
Journal of Photochemistry & Photobiology, A: Chemistry 456 (2024) 115849

Available online 24 June 2024
1010-6030/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Cationic thiazolothiazole derivatives – A new class of photosensitizing 
agents against Staphylococcus aureus 
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A B S T R A C T   

The assessment of thiazolothiazoles (TzTz) as photosensitizers in photodynamic inactivation (PDI) experiments is 
reported for the first time. Mono and dicationic TzTz derivatives were synthesized, and their photosensitizing 
ability was assessed on Staphylococcus aureus cells, both in suspension or attached to a surface, and using white 
light. The biological results showed that the photodynamic efficiency of these derivatives is dependent on the 
TzTz structure and irradiation time. The best results were obtained with the monocationic derivative 
TPATzTzPyMeþ that allowed to reach a value over 7 log (99.9999 %) cell inactivation after white light irra-
diation for 30 min. Furthermore, TPATzTzPyMeþ also revealed to be effective on the inactivation of S. aureus 
adhered to surfaces, a good indication of its potential to prevent biofilm formation. TPATzTzPyMeþ was also 
effective against Escherichia coli, with a reduction in cell viability of 5.7 log after irradiation for 30 min.   

1. Introduction 

Due to the widespread use of antibiotics, there is an increasing need 
to develop effective and safe antimicrobials that can replace or com-
plement traditional antibiotics in combating drug-resistant bacteria [1]. 
Photodynamic inactivation (PDI), also known as antimicrobial photo-
dynamic therapy (aPDT), emerged as an alternative solution against 
multidrug resistant microorganisms [2]. This is a non-invasive tech-
nique that requires a nontoxic photosensitizer (PS), light (white light or 
visible light with a specific wavelength) and dioxygen (3O2). After the 
administration and irradiation of the PS, cytotoxic and reactive oxygen 
species (ROS), mainly singlet oxygen (1O2), are generated leading, after 
their interaction with vital biomolecules, to the inactivation of the mi-
croorganisms. This process has been used to effectively inactivate bac-
teria, virus, and fungi [3–6]. 

Extensive research has been dedicated to explore the potential of a 
range of small molecules [7,8] as phototherapeutic agents in the inac-
tivation of bacteria, such as porphyrins, chlorins, bacteriochlorins, and 
phthalocyanines [9–12], BODIPYs [13], cyanine dyes [14], 

phenothiazines and xanthenes [15], and diketopyrrolopyrroles [16,17]. 
Thiazolo[5,4-d]thiazoles, also known as thiazolothiazoles (TzTz), 

constitute a class of heterocyclic compounds characterized by a rigid 
coplanar fused bicyclic scaffold with an extended π-conjugation system. 
These compounds are attractive candidates for different applications 
[18–21]. In fact, TzTz compounds have already been successfully 
employed as probes for live-cell imaging [22–25], components in solar 
cells devices [26–32], organic light-emitting diodes (OLEDs) [33], 
fluorescent metal–organic frameworks (MOFs) [23,34–36], chemo-
sensors [25,36–39], and photocatalysts [40,41]. Surprisingly, only one 
study concerning the evaluation of TzTz as potential therapeutic agents 
was reported [42]. In that article, a symmetrical and a non-symmetrical 
TzTz derivatives bearing catechol units were evaluated as inhibitors of 
the human 5-lipoxygenase (5-hLOX), that is involved in a variety of 
inflammation-related diseases, and as antibacterials against Staphylo-
coccus aureus. The results showed that both TzTz were less efficient, or 
inactive, as 5-hLOX inhibitors and as antibacterials than similar 1,3-thia-
zole derivatives. Furthermore, in the context of this work, it is important 
to highlight that in the cited study, the inactivation of S. aureus was 
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carried without light irradiation. In fact, as far as we know, until now, 
TzTz have never been used as PS in PDT or PDI experiments. 

In this paper, we present the synthesis and characterization of six 
cationic TzTz derivatives (vide infra Fig. 1), highlighting their photo-
physical properties. Moreover, we investigate their potential as photo-
sensitizing agents against S. aureus, aiming to find new lead compounds 
for antimicrobial applications. 

2. Experimental section 

2.1. Materials and methods 

The experimental details for the synthesis of the cationic TzTz are 
reported in the Supplementary Material. 

2.2. Singlet oxygen generation 

The capability of the cationic TzTz to generate singlet oxygen was 
evaluated by monitoring the photooxidation of 9,10-dimethylanthra-
cene (DMA), a singlet oxygen quencher. Solutions of each compound 
presented in Fig. 1 (Br2TPATzTzPyMeþ, Br2TPATzTzPyPentþ, 
TPATzTzPyMeþ, TzTz(PyMe)2

2þ, TzTz(PyPent)2
2þ, TzTz 

(PyDodec)2
2þ) and 5,10,15,20-tetraphenylporphyrin (TPP) (ΦΔ = 0.65) 

[43,44] in dimethylformamide (DMF) (2.5 mL) were prepared in quartz 
cells (Abs420 ≈ 0.1). Subsequently, a 30 μM solution of DMA in DMF was 
added and the resulting solutions were irradiated with monochromatic 
light (λ = 420 nm). The absorbance decay of DMA at 378 nm was 
measured at intervals of 60 s over a period of 900 s and the results were 
registered in a first-order plot. The kinetics of DMA photooxidation in 
DMF, in the absence of any PS, was also assessed and no significant 
photodegradation was observed under the same irradiation conditions. 

2.3. Bacterial strain cultures 

Methicillin-resistant S. aureus (ATCC 43300) cells were aerobically 
cultured overnight at 37 ◦C in tryptic soy (TS) broth (4 mL) under sterile 
conditions [45]. Subsequently, 50 mL of this culture was aseptically 
transferred to fresh TS broth (4 mL) and incubated at 37 ◦C until 
reaching the mid-logarithmic phase of growth (Abs660 = 0.6). Then, the 
S. aureus cells were harvested through centrifugation at 3000 rpm for 15 
min and suspended in a 4 mL solution of 10 mM phosphate-buffered 
saline (PBS, pH 7.2). This process resulted in a cell density of approxi-
mately 108 colony forming units (CFU)/mL. The viability of S. aureus 
cells was assessed using the spread plate method in triplicate. The CFU 
count was determined on TS agar plates after an incubation period of 
around 24 h at 37 ◦C in the dark. Escherichia coli (ATCC 25922) cells 
were cultured as previously described [46]. 

2.4. Photoinactivation of S. aureus cell suspensions 

S. aureus suspensions (2 mL, ~108 CFU/mL) in PBS were treated with 
2 µM TzTz (10 μL) for 15 min in the dark at 37 ◦C in 13x100 mm Pyrex 

culture tubes [47]. The application of these compounds was carried out 
using a 0.4 mM stock solution in DMF. Then, 200 µL of cell suspensions 
were distributed into 96-well microtiter plates, and the cultures were 
subjected to irradiation for 5, 15, and 30 min using a Novamat 130 AF 
projector (Braun Photo Technik, Nürnberg, Germany) equipped with a 
150 W lamp. Optical filters were utilized to define a wavelength range 
between 350 and 800 nm. The projector was positioned vertically with 
the light beam focused onto the lid of the 96-well microtiter plate. This 
arrangement produced a fluence rate of 90 mW/cm2 (Radiometer Laser 
Mate-Q, Coherent, Santa Clara, CA, USA) [46]. Quantification of viable 
bacterial cells was performed following the procedure described above 
[45]. 

2.5. Photoinactivation of S. aureus at the single-bacterium level 

Fluorescence microscopy analyses were conducted following a pre-
viously established methodology with slight adjustments, utilizing an 
inverted fluorescence microscope (BIM500FL, Bioimager, ON, Canada) 
[48]. S. aureus cells were cultivated aerobically on TS agar overnight at 
37 ◦C. Subsequently, a single colony was selected and cultured overnight 
in TS agar. Bacterial specimens were harvested from the agar by adding 
1 mL of PBS and removing the agar streaks. Then, a suspension of 
S. aureus (1 mL) was incubated for 30 min at 37 ◦C within a chamber 
constructed from a polymeric cylinder affixed to a coverslip. During this 
process, bacterial cells were adhered to the glass surface while any un-
bound bacteria were eliminated from the chamber by washing with PBS. 
The experimental steps involved the addition of PBS (583 μL) and pro-
pidium iodide (PI) (1 μM, 5 μL from a 120 mM stock solution in DMSO/ 
water (1:9)) to the cells fixed on the glass surface within the chamber. 
Subsequently, the cells were incubated for 15 min at 37 ◦C in the dark. 
After that, the bacteria were treated with 2 μM TzTz (12 μL from a 1x10-4 

M stock solution in DMF), and the cultures were further incubated for 
another 15 min at 37 ◦C in the dark. For photoinactivation tests, the 
chamber was irradiated with a Cole-Parmer illuminator containing 150 
W halogen lamp (41720 series, Cole-Parmer, Vernon Hills, IL) using an 
optical fiber. This setup yielded a light fluence rate of 6.6 mW/cm2. The 
samples were exposed to irradiation for 5, 15 and 30 min. To detect dead 
cells, PI was excited with green light through a bandpass filter (515/35). 
Fluorescence images of PI were captured using an emission bandpass 
filter (645/75). Additionally, a brightfield image was acquired to verify 
the presence of bacterial cells. Bioimages were acquired using a 100 ×
magnification objective using a CMOS camera. Images were processed 
with FIJI-ImageJ program. 

2.6. Controls and statistical analysis 

Irradiated controls of S. aureus cultures were performed using cell 
suspensions (~108 CFU/mL) in 2 mL of PBS without the addition of 
TzTz. Dark controls were conducted on cell suspensions incubated with 
2 μM TzTz for 15 min in the absence of light at 37 ◦C, and they were 
subsequently kept under these conditions for 5, 15, and 30 min. Each 
value denotes the mean of three separate experiments with its standard 

Fig. 1. Structures of the mono and dicationic TzTz derivatives.  
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deviation. The significance of the differences between the means was 
analyzed using one-way ANOVA with a confidence level of 95 % (p <
0.05) [47]. 

3. Results and discussion 

3.1. Synthesis 

The cationic TzTz derivatives used in this work (Fig. 1) were syn-
thesized in two steps. Firstly, the neutral TzTz derivatives were obtained 
from the reaction of dithiooxamide with pyridine-4-carbaldehyde and 4- 
(diphenylamino)benzaldehyde or 4-[bis(4-bromophenyl)amino]benzal-
dehyde in anhydrous DMF at 130 ◦C, as illustrated in Scheme S1. This 
allowed us to prepare one symmetrical (with two pyridyl groups) and 
two non-symmetrical (with a triphenylamino unit and a pyridyl group) 
TzTz derivatives. The structures of compounds TzTzPy2, (TPA)2TzTz, 
(Br2TPA)2TzTz and TPATzTzPy (see SI) were confirmed by comparing 
their spectral data with those reported in the literature [24,49–51]. The 
structure of compound Br2TPATzTzPy was confirmed by its 1H NMR, 
13C NMR and MS spectra (see SI). 

The last step of the synthesis was the quaternization of the pyridyl 
groups with methyl iodide, 1-iodopentane or 1-iodododecane. These 
reactions were carried out in anhydrous DMF at 40 ◦C. The structures of 
all derivatives were confirmed by 1H NMR, 13C NMR and MS spectra (see 
SI). The presence of the signals corresponding to the resonances of the 
protons of the N-alkyl groups on the 1H NMR spectra is a clear evidence 
that the cationization occurred. For example, in the 1H NMR spectrum of 
TPATzTzPyMeþ (Fig. S6), an additional singlet appeared at 4.36 ppm, 
corresponding to the protons of the methyl group, when compared to the 
neutral precursor. The MS spectra of the monocationic TzTz derivatives 
showed the base peak corresponding to [M − I–]+, while for the dica-
tionic derivatives the base peak corresponds to [M − 2I–]2+. 

3.2. Photophysical properties 

The absorption and emission spectra of TzTz are presented in Figs. 2 
and 3 and their photophysical properties are summarized in Table 1. The 
absorption spectrum of the neutral Br2TPATzTzPy displays a band 
centered at 417 nm and a band of minor intensity at 315 nm. The UV–Vis 
spectra of Br2TPATzTzPyMeþ and Br2TPATzTzPyPentþ showed a red 
shift of 26 nm and 46 nm for the first absorption band and of 57 nm and 

58 nm for the second absorption band, respectively, relatively to the 
spectrum of the neutral TzTz. Concerning the spectrum of 
TPATzTzPyMeþ, it showed a strong band at 485 nm and a minor one at 
352 nm. In the case of the dicationic TzTz, the UV–Vis spectrum of each 
derivative showed a band at ca. 390 nm, with a red shift of ca. 40 nm 
when compared with the neutral derivative TzTzPy2 (λmax 350 nm) 
[52]. 

The emission spectra of non-symmetrical cationic TzTz showed a 
maximum emission wavelength between 558 and 569 nm. 
Br2TPATzTzMeþ and Br2TPATzTzPent+ showed a bathochromic shift 
of 53 nm and 49 nm, respectively, relative to the emission band of the 
neutral Br2TPATzTzPy derivative (λmax 520 nm). The dicationic TzTz 
showed the maximum emission wavelength between 453 and 468 nm. 
All TzTz derivatives exhibit Stokes shifts in the range 3241–4750 cm− 1, 
which is consistent with previously reported data [24,53]. 

3.3. Photooxidation of DMA 

The capacity of cationic TzTz to generate 1O2 upon irradiation was 
assessed by an indirect method based on the absorption decay of a DMA 
solution. The samples were irradiated at 420 nm under aerobic condi-
tions and the photooxidation of DMA was monitored by the decrease of 

Fig. 2. Normalized absorption spectra of TzTz derivatives in DMF.  

Fig. 3. Normalized emission spectra of TzTz derivatives in DMF.  
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the absorbance at λmax = 378 nm (Fig. S31). The ΦΔ values found for all 
TzTz derivatives are summarized in Table 1. These values are much 
lower than the ΦΔ value for TPP (ΦΔ = 0.65 in DMF) [43,44]. While low 
values for ΦΔ could be expected for TzTz derivatives with high ΦF 
(observed for the symmetric derivatives TzTz(PyMe)2

2þ and TzTz 
(PyPent)2

2þ), there is no clear correlation in the overall results, indi-
cating the presence of other deactivation processes of the excited state. 
Moreover, the derivative with the highest antimicrobial activity 
(TPATzTzPyMeþ) shows low ΦΔ and low ΦF values. This suggests that 
photobactericidal mechanisms other than those involving the produc-
tion of 1O2, such as the generation of superoxide radical, O2

•− , upon 
electron transfer, and photothermal effect, arising from internal con-
version, may be operative. 

3.4. Photoinactivation of S. aureus cell suspensions 

Photoinactivation induced by TzTz was conducted on in S. aureus cell 
suspensions, using a cell density of ~108 CFU/mL. This microbial strain 
was selected due to its potential to cause pathogenic diseases in humans 
[56]. Microorganism cultures suspended in PBS were treated with 2 μM 
TzTz for 15 min at 37 ◦C in the dark. This concentration was selected 
based on previous results of photosensitizers with photodynamic prop-
erties similar to TzTz derivatives [17]. Subsequently, the cells were 
exposed for 5, 15 and 30 min to white light. It was observed that at this 
concentration, TzTz did not exhibit toxicity to the microbial cells during 

a 30 min incubation in the dark (Fig. 4). Additionally, the viability of 
bacteria remained unaffected by cell irradiation in the absence of TzTz 
(Fig. 5). Consequently, the PDI of cultures observed after irradiating 
S. aureus cells treated with TzTz was attributed to the photodynamic 
activity sensitized by these compounds. The survival of microbial cells 
following different PDI treatments is depicted in Fig. 5. Cell viability was 
influenced by both the TzTz derivative and the period of exposure to 
white light. After 30 min of irradiation, 1 log decrease in bacterial sur-
vival was found in S. aureus cells treated with Br2TPATzTzPyPentþ, 
TzTz(PyMe)2

2þ, and TzTz(PyPent)2
2þ. Additionally, TzTz(PyDodec)2

2þ

and Br2TPATzTzPyMeþ demonstrated a photoinactivation resulting in 
2 log (99 %) and 3 log (99.9 %) reduction, respectively, after the same 
duration of irradiation. However, the photokilling capacity induced by 
TPATzTzPyMeþ was higher, reaching a 3.5 log decrease in cell survival 
upon 5 min of irradiation. In addition, it was able to eliminate the 
bacteria, which signifies over 7 log cell inactivation, by irradiation of the 
S. aureus cells treated with this TzTz derivative for 30 min. This reduc-
tion in viability produced by TPATzTzPyMeþ represented a value 
greater than 99.9999 % of cell inactivation. Based on these findings, the 
phototoxic activity of TPATzTzPyMeþ was also examined against the 
Gram-negative bacteria E. coli. The survival of E. coli cells after different 
treatment periods are shown in Fig. 6. After 30 min of irradiation, this PS 
caused a reduction in cell viability of 5.7 log units. This is an interesting 
finding because TPATzTzPyMeþ demonstrated effectiveness not only in 

Table 1 
Absorption and emission data of TzTz derivatives.  

TzTz λmax,abs (nm) log ε (M− 1 cm− 1) λmax,em (nm) Stokes shift ΦF ΦΔ 

(nm)c (cm− 1)c 

Br2TPATzTzPya 315 
417 

4.42 
4.66 

520 103 4750 0.60d  n.d. 

Br2TPATzTzPyMe+ b 309 
349 
474 

4.26 
4.24 
4.51 

573 99 3645 0.04d  0.014 

Br2TPATzTzPyPent+ b 361 
475 

3.77 
3.64 

569 94 3478 0.07d  0.041 

TPATzTzPyMe+ b 352 
485 

4.43 
4.76 

584 99 3496 0.14d  0.018 

TzTz(PyMe)2
2+ b 392 4.50 454 62 3484 0.91e  0.086 

TzTz(PyPent)2
2+ b 395 4.66 468 73 3948 0.74e  0.110 

TzTz(PyDodec)2
2+ b 395 4.46 453 58 3241 0.20e  0.030  

a 10–5 mol.L–1 in CHCl3. b 10–5 mol.L–1 in DMF. c Stokes shift was calculated as the difference (in wavenumbers) between the maximum of the first absorption band 
and the maximum of the fluorescence spectrum [54]. 

d Excitation at 400 nm; calculated using 2-[4-(diphenylamino)phenyl]-5-(4-pyridyl)thiazolo[5,4-d]thiazole as fluorescence standard (ΦF = 0.54 in CHCl3) [24]. 
e Excitation at 380 nm; calculated using 2,5-bis(1-methylpyridin-1-ium-4-yl)thiazolo[5,4-d]thiazole (TzTz(PyMe)2

2þ) as fluorescence standard (ΦF = 0.92 in H2O) 
[55]. 

Fig. 4. Survival of S. aureus (~108 CFU/mL) treated with 2 µM TzTz for 15 min 
at 37 ◦C in the dark and kept in the dark for different times. 

Fig. 5. Survival of S. aureus (~108 CFU/mL) treated with 2 µM TzTz for 15 min 
at 37 ◦C in the dark and then irradiated with white light (90 mW/cm2) for 5, 15 
and 30 min. Irradiated control: culture without TzTz but irradiated with white 
light (90 mW/cm2). 
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inactivating S. aureus but also in eliminating E. coli with 99.999 % 
efficiency. 

The photobleaching of compounds TPATzTzPyMeþ and 
Br2TPATzTzPyMeþ, which were the most effective in eradicating bac-
teria, were measured under conditions similar to those used to 

photoinactivate S. aureus (Fig. S32). From the first-order plots (Fig S33), 
the photobleaching half-life times (τ1/2) of TPATzTzPyMeþ and 
Br2TPATzTzPyMeþ were 18 and 27 min, respectively. 

The remaining TzTz do not apparently interact with bacteria and 
therefore did not present any band in cell suspensions, neither absorp-
tion nor fluorescence, to be able to monitor photobleaching over time. 
The remaining TzTz did not appear to interact with the bacteria. 
Therefore, no absorption or fluorescence bands were detected in the cell 
suspensions, precluding the monitoring of photobleaching over time. 
The results indicate that the compounds TPATzTzPyMeþ and 
Br2TPATzTzPyMeþ can effectively interact with bacterial cells, 
increasing their efficiency to eradicate S. aureus. 

3.5. Photoinactivation of S. aureus attached to surfaces 

PDI sensitized by TzTz was also determined by observing individual 
bacteria under a fluorescence microscope. To achieve this, S. aureus cells 
were affixed to the surface of a coverslip within a circular chamber, 
following the previously outlined procedure [48]. This method relies on 
the presence of bacterial hairs that facilitate the adherence of S. aureus 
cells to glass surfaces [57]. Fluorescence images were compared with 
phase-contrast photographs to confirm the presence and position of the 
bacterial cells on the surfaces (Fig. 7). The process involved treating 
individual S. aureus cells with 1 µM PI for 15 min. Subsequently, the 
bacteria were incubated with 2 µM TzTz in PBS for an additional 15 min 
in the absence of light. In this procedure, PI served as a fluorophore to 
detect cell death of attached bacteria inside the chamber [58]. In this 
procedure, light irradiation from an optical fiber was applied to S. aureus 
cells for varying durations. These tests were conducted using the two 
most potent TzTz derivatives (Br2TPATzTzPyMeþ and 
TPATzTzPyMeþ) for photoinactivating bacterial suspensions. The pro-
gression of TzTz-sensitized PDI and control outcomes is illustrated in 
Fig. 7, covering irradiation times from 0 to 30 min. Control experiments 
involving cells irradiated without TzTz exhibited negligible cell damage 
after a 30 min of irradiation (Fig. 7, last row). In the presence of TzTz, 

Fig. 6. Survival of E. coli (~108 CFU/mL) treated with 2 µM TPATzTzPyMeþ

for 15 min at 37 ◦C in the dark and then irradiated with white light (90 mW/ 
cm2) for different periods, (1) cells in the dark, (2) irradiated cells for 30 min, 
(3) cells + PS in the dark for 30 min, (4) irradiated cells + PS for 5 min, (5) 
irradiated cells + PS for 15 min, (6) irradiated cells + PS for 30 min. 

Fig. 7. Microscopy images of S. aureus incubated with 2 μM TzTz for 15 min in the dark and irradiated with white light (6.6 mW/cm2) for different times (0, 5, 15, 
and 30 min); column A: cells under bright field; columns B: fluorescence emission of PI. 
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photodamage of S. aureus cells was evidenced through an increase in red 
fluorescence, a characteristic indicative of cell death. 
Br2TPATzTzPyMeþ demonstrated approximately 74 % inactivation of 
S. aureus cells (Fig. 6, first row). As found in the tests with cell suspen-
sions in PBS, TPATzTzPyMeþ was the most effective PS for eliminating 
surface-adhering S. aureus cells. The photodynamic action induced by 
this TzTz derivative achieved an inactivation exceeding 90 % after 30 
min of irradiation (Fig. 7, second row). Consequently, these findings 
highlight TPATzTzPyMeþ as an effective compound in the photo-
inactivation of S. aureus cells at the individual bacterium level, repre-
senting a simplified model of the initial stage in biofilm formation [59]. 

4. Conclusions 

Symmetrical and non-symmetrical TzTz derivatives bearing one or 
two 4-pyridyl groups were synthesized and the pyridyl groups were then 
quaternized with methyl iodide, 1-iodopentane or 1-iodododecane to 
afford the corresponding mono and dicationic derivatives. The photo-
sensitizing ability of the cationic TzTz was assessed on S. aureus cells and 
the results showed that monocationic derivatives were more efficient PS 
for the inactivation of the bacterium than the dicationic ones. The best 
results for the PDI experiments (carried using 2 µM TzTz and white light 
with a fluence rate of 90 mW/cm2) were obtained with the monocationic 
derivative TPATzTzPyMeþ that allowed to reach a value over 7 log cell 
inactivation after irradiation for 30 min. This reduction in viability of 
S. aureus induced by TPATzTzPyMeþ represents a value greater than 
99.9999 % of cell inactivation. Furthermore, this TzTz derivative was 
also effective for the photoinactivation of S. aureus cells attached to a 
surface, a good indication that it can be used for the inactivation of 
biofilms. As a final remark, the results of this work clearly indicate that 
cationic TzTz derivatives can be considered a new class of photosensi-
tizers for PDI. TPATzTzPyMeþ, in particular, should be considered a 
new lead compound worth optimizing for antimicrobial applications. 
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San Martin, A. Vega, A.A. Martí, F. Godoy, C. Mascayano, Design, synthesis and 
biological evaluation of ferrocenyl thiazole and thiazolo[5,4-d]thiazole catechols 
as inhibitors of 5-hLOX and as antibacterials against Staphylococcus aureus, Struct. 
Relationship Comput. Stud. Organometall. 39 (2020) 2672–2681, https://doi.org/ 
10.1021/acs.organomet.0c00284. 

[43] J.C.J.M.D.S. Menezes, M.A.F. Faustino, K.T. De Oliveira, M.P. Uliana, V.F. Ferreira, 
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