (4.16)

with the sum runing over p = 1, 3, 5, 7, 9 (p = 2, 4, 6, 8) on type IIB (IIA). Replacing the
transformation of the volume measure and inverse metric in (4.16):

δ
√
−g =

√
−g iβb ,

δgµν = 2βρ(µbν)
ρ , (4.17)

one readily verifies that first line in (4.16) exactly cancels terms in δF (p) proportional to
F (p) (first line in (4.15)), leaving only mixed terms

δβ
[√
−gLR

]
=
√
−g

∑
p

(
p(p− 1)
2 p! β

µ1µ2
F (p−2)
µ3...µp

F (p)µ1...µp − 1
2 p!β

ρσF (p+2)
ρσµ1...µp

F (p)µ1...µp

)
= 0 , (4.18)

where we immediately note that terms cancel each other out in the sum over all form orders.
As we anticipated, it is now clear from this analysis that invariance of LR is broken if we
modify the relative coefficients of the kinetic terms.
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4.2 β-invariance of the Lagrangian in massive type IIA

Massive type IIA is a deformation of type IIA supergravity containing extra curvatures
F (0) and F (10). The whole set of field strengths are defined like in (2.3) by adding formally
a 0-form to dD

F = eb ∧ (dD +M) . (4.19)

So, F (0) = M and the remaining forms contain an extra contribution ebM .
The Lagrangian of the RR sector is still (2.1) with the sum now running over all allowed

even degrees n = 0, 2, . . . , 10. We remark here that while F (10) can be interpreted as the
curvature of a D(9) form potential, the field F (0) does not have such an interpretation and is
formally introduced in (2.1) and finally interpreted as the hodge dual of the former.9 Therefore,
the new fields carry non propagating degrees of freedom. Certainly, the e.o.m. of D(9) is

d(∗F (10)) = 0 , (4.20)

but being ∗F (10) a 0-form, equation (4.20) implies ∗F (10) (= F (0) after (2.5)) =constant.
Despite this observation, it is worth noting that massive type II supergravity does indeed
arise in type IIA string. The 9-form potential is not observed in the quantization of the
type IIA string precisely because it does not carry propagating d.o.f., but it is required by
the very existence of D8-branes.

We now turn to explore whether β-symmetry can be extended in this case as well. We
immediately see that δD(9) is trivially invariant if (4.3) holds, because it is defined through the
contraction with an hypothetical 11-dimensional form in 10d, but there is no interpretation
at the level of potential forms for F (0). For that reason we work directly at the level of
curvatures and extrapolate (4.15), instead of (4.3).

With this definition it readily follows that β symmetry is consistent with constant
F (0) = M , as (4.15) implies

δβF
(0) = −1

2β
ρσbρσF

(0) − 1
2β

ρσF (2)
ρσ = −1

2β
ρσ∂ρD

(1)
σ = 0 . (4.21)

The M-dependent deformation on the curvatures F (p), for p = 2, 4, 6, 8 (4.19) and the
introduction of curvatures F (0) and F (10) in (2.1) do not spoil the proof of invariance of the
action of the previous section, which only depends on the formal expression (4.15).

We would like to emphasize here that massive type IIA can be considered as a consistent
truncation of type IIA with respect to infinitesimal O(d, d) transformations. This is straight-
forwardly verified for GL(d) and b-shift. Regarding β transformation we see that M = 0 is
also consistent due to (4.21), while F (10) transforms non trivially

δβF
(10)
µ1...µ10 = −1

2β
ρσbρσF

(10)
µ1...µ10 − 10b[µ1|ρ|β

ρσF
(10)
|σ|µ2...µ10] + 45β[µ1µ2F

(8)
µ3...µ10] (4.22)

9A formal (-1)-form potential for F (0) was introduced in [44]. Its mathematical interpretation was further
clarified in [41], as a contribution of the 1-form potential having a linear dependence on a coordinate dual to a
winding mode.

– 12 –



J
H
E
P
0
3
(
2
0
2
4
)
1
4
6

and so it could rise doubts about the consistency of the truncation as the condition F (10) = 0,
δβF

(10) = 0 requires vanishing of the last factor in (4.22), or equivalently

β[µ1µ2F (8)µ3...µ10] = 0 , (4.23)

a condition which is not satisfied, in general. Actually, there is no conflict here as D(9) = 0
does not imply F (10) = 0. We can still introduce a non vanishing F (10) in the democratic
formulation of (massless) type IIA SUGRA through (2.3), which transforms non trivially. Of
course, this curvature is therefore interpreted as a particular combination of Kalb-Ramond and
curvatures F (p), for p = 2, 4, 6, 8 and so it carries no independent d.o.f. The condition F (10) = 0
is only a consequence of F (0) = M = 0, after and only after the relation F (10) = ∗F (0) is
imposed. Indeed, when duality relations are required to hold, (4.23) turns into

0 = β[µ1µ2ϵµ3...µ10]ρσF (2)
ρσ = β[µ1µ2ϵµ3...µ10]ρσ

(
∂ρD

(1)
σ −Mbρσ

)
. (4.24)

Last factor cancels for M = 0, while the first one cancels due to (1.2), because the index
ρ in the derivative necessarily matches one of the indices in β.

4.3 Consistency with duality relations

In this section we will analyze compatibility of beta transformations and duality relations.
Concretely, we want to verify that both sides in (2.5) transform consistently. The dual
curvatures transform as

δ[∗F (q)]µ1...µ10−q = δ

[ 1
q!ϵν1...νqµ1...µ10−qF

(q)ν1...νq

]
= 1
q!ϵν1...νqµ1...µ10−q

[
δ
√
−g√
−g

gν1ρ1 . . . gνqρqF (q)
ρ1...ρq

+ q (δgν1ρ1) . . . gνqρqF (q)
ρ1...ρq

+ gν1ρ1 . . . gνqρqδF (q)
ρ1...ρq

]
. (4.25)

The contribution in the second line in (4.25) originates from the variation of the Levi-Civita
tensor and it leads to

δ[∗F (q)]µ1...µ10−q ⊃ (iβb)[∗F (q)]µ1...µ10−q . (4.26)

First factor in the third line in (4.25) is instead

δ[∗F (q)]µ1...µ10−q ⊃
q

q!ϵν1...νqµ1...µ10−q (βτν1bστ + βτ σb
ν1
τ )F (q)σν2...νq , (4.27)

while last contribution in (4.25) is, after use of (4.15)

δ[∗F (q)]µ1...µ10−q ⊃ −
1
2(iβb)[∗F

(q)]µ1...µ10−q +
1
2[iβ(∗F

(q−2))]µ1...µ10−q

− q

q!ϵν1...νqµ1...µ10−q βτ σb
ν1
τF

(q)σν2...νq

− 1
2
1
q!ϵ

ν1...νq
µ1...µ10−q β

ρσF (q+2)
ρσν1...νp

. (4.28)
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Plugging (4.26)–(4.28) with (4.25) we get

δ[∗F (q)]µ1...µ10−q = 1
2β

ρσbρσ[∗F (q)]µ1...µ10−q +
1
2β

ρσ[∗F (q−2)]ρσµ1...µ10−q

+ q

q!ϵ
ν1...νq

µ1...µ10−qβ
τ
ν1b

σ
τF

(q)
σν2...νq

− 1
2
1
q!ϵ

ν1...νq
µ1...µ10−q β

ρσF (q+2)
ρσν1...νq

(4.29)

or equivalently

δ[∗F (q)]µ1...µ10−q = −1
2β

ρσbρσ[∗F (q)]µ1...µ10−q +
1
2β

ρσ[∗F (q−2)]ρσµ1...µ10−q

−(10− q)b[µ1|τ |β
τν1 [∗F (q)]|ν1|µ2...µ10−q ]

− (10− q)(9− q)
2 β[µ1µ2 [∗F

(q+2)]µ3...µ10−q ] , (4.30)

where we have used

F (n)
ρ1...ρn

= (−)n+1[∗ ∗ F (n)]ρ1...ρn

= (−)n+1 1
(10− n)!ϵσ1...σ10−nρ1...ρn [∗F (n)]σ1...σ10−n (4.31)

and

ϵρ1...ρ10−nµ1...µnϵρ1...ρ10−nν1...νn = −n!(10− n)!δ[µ1
ν1 . . . δµn]

νn
, (4.32)

to write the right hand side in (4.30) entirely in terms of dual forms. It is now straightforward
to verify that β symmetry of curvatures (4.15) and dual curvatures (4.30) are consistent
with the duality relation (2.5). Indeed, using it on both sides of (4.30) and identifying
p = 10 − q one easily recovers (4.15).

4.4 Equations of motion

We will now focus on the behavior of the e.o.m. under the non geometric sector of the duality
group. The variation of the action is, after integrating by parts

δS =
∫
d10x

(
−2
√
−gLNS δd+ Ẽab δeab + B̃ab δbab +

∑
p

Ẽ(p)a1...ap δD(p)
a1...ap

)
. (4.33)

Here we have considered the generalized dilaton d = ϕ− 1
2 log

√
−g as independent d.o.f.10 and

we have introduced δeab = eµaδeµb, δbab = eµae
ν
bδbµν , δD(p)

a1...ap = eµ1
a1 . . . e

µp
apδD

(p)
µ1...µp and

Ẽab = −2
√
−ge−2ϕ

(
Rab + 2∇a∇bϕ−

1
4HacdHb

cd
)

−1
4
√
−g

∑
p

(
gab|F (p)|2 − 2

(p− 1)!F
(p)
ac1...cp−1F

(p)
b

c1...cp−1

)
,

B̃ab =
√
−ge−2ϕ

(1
2∇cHab

c −∇cϕHab
c
)
+ 1

4
√
−g

∑
p

1
(p− 2)!F

(p)
abc1...cp−2

F (p−2)c1...cp−2 ,

Ẽ(p)
a1...ap

= −1
2
1
p!
√
−g

(
∗d
[
e−b ∧ ∗F

])
a1...ap

, (4.34)

10This is a convenient choice when dealing with T-duality because the generalized dilaton d is a singlet. For
instance, first term in (4.33) does not contribute to δβS.
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∇c denotes the flattened (torsion free) covariant derivative. Interestingly, the non geometric
sector of O(d, d) transforms the vielbein equations of motion into the Kalb-Ramond equations
of motion and vice versa

δβ Ẽab = −4βc(aB̃b)c , δβB̃ab = βc[aẼb]c . (4.35)

It coincides exactly with the transformation rules found in [19], corresponding to the case
where all p-form potentials have been truncated. To see this, we first decompose the e.o.m.
of the NS-NS sector as

Ẽab = e−2dEab +∆Eab , B̃ab = e−2dBab +∆Bab . (4.36)

Here ∆Eab and ∆Bab denote the RR contribution, Eab and Bab already satisfy an equation
like (4.35), as was discussed in section 4.4 of [19] and e−2d =

√
−ge−2ϕ is β invariant. So, in

order to prove (4.35) we have to verify that ∆Eab and ∆Bab satisfy the same equation.
The first term in ∆Eab is proportional to the R-R sector of the Lagrangian, which has

already been proven to be invariant under β transformations (cf. section 4.1). Also the
proportionality factor, the flat metric gab, is β-invariant. The transformation rule for the
field strengths with planar indices reads

δβF
(p)
c1...cp

= eµ1
c1 . . . e

µp
cp
δβF

(p)
µ1...µp

+ p(δeµ1
[c1
)F (p)

|µ1|c2...cp]

= −1
2(iβb)F

(p)
c1...cp

+ [β ∧ F (p−2)]c1...cp −
1
2[iβF

(p+2)]c1...cp (4.37)

from which the variation of ∆Eab is

δβ(∆Eab) =
∑
p

1
2(p− 1)!

(
δβ(
√
−g)F (p)

ac1...cp−1F
(p) c1...cp−1
b + 2

√
−gδβF

(p)
(a|c1...cp−1

F
(p) c1...cp−1
|b)

)
(4.38)

The first term of δβF (p) will cancel out that of δβ
√
−g (cf. eq. (4.17) ). The remaining two

terms do not cancel out completely in the sum over all forms as happened in the Lagrangian
(cf. eq. (4.18) ) as the forms are not fully contracted, but rather yield

δβ∆Eab =
√
−g

∑
p

1
(p− 2)!β(a|c1F

(p−2)
c2...cp−1F

(p) c1...cp−1
|b) = −4βc1(a∆Bb)c1 (4.39)

thus proving the first of the relations in (4.35). A similar thing occurs with the variation of
∆Bab: one of the terms of δβ(F (p))F (p−2) + δβ(F (p−2))F (p) will cancel that of δβ

√
−g, while

the remaining terms will yield the other relation in equation (4.35).
As discussed in section 3.2 of loc. cit. the transformations of the e.o.m. play an important

role on the description of deformations of β-transformations leaving invariant the action,
but not the Lagrangian. In addition, a covariant transformation rule at the level of e.o.m.
guarantees β symmetry transforms solutions into new solutions and so can be used as a
solution generating technique in 10d.
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Regarding the equations of motion of the p-forms, we start by noticing that

δβ [d(e−b ∧ ∗F )] = d[δβ(e−b) ∧ ∗F + e−b ∧ δβ(∗F )]

= d

[
(β + [bβb]) ∧ e−b ∧ ∗F

+ e−b ∧
(
−1
2(iβb) ∗ F + 1

2 iβ(∗F )− [bβ ∗ F ]− β ∧ ∗F
) ]

= 1
2d
[
(iβ(e−b) ∧ ∗F + e−b ∧ iβ(∗F )− 2e−b ∧ [bβ ∗ F ]

]
= 1

2d[iβ(e
−b ∧ ∗F )] . (4.40)

In the third equality we have used identity (4.9) with b → −b, in the last line we used
instead (4.7). Hence, we obtain

δβ [d(e−b ∧ ∗F )] =
1
2 iβ [d(e

−b ∧ ∗F )] . (4.41)

This readily follows from (4.40) and the identity

d
(
iβA

(q)
)
= iβ

(
dA(q)

)
, (4.42)

which is valid for any q-form A(q) and is a consequence of (1.2) and the constancy of βµν .
With (4.41) at hand we can then proceed by following similar steps than those of

section 4.3 to obtain δβ
[
∗
(
d
[
e−b ∧ ∗F

])]
. We find

δẼ(p)
a1...ap

= (Ẽ(p−2) ∧ β)a1...ap − [βbẼ(p)]a1...ap , (4.43)

a formal expression where it is implicitly assumed that Ẽ(p−2) vanishes for p < 2. Here
[βbẼ(p)] is defined in analogous fashion as (4.8),

[βbẼ(p)] = 1
(p− 1)!βa1c b

cd Ẽ(p)
da2...ap

ea1 ∧ · · · ∧ eap , ea = eµ
adxµ . (4.44)

4.5 Closure

We close the analysis of consistency of the β-transformations as an effective symmetry in 10
dimensions by verifying closure of the algebra. The local transformations of the NS-NS sector
combined with β symmetry and its associated bracket was studied in [18] and [19]. Here we
extend it by considering also the local transformations in the R-R sector

δξD
(p)
µ1...µp

= ξρ∂ρD
(p)
µ1...µp

+ p∂[µ1ξ
ρD

(p)
|ρ|µ2...µp]

δΛD
(p)
µ1...µp

= 0 ,

δλD
(p)
µ1...µp

= p(p− 1)∂[µ1λµ2D
(p−2)
µ3...µp]

δχD
(p)
µ1...µp

= p∂[µ1χ
(p−1)
µ2...µp]. (4.45)

where δξ , δΛ, δλ, δχ stand for diffeomorphisms, Lorentz, gauge transformations of the
Kalb-Ramond and p-form potentials, respectively. Indeed, one finds that the condition (1.2)
leads to the following bracket

[δ1, δ2] = −δ12 , (4.46)
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with

Λ12ab = 2β1[a
cβ2 b]c + 2Λ1[a

cΛ2 b]c + 2 ξµ[1∂µΛ2]ab

β12 = 0 ,
ξµ12 = 2ξν[1∂νξ

µ
2] + βµν[1 λ2]ν , (4.47)

λ12µ = 4 ξν[1∂[νλ2]µ]

χ
(p)
12 µ1...µp = −βρσ[1 χ

(p+2)
2]ρσµ1...µp

+ 2p(p− 1)λ[1µ1∂µ2χ
(p−2)
2] µ3...µp] + 2(p+ 1)ξρ[1∂[ρχ

(p)
2] µ1...µp]

.

This completes the studies of consistency for the β-symmetry in the bosonic sector
of type II theories.

5 Conclusions

In a recent article [18], it was shown that SO(d, d) symmetry of KK reductions in the NS-NS
universal sector of supergravity admits an uplift in the standard 10d formulation through the
inclusion of β-transformations (1.1), provided that the condition (1.2) is satisfied. The main
advantage of this approach is that it enables the consideration of constraints on the effective
action due to T-duality within the standard scheme of supergravity, without the need of
performing compactifications, Lorentz non-covariant or non-geometric field redefinitions or
the introduction of additional coordinates.

This work extends this symmetry to the RR sector of (massive) type IIA and type IIB.
The transformations of the RR-potentials and curvatures are displayed in equations (4.3)
and (4.15), respectively. We explicitly verified the exact invariance of the Lagrangian (without
neglecting any total derivative terms) in sections 4.1 and 4.2. Additionally, we conducted
various consistency studies in sections 4.3, 4.4 and 4.5.

The invariance under β transformations in the R-R sector can also be derived from
a consistent truncation of the DFT extention of type II supergravities [37–40]. In this
formulation the RR potentials fit into Spin(10,10) multiplets D by extending (3.10) to 10
dimensions (see also [45–47] for a similar discussion in the context of Generalized Geometry).
The kinetic terms for RR potentials are expressed in terms of a duality covariant extension of
the exterior derivative, realized in terms of an O(10, 10) Dirac derivative ΓM∂M = Γµ∂µ+Γµ∂µ,
where ∂µ denotes differentiation with respect to the extra coordinates of DFT, duals to
winding modes.

The metric contracting the curvatures in (2.1) and the Kalb Ramond in the definition
of the field strengths in (2.3) are combined into a Spin−(10, 10) object, so that T-duality
invariance of the action and consistency relations (e.g. with duality relations and e.o.m.) are
strongly simplified. Explicitly breaking the O(10, 10) symmetry by choosing the supergravity
section ∂M = (∂µ, ∂µ) → (∂µ, 0), but still keeping the duality multiplets, leads to type II
supergravity in a DFT scheme. Although this chosen section breaks the duality invariance, it
is expect that the constraint (1.2) effectively restores it. Indeed, while this section is preserved
by Gl(d) and b-shift, a β-transformation modifies it as (∂µ, 0) →β (∂µ, βµν∂ν).

In conclusion, it is expected that β-invariance is easily verified in this scheme. However,
the price to pay is that, contrary to the scheme used in this paper, diffeomorphism and gauge
invariance of the Kalb Ramond are no longer manifest.
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There are some interesting extensions of this work, both in the NS-NS and the R-R
sectors. Concerning the latter, it remains unclear whether there exists a consistent definition
of β-symmetry within the standard formulation of type II theories, as there is no an off-shell
mechanism to relate it to the democratic formulation considered in this paper.

Regarding the NS-NS case, it is worth to investigate higher derivative deformations. It
was argued in [17] that there exists a universal sector of bosonic, heterotic and type II effective
actions at eight order in derivatives (those proportional to ζ(3) ) that cannot be embedded
in a Double Field Theory formulation.11 The approach presented here is free from these
obstructions, thus it is worthwhile to explore whether there is a β-deformation constraining
these couplings. If so, it could shed light on a potential DFT-like deformation, circumventing
the obstructions mentioned in the aforementioned work. First corrections to LNS of type II
theories are precisely ∼ O(α′3), making it the simplest scenario to study this problem.
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