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This is a short review of our recent work1 with some new original results. We numerically
calculate the conformal two point correlation function of operators with arbitrary scale

dimension up to order T 2d in the low temperature expansion. We analytically compute
its large scale dimension limit up to the same order.

1. Introduction

In d-dimensional Euclidean Conformal Field Theories (CFT), the 2-point correlation

function (propagator) of the operatorO(x) of anomalous dimension ∆ is constrained

by conformality to be

G2(x) ∝ 1

|x|2∆
, |x|2 = ~x2 + t2 , (1)

with the Fourier transform

G2(k) ∝ k2∆−d , k2 = ~k2 + ω2 . (2)

The splitting xµ → ~x, t(= x0) or kµ → ~k, ω(= k0) is not necessary here, but is

necessary for temperature T 6= 0.

A generic CFT is usually nonperturbative so it is not obvious how to introduce

the temperature. But if we assume that such a CFT has a gravitational dual, then we

could use the AdS/CFT correspondence. The temperature in the CFT corresponds

to the Hawking temperature of the horizon in the bulk, which comes as the black

hole solution or, in our case, the black brane solution (large mass black hole limit)

in the anti de Sitter (AdS) space.

We will be interested in the small temperature corrections, T � k, T � ω.1 So

far these corrections were estimated only in the limit of ~k = 0 for the absorption

∗Talk given by B.B. on September 2023 in Beograd
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cross section by black branes2 and in the large ∆ limit without3–6 or with a chemical

potential.7 It turns out that the opposite limit, large T corrections, is much simpler.

This paper is a short review of1 (sections 2-5) but it has on top of it some

original contributions (sections 6 and Appendix A).

2. The equation

We will get the CFT thermal propagator from the AdS/CFT correspondence, i.e.

from the solution of the equation of motion for a black brane in Euclidean AdSd+1

(we measure in units of the AdS scale, L = 1):

ds2 = gabdx
adxb =

1

z2

(
dz2

f(z)
+ f(z)dt2 + d~x2

)
, (3)

f(z) = 1−
(
z

zh

)d
. (4)

Here z → 0 is the boundary, while z → zh is the horizon. The Hawking temperature

is T = d
4πzh

. Small temperature thus means large zh.

Put now a scalar field into this non-dynamical background

Sbulk =
1

2

∫
dd+1x

√
det gab

(
∂aφ g

ab ∂bφ+m2φ2
)

. (5)

According to the AdS/CFT dictionary, the operator in the boundary CFT dual

to φ has anomalous dimension

∆ =
d

2
+

√
d2

4
+m2 =

d

2
+ ν , (6)

where we will throughout assume ∆ and ν non-integer.

The perturbation ξ(z) = ξ(z, k) is defined as

φ(x, z) =

∫
ddk

(2π)d
eiωt+i

~k·~x ξ(z) (7)

and must satisfy

f(z)z2 ξ′′(z)− (d− f(z))z ξ′(z)−
(
z2

(
k2 + ω2 1− f(z)

f(z)

)
+ ∆(∆− d)

)
ξ(z) = 0 .

(8)

The solution must satisfy the following boundary condition on the horizon

z → zh : ξ(z) <∞ (9)

According to AdS/CFT the solution close to the boundary gives the propagator

z → 0 : ξ(z) ∝ zd−∆ +G2(ω, k)︸ ︷︷ ︸
our hero

z∆ . (10)
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This amounts essentially to solve the usual connection problem: given the indepen-

dent solutions ξ1,2
a (z) known expanded around point a

ξ1,2
a (z) = (z − za)α1,2

∞∑
n=0

c1,2n (z − za)n , (11)

how are they related to two other independent solutions ξ1,2
b (z) expanded around

point b ?

ξ1,2
b (z) = (z − zb)β1,2

∞∑
n=0

d1,2
n (z − zb)n (12)

In our case: a = zh (horizon) and b = 0 (boundary). In other words, the connection

problem is to find qij , i, j,= 1, 2:

ξ1
zh

(z) = q11 ξ
1
0(z) + q12 ξ

2
0(z) (13)

ξ2
zh

(z) = q21 ξ
1
0(z) + q22 ξ

2
0(z) (14)

If ξ1
zh

(z) is well behaved for z → zh, and

ξ1
0(z)

z→0−−−→ A zd−∆ (15)

ξ2
0(z)

z→0−−−→ B z∆ (16)

→ G2(ω, k) =
B q12

A q11

This problem has been recently solved analytically for our case8 based on a general

solution of the connection problem for the Heun equation.9 The propagator is related

to

• the known Nekrasov-Shatashvili function NS (sums over instantons in

N = 2 SQCD, gauge SU(2) with F = 4 quarks with masses mi)

NS =

∞∑
n=1

cn(a,mi)t
n

where cn is calculable but complicated for large n (sums over partitions)

and t ∝ exp (−1/g2) is the instanton parameter;

• the parameter a is got from the Matone relation (between the parameters

of the model), schematically

p(a, ω/T, k/T,mi,∆) = t ∂tNS(t)

The limit in our case to be taken is a special mi → ∞ one. The reason for

the problem is exactly this mi → ∞ limit. Does it mean that quarks need to be

integrated out, F = 4→ F = 0? Usually10 this is done by taking ΛF → 0 with

ΛF−1 = mp
FΛ1−p

F . (17)
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but in our case

t ∝ Λp
′

F = 1/2 (18)

is fixed and so we do not end up in the theory with lower F .

So the exact solution is

• very nice for expansion in large T/k, T/ω for the black hole case;

• but very bad (or impossible) for expansion in small T/k, T/ω for the black

brane case (F written as infinite expansion in positive powers of ω/T ).

In fact all instantons (powers of t count number of instantons) contribute, the

gauge coupling is large. Essentially it boils down to infinite sums very difficult to

evaluate. So this solution is not useful for our program, perturbative expansion in

positive powers of T/k

Now, which are the parameters of the problem? We have 4 parameters:

(1) d, we will consider mostly d = 2 or d = 4

(2) T/ω (first dimensionless ratio)

(3) T/k (second dimensionless ratio)

We will be interested in expansion in positive powers of T/ω and T/k (small

temperature)

(4) ∆, for large ∆� 1 one can approximate the propagator as the exponent of the

geodesic length between the two points in spacetime. Solutions have been found

for d = 4 to order T 8 4

G2(η, x) =
1

|x|2∆

(
1 +

∆π4T 4

120
C

(1)
2 (η)|x|4 (19)

+
∆2π8T 8

28800

(
C

(1)
4 (η) + C

(1)
2 (η) + C

(1)
0 (η)

)
|x|8 +O(T 12)

)
where |x|2 = t2 + ~x2, C

(1)
n . . . are Gegenbauer polynomials, and η = t/|x|.

Our goal here is to calculate these coefficients but for general values of ∆ and

d.

We will solve our equation (8) by expanding in small 1/zh = 4π T/d

1

f(z)
=

∞∑
n=0

(
z

zh

)nd
,

1

f(z)2
=

∞∑
n=0

(n+ 1)

(
z

zh

)nd
(20)

and solve perturbatively (8) at fixed power in 1/zh:

ξ(z) = ξ0(z) +
ξ1(z)

zhd
+
ξ2(z)

zh2d
+ . . .

The boundary conditions are always

z →∞ : |ξ(z)| <∞ (21)

z → 0 : ξ(z) = zd−∆ (1 +O(z)) +G2(ω, k)z∆ (1 +O(z)) (22)
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and

G2(ω, k) = G
(0)
2 (k) (1 + g1(ω/k) + g2(ω/k) + . . .) (23)

For sake of clearness, we present the computations slightly different from;1 for

more details we refer the reader to this reference and section 6 of the present paper.

3. CFT: order T 0

The equation to solve is (8) at 1/zh
0:

z2 ξ′′0 (z)− (d− 1)z ξ′0(z)−
(
(kz)2 + ∆(∆− d)

)
ξ0(z) = 0 (24)

The solution is (ν = ∆− d/2)

ξ0(z) = zd/2 Kν(kz) (25)

For small z

ξ0(z) ∝ zd/2
(
(kz)−ν + (kz)ν

)
∝ zd/2−ν +G2(k)zd/2+ν (26)

and from here we get

G
(0)
2 (k) = k2ν (27)

4. First correction to CFT: order T d

The equation at the next order is

z2 ξ′′1 (z)− (d− 1)z ξ′1(z)−
(
(kz)2 + ∆(∆− d)

)
ξ1(z) =

1

zdh
Ôξ0(z) (28)

with the solution

ξ1(z) = zd/2Iν(z)×
∫ z

∞
dz′
((
k2 + ω2

)
z′
d+1

+
(
ν2 − d2/4

)
z′
d−1
)
Kν(kz′)2

z→0−−−→ zd/2−ν
∫ 0

∞
dz′ (integrand above) (29)

The correction to the propagator results

g1(ω/k) ≡
√
π

4(kzh)d
Γ
(
d
2

)
Γ
(
d+3

2

) Γ
(
d
2 + 1 + ν

)
Γ
(
d
2 + 1− ν

)
Γ (1 + ν) Γ (1− ν)

ν

(
d
(ω
k

)2

− 1

)
(30)

which for d = 4 becomes

g1(ω/k) =

(
πT

k

)4
2

15
ν(ν2 − 1)(ν2 − 4)

(
4
ω2

k2
− 1

)
(31)

Transforming to x-space we get

g1(x) = ∆
π4 T 4 |x|4

120

(
4
t2

|x|2
− 1

)
(32)

This result coincides exactly with the large ∆ result. As we will see, this is simply

a coincidence, which will not be true anymore at the next order.
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5. Second correction to CFT: order T 2d

The integrals here cannot be done analytically. We do them numerically. But we can

check the known expressions in d = 2 where the results are known at all orders.11

At T 4 it looks

g2(ω/k) =

(
2πT

k

)4
1

90
∆(∆− 1)(∆− 2) (9 ∆ (∆− 2)

− 12 + (5 ∆ + 2) (∆− 3) (∆− 4) (1− 2 (ω/k)2)2
)

(33)

Schematically

second correction ∝ γ0 + γ2(ω/k)2 + γ4(ω/k)4

where our γ0,2,4 (single dots) are compared with the full result11 on fig. 1.
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Fig. 1.

We do now the same thing for d = 4 (here we do not know the T 8 exact result)

with the result on fig. 2. This is our prediction.
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Fig. 2.

We compare our result (discrete points) with the large ν result5 (full curve) on

fig. 3. The large ν result works very badly for low ν. This is not that surprising but

here we checked it.

The method we presented here is suited for low ν computations but is quite bad

for large but finite ν: the two methods are thus complementary. However, we tried

to analytically take the strict limit ν → ∞. The result for an arbitrary dimension
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d is

glarge ν
2 (ω/k) =

22d−5 Γ(d/2)4

(d+ 1)2 Γ(d)2
ν2d+2

(
d
(ω
k

)2

− 1

)2

. (34)

This result coincides with that presented in4 for d = 4 and with the large ν limit of

(33) for d = 2. The key reason why the extreme large limit is doable is that one does

not need to do it numerically, because analytical approximation of Bessel functions

at large ν can be used. The proof of (34) is given in Appendix A. We notice that

(34) confirms the exponentiation property of the propagator at large ∆.4

6. The D1 − D5 system

The method used in1 to get the low temperature expansion of the progator in a CFT

is indeed applicable outside the context of the AdS/CFT duality. All one needs is

• to have a parameter τ present analytically in the equation whose limit τ = 0 is

well-defined (in our case, the ratio temperature/frequency);

• to know the exact solutions in the limit τ = 0.

As an exercise which shows the validity of the method in another context, we

consider the system ofD1−D5 branes in type IIB string theory,13 whose background

metric, after appropriate compactification, gives rise to the five-dimensional black

hole geometry

ds2 = g(r)−
2
3 f(r) dt2 + g(r)

1
3

(
dr2

f(r)
+ r2 dΩ2

3

)
(35)

where

g(r) =

(
1 +

(r1

r

)2
) (

1 +
(r5

r

)2
)

; f(r) = 1−
(rh
r

)2

. (36)

The constants r1 and r5 are related to the charges of the system, and we work in

the dilute gas approximation where rh � r1, r5. The position of the horizon rh is

associated to the Hawking temperature by T = rh
2π L2 , where we have introduced

the scale L ≡ √r1 r5 .

We would like to study the absorption of free massless scalars by this black hole,

using our method and the exact result obtained in,14 as well as the low temperature
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expansion of such result computed in2 with the Langer-Olver expansion. If we write:

Φ(t, r,Ω) = e−i ω t Yν−1(Ω)φ(r) , where Yν−1(Ω) are generic harmonics in S3 with

laplacian eigenvalue equal to ν2 − 1, the radial equation to solve is

f(r)

r3
∂r
(
r3 f(r) ∂rφ(r)

)
+

(
ω2 g(r)− (ν2 − 1)

f(r)

r2

)
φ(r) = 0 (37)

In the low energy limit ω ri � 1, i = 1, 5, we can solve (37) at good approximation

as follows. First, we consider the far region r � r1, r5 (then f(r) = g(r) ' 1). The

temperature-independent general solution is given in terms of Hankel functionsa by

φ(far)(ω r) = αref
H

(1)
ν (ω r)

ω r
+ αinc

H
(2)
ν (ω r)

ω r
(40)

Second, we consider the near region ω r � 1. By introducing the variable z and

h(z) according to

φ(near)(r) ≡
√

z

f(r)
h(z) ; z ≡ L

r
. (41)

equation (37) can be recast into(
d2

dz2
− UT (z)

)
h(z) = 0 , (42)

where

UT (z) =
ν2 + 1

z2 f(L/z)
− (ω L)2

f(L/z)2
− 1

z2 f(L/z)2
− 1

4 z2
. (43)

We note that f(L/r) = 1− z2/zh
2, where zh = L/rh. The temperature is

T =
1

2π L zh
. (44)

Even if equation (37) had no exact solution, it is clear that in the low energy

limit there exists a region r1, r5 � r � 1/ω where we can match (40) and (41).

Now, to study absorption by the black hole, we must impose ingoing boundary

conditions at the horizon to (41), i.e.

φ(near)(r)
z→∞∼ e+i ω L z (45)

aThe Hankel functions are convenient in our context, due to the simple asymptotics as right and
left waves for large argument

H
(1,2)
ν (x)

x→∞∼
√

2

π x
e±i (x−(ν+ 1

2
) π

2 ) . (38)

For low argument the behavior is

H
(1,2)
ν (x)

x→0−→ ±
Γ(ν)

i π

(x
2

)−ν
+ · · ·+

(
1

Γ(1 + ν)
± cos(π ν)

Γ(−ν)

i π

)(x
2

)ν
+ . . . (39)
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Admitting that (42) has no exact solution for finite temperature, we try our method

to get an expansion Then we start with the lower order, zero temperature case. The

solution to (42) obeying (45) is

h(0)(z) = αabs

√
π

2
ω Lz H(1)

ν (ω Lz) . (46)

By matching this near solution for ω Lz � 1 with the far solution (40) for ω r � 1

we get

αref
αabs

= − i√
π

(
Γ(ν) Γ(1 + ν)

(
ω L

2

) 3
2−2 ν

+ (ν ↔ −ν)

)
αinc
αabs

= − i√
π
e−i π ν

(
ei π ν Γ(ν) Γ(1 + ν)

(
ω L

2

) 3
2−2 ν

+ (ν ↔ −ν)

)
(47)

Now, the conserved flux j = j(r)

j(r) ≡ |=
(
φ(r)∗ r3 f(r) ∂rφ(r)

)
| , ∂rj(r) = 0 (48)

can be computed at large z from (41) and (46)

j = jabs = ω L3 |αabs|2 (49)

On the other hand, the fluxes associated to the incident and reflected waves in (40)

can be computed at large r to give

jinc =
2

π ω2
|αinc|2 ; jref =

2

π ω2
|αref |2 (50)

Conservation of the flux (48) implies that jinc = jref + jabs, as can be checked by

using (47). In particular, the probability of absorption (transmission coefficient in

the quantum mechanics language) is

τ (0) ≡ jabs
jinc

=
π

2
(ω L)

3 |αabs|2

|αinc|2
ω L�1' 4π2

Γ(ν)2 Γ(1 + ν)2

(
ω L

2

)4 ν

(51)

which coincides with equation (4.6) of.2

To get the low temperature corrections, we follow1 and rewrite (42) as a first

order system for a basis of solutions h∓(z) obeying ingoing (the relevant one for us,

see (45)) and outgoing boundary conditions at the horizon

d

dz
w (h+, h−; z) = A(z) w (h+, h−; z) . (52)

where w(f, g; z) is the wronskian matrix of the functions f(z), g(z). The potential

A(z) can be split into a zero-temperature and a temperature-dependent part as

A(z) = A(0)(z) + AT (z) . (53)
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The T = 0 matrix is b

A(0)(z) =

(
0 1

(ω L)2
(
−1 +

ν2− 1
4

q2

)
0

)
(54)

where we have introduced the variable q ≡ ω Lz, while that the temperature-

dependent part can be expanded in powers of 1/qh
2 =

(
2π T
ω

)2
as

AT(z) = (ω L)2 uT (q)

(
0 0

1 0

)
, uT (q) =

∑
m∈N+

u(m)(q)

(qh)2m
, (55)

where

u(m)(q) = (ν2 −m) q2m−2 − (1 +m) q2m . (56)

At this point, we observe that the problem posed by equations (52)-(56) is exactly

that studied in1 if we:

• identify the ν here with ν = ∆− d/2 there;

• put d = 2;

• replace k there with i ω L;

• put spatial momentum ~q = ~0 there.

Furthermore, the smoothness boundary conditions considered in1 are naturely

mapped to the ingoing boundary conditions considered here. Therefore, we can

use the results in1 replacing parameters according to the mapping expresed above.

For example, if we expand the transmision coefficient

τ (T ) = τ (0)

(
1 +

∆τ1
qh2

+ . . .

)
, (57)

from eq. 30 the first correction results

∆τ1 = −ν
3

(ν2 − 1) , (58)

which coincides with equation (4.5) of.2

7. Conclusions

• Thermal CFT propagators has been known so far in expansion of T/k, T/ω

only for ∆→∞
• the recent exact solution of the problem is not appropriate for such expansion

• we performed such a calculation analytically to order T d and numerically to

order T 2d for small values of ∆ finding agreement with the exactly known all

order d = 2 result

bWe point out a misprint in equation (2.17) of,1 where the factor (ω L)2 is erroneously extended

to the (12)-element of the matrix (54).
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• we predict numerically the behaviour for d = 4 at order T 2d and find that the

large ν approximation works badly for low ν

• we study the D1-D5 system and are able to reproduce correctly the known

result from the literature2

• we prove in Appendix A our eq. 34, which was only conjectured in.1
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Appendix A. Proof of the large ∆ limit.

In this appendix we will make heavy use of definitions introduced in section 4 and

appendix A of reference.1

To get the large ∆ result, we will need the large order expansions of the Bessel

functions,12

Iν (νz)
ν→+∞∼ e+ν η(z)

(2πν)
1
2 (1 + z2)

1
4

∞∑
k=0

Uk(p(z))

νk

Kν (νz)
ν→+∞∼

( π
2ν

) 1
2 e−ν η(z)

(1 + z2)
1
4

∞∑
k=0

(−)k
Uk(p(z))

νk
(A.1)

where

η(z) = (1 + z2)
1
2 + ln

z

1 + (1 + z2)
1
2

= h(z) + ln z

p(z) = (1 + z2)−
1
2 (A.2)

We note that, with z running from 0 to ∞,

• p(z) ∈ (0, 1] is a monotonic decreasing and bounded positive function;

• η(z) ∈ (−∞,+∞) is monotonic increasing, having a zero η(z0) = 0 at z0 ∼
0.662743;

• h(z) is a is monotonic increasing and positive function, with: h(z)
z→0−→ h(0)+ z2

4 ,

h(0) = 1− ln 2 = 0.306853, h(z0) = − ln z0 = 0.411368, and h(z)
z→∞−→ z.
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Furthermore, the coefficients Uk(x) are polynomials in x of degree 3k. This guaran-

tees that Uk(p(z)) is bounded for any z, and then in the large ν limit we can retain

safely the leading terms in (A.1), that is, if we work at leading order we only need

to know that U0(x) = 1 (for higher orders see12 and references therein).

It is convenient to start from

grs(q) ≡
1

2
αr αs +

αr
8 ν

(Fs(q)− 2 ν αs) +
αs
8 ν

(Fr(q)− 2 ν αr)

+
1

4 ν

∫ q

∞
dz (W (Fr, Gs; z) +W (Fs, Gr; z)) (A.3)

that after an integration by parts can be written in the form

grs(q)−
1

2
αr αs =

αr
8 ν

(Fs(q)− 2 ν αs) +
1

4 ν
Fr(q)Gs(q)

+
1

2

∫ ∞
q
ν

dz Gs(ν z)F
′
r(ν z) + (r ↔ s) (A.4)

From the low q limit

grs(q)
q→0−→ grs +

1

4 ν

(
γ

(−)
r

r2
+
γ

(−)
s

s2

)
q−2 ν+r+s

−2 ν + r + s
(1 + o(q)) (A.5)

we see that the terms in the first line of (A.4) give no contribution to ĝrs
c, so we

remain with

grs −
1

2
αr αs =

1

2

∫ ∞
q
ν

dz Gs(ν z)F
′
r(ν z)

∣∣∣∣∣
ĝrs

+ (r ↔ s) (A.6)

Now, because we are interested in the large ∆ limit, we need the large ν limit of

the integrand. Since now on we assume this leading order limit, throwing away any

correction of order 1/ν and beyond.

It is convenient to introduce the functions

Lr(ν; z) ≡ −
∫∞
z

dx xr−1
√

1+x2
e−2 ν η(x) −→ L′r(ν; z) = zr−1

√
1+z2

e−2 ν η(z)

Sr(z) ≡ zr

r 2F1

(
1
2 ,

r
2 ; 1 + r

2 ;−z2
)

+ αr
νr−1 −→ S′r(z) = zr−1

√
1+z2

(A.7)

We note that Sr(z) is a monotonic increasing and well behaved function for finite

z, and independent of ν in the large ν limit with behaviors

Sr(z)
z→0−→ αr

νr−1
; Sr(z)

z→∞−→ zr−1

r − 1
(A.8)

cWhat is more, in view of (A.5), the terms of the form q−2 ν+s, q−2 ν+r and q−4 ν+r+s that appear
in the first line can not exist on the r.h.s. of (A.4); they must cancel with terms coming from the

second line.
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On the other hand, Lr(ν; z) has the limits (see (A.11))

Lr(ν; z)
z→0−→ − 1

sin(πν)

(
αr
νr−1

+
γ

(−)
r

2 r ν2ν
z−2ν+r

)
Lr(ν; z)

z→∞−→ −z
r−2

2 ν
e−2 ν z (A.9)

By using (A.1), it is straight to get,

F ′r(q)|q=ν z
ν→+∞∼ −2 νr−1 sin(πν) L′r(ν; z) (1 + o(1/ν))

G′r(q)|q=ν z
ν→+∞∼ νr−2

2

(
zr−1

(1 + z2)
1
2

+ sin(πν)L′r(z)

)
(1 + o(1/ν)) (A.10)

By integrating we get,

Fr(ν z)
ν→+∞∼ −2 νr sin(πν)Lr(ν; z) (1 + o(1/ν))

Gr(ν z)
ν→+∞∼ νr−1

2
(Sr(z) + sin(πν)Lr(ν; z)) (1 + o(1/ν))

(A.11)

where the integration constants were fixed by imposing that

Fr(ν z)
z→∞−→ 0 ; Gr(ν z)

z→0−→ −γ
(−)
r

4 ν r
(ν z)−2 ν+r (A.12)

hold, and we have used the definition

αr
νr−1

ν→+∞∼ sin(πν)

∫ ∞
0

dz zr−1 e−2 ν η(z)

√
1 + z2

∣∣∣∣
substr.

= − 1

r
√
π

Γ
(

1 +
r

2

)
Γ

(
1

2
− r

2

)
(A.13)

By inserting (A.10) and (A.11) in (A.6), and taking into account (A.12), we obtain

ν−r−s+2

(
grs −

1

2
αr αs

)
= − sin(πν)

2

∫ ∞
q
ν

(
zs

s
2F1

(
1

2
,
s

2
; 1 +

s

2
;−z2

)
+

αs
νs−1

+ sin(πν)Ls(ν; z)
)
L′r(ν; z)

∣∣∣
grs

+ (r ↔ s)

= − sin(πν)

2

∫ ∞
q
ν

(
zs

s
2F1

(
1

2
,
s

2
; 1 +

s

2
;−z2

)
L′r(ν; z) + (r ↔ s)

)∣∣∣∣∣
grs

− 1

2

( αr
νr−1

+ sin(πν)Lr(ν; z)
) ( αs

νs−1
+ sin(πν)Ls(ν; z)

)∣∣∣∣∞
q
ν ; grs

= − sin(πν)

2

(
1

s
Jrs

(
ν;
q

ν

)
+

1

r
Jsr

(
ν;
q

ν

))∣∣∣∣
grs

(A.14)

where in the last line we used (A.9), and we defined

Jrs(ν; z) =

∫ ∞
z

dxx−2 ν+r+s−1 fs(ν;x)

fs(ν;x) ≡ 2F1

(
1

2
,
s

2
; 1 +

s

2
;−z2

)
e−2 ν h(x)

√
1 + x2

(A.15)
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We are going to show that

lim
ν→∞

Jrs

(
ν;
q

ν

)∣∣∣
grs

= 0 (A.16)

To this end, with the help of the formula obtained by integrating by parts succesively

m+ 1 times,∫ z2

z1

dxxa−1 f(x) =

m∑
k=0

(−)k

(a)k+1
xa+k f (k)(x)

∣∣∣∣∣
z2

z1

+
(−)m+1

(a)m+1

∫ z2

z1

dxxa+m f (m+1)(x)

(A.17)

and valid for arbitrary f(x) and constants (a, z1, z2), we can decompose Jrs(ν; z)

as a sum of finite and divergent terms in z = 0 as follows:

Jrs(ν; z) = Jdivrs (ν; z) + Jfinrs (ν; z) (A.18)

where

Jdivrs (ν; z) = −
[2 ν]−r−s∑
k=0

(−)k

(−2 ν + r + s)k+1
z−2 ν+r+s+k f (k)

s (ν; z)

Jfinrs (ν; z) =
(−)[2 ν]−r−s+1

(−2 ν + r + s)[2 ν]−r−s+1

∫ ∞
z

dxx−2 ν+[2 ν] f ([2 ν]−r−s+1)
s (ν;x)

(A.19)

and the Pochhammer symbols relevant are

(−2 ν + r)k+1 = (−)k+1 Γ (2 ν − r + 1)

Γ (2 ν − r − k)
(A.20)

The derivatives of fs(ν; z) have the form

f (k)
s (ν; z) =

fs(ν; z)(
1 +
√

1 + z2
)k

(1 + z2)
k
Pk(ν; z) (A.21)

where Pk(ν; z) are polinomials of degree k in ν, with coefficients well-behaved func-

tions of z for finite z. We will need only the highest term

Pk(ν; z) =
(
−2 z (1 + z2)

)k
νk
(

1 + o

(
1

ν

))
(A.22)

So, at the leading order we are working, we can approximate (A.21) by

f (k)
s (ν; z) = fs(ν; z)

(
− 2 ν z

1 +
√

1 + z2

)k
(A.23)

With (A.20) and (A.23) we write (A.19) as

Jdivrs (ν; z) = −f (k)
s (ν; z)

z−2 ν+r+s

2 ν

[2 ν]−r−s∑
k=0

(
1−
√

1 + z2
)k∏k

l=0

(
1− l+r+s

2 ν

)
Jfinrs (ν; z) = (−)[2 ν]−r−s Γ(ε2 ν)√

2π
(2 ν)

1
2−ε2 ν
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Fig. 4. The integrand of Jfinrs (ν; 0) in (A.24) (including the factor (2 ν)
1
2
−ε2 ν ) is plotted as a

function of z, for r = 4, s = 2 and ν = 5 (blue), . . . , 10 (orange).

×
∫ ∞
z

dx xr+s−1
(√

1 + x2 − 1
)1−ε2 ν−r−s

2F1

(
1

2
,
s

2
; 1 +

s

2
;−x2

)
e−2 ν h̄(x)

√
1 + x2

(A.24)

where ε2 ν ≡ 2 ν − [2 ν] ∈ (0, 1), and we have introduced

h̄(x) ≡
√

1 + x2 − 1− lnx (A.25)

Now, it is clear from (A.24) that the divergent part does not contribute to ĝrs

Jdivrs

(
ν;
q

ν

)∣∣∣
ĝrs

= 0 (A.26)

Then the contribution is just given by

Jrs

(
ν;
q

ν

)∣∣∣
ĝrs

= Jfinrs (ν; 0) (A.27)

But, since h̄(x) > 0 for any x > 0, it follows that the integrand in (A.24) at any

fixed x goes to zero for very large ν, and then

Jfinrs (ν; 0)
ν→∞−→ 0 (A.28)

This fact can be confirmed numerically by considering the plots of the integrand

presented in figure 4, where it is clear that the area under the curve tends to zero

for increasing values of ν.

A somewhat more direct proof is a straightforward saddle point analysis of the

integrand. Assuming that the saddle point has the expansion

xm(ν) = x(0)
m +

x
(1)
m

ν
+ . . . , (A.29)
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the leading order minimizes h̄(x), h̄′(x
(0)
m ) = 0→ x

(0)
m ∼ 1.272, and then we get

Jfinrs (ν; 0) ∼ ν− 1
2 e−2 h̄(x(0)

m ) ν ν→∞−→ 0 (A.30)

From (A.27) and (A.28) the assertion (A.16) is proved. From (A.14), this means

that

grs
ν→∞−→ νr+s−2 1

2

αr
νr−1

αs
νs−1

(A.31)

where αr
νr−1 is given in (A.13). This is the key relation; by using it in equation (4.4)

of,1 (34) follows.
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