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ABSTRACT 

Several studies, have reported that glyphosate-based herbicides persist in the soil and are 

transported into other environmental matrices. This study evaluated the ability of Aspergillus 

oryzae AM2 and Mucor circinelloides 166 to remove glyphosate and aminomethylphosphonic 

acid from agricultural soil under field conditions. The strains are native to Argentinean 

agricultural soils, and they were assessed separately and in combination in 2 m x 1 m subplots. A 

completely randomized block design was used (5 treatments with 6 replicates each). The soil was 
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sprayed with a commercial glyphosate-based herbicide formulation (3 kg ha-1) and inoculated 

with spores and/or conidial suspensions. Glyphosate and aminomethylphosphonic acid were 

measured at the beginning of the assay and at the end (150 days) by ultra-high performance liquid 

chromatography. In all the treatments, residual glyphosate levels were significantly lower at the 

end than at the start. The most significant removal percentages (p<0.001) were 97%, obtained 

with A. oryzae AM2 (106 conidia/mL), and 93%, obtained with the combination of M. 

circinelloides 166 (106 spores mL-1) and A. oryzae AM2 (103 conidia mL-1). 

Aminomethylphosphonic acid decreased significantly (by 32%) in the uninoculated control. The 

same two treatments that were the most effective at removing glyphosate were the only ones in 

which the decrease in aminomethylphosphonic acid was higher than in the control (over 70%). 

This is the first study to demonstrate that these fungal strains can remove glyphosate and 

aminomethylphosphonic acid under field conditions. Thus, they could be good candidates for the 

remediation of herbicide-polluted sites. 

Keywords: Aspergillus oryzae; Mucor circinelloides; organophosphate herbicides; 

tolerant strains.  
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Glyphosate and aminomethylphosphonic acid removal by fungal strains 

 

ABSTRACT 

Several studies, have reported that glyphosate-based herbicides persist in the soil and are 

transported into other environmental matrices. This study evaluated the ability of 

Aspergillus oryzae AM2 and Mucor circinelloides 166 to remove glyphosate and 

aminomethylphosphonic acid from agricultural soil under field conditions. The strains 

are native to Argentinean agricultural soils, and they were assessed separately and in 

combination in 2 m x 1 m subplots. A completely randomized block design was used (5 

treatments with 6 replicates each). The soil was sprayed with a commercial glyphosate-

based herbicide formulation (3 kg ha-1) and inoculated with spores and/or conidial 

suspensions. Glyphosate and aminomethylphosphonic acid were measured at the 

beginning of the assay and at the end (150 days) by ultra-high performance liquid 

chromatography. In all the treatments, residual glyphosate levels were significantly lower 

at the end than at the start. The most significant removal percentages (p<0.001) were 97%, 
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obtained with A. oryzae AM2 (106 conidia mL-1), and 93%, obtained with the combination 

of M. circinelloides 166 (106 spores mL-1) and A. oryzae AM2 (103 conidia mL-1). 

Aminomethylphosphonic acid decreased significantly (by 32%) in the uninoculated 

control. The same two treatments that were the most effective at removing glyphosate 

were the only ones in which the decrease in aminomethylphosphonic acid was higher than 

in the control (over 70%). This is the first study to demonstrate that these fungal strains 

can remove glyphosate and aminomethylphosphonic acid under field conditions. Thus, 

they could be good candidates for the remediation of herbicide-polluted sites. 

 

Keywords: Aspergillus oryzae; Mucor circinelloides; organophosphate herbicides; 

tolerant strains. 

 

1- INTRODUCTION 

Glyphosate (N-[phosphonomethyl] glycine) (GP) is the active ingredient in many 

commercial herbicides that are collectively known as glyphosate-based herbicides 

(GBHs). Although other herbicides have been developed, GP continues to be widely used 

as a broad-spectrum weed controller during the direct seeding of transgenic crops such as 

soybean, maize, and cotton (Muñoz et al. 2023). Contamination with GP, therefore, is 

attributable mostly to agricultural activity. Additional sources of GP pollution include the 

filling and cleaning of spraying equipment, improper waste disposal, and accidental spills 

(Aluffi et al. 2022). 

The persistence of GP in the soil, as well as that of its most relevant degradation product 

(aminomethylphosphonic acid or AMPA), depends mainly on abiotic and biotic factors, 

e.g., soil composition and environmental conditions (Wimmer et al. 2023). The half-life 

of AMPA has been reported to last between 20 and more than 800 days. For GP, it is 
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between 1 and 200 days. The herbicide is strongly adsorbed onto soil colloids through a 

reversible process that regulates its half-life and mobility. The soil-bound molecules are 

then transported to other environmental compartments as a result of runoff or leaching. 

These compartments become important GP reservoirs, with negative consequences for 

human health and the environment (Meftaul et al. 2020). 

However, the toxicological effects of GP are the subject of some controversy. In 2015, 

the International Agency for Research on Cancer (IARC) classified the herbicide and its 

formulated products within Group 2A, i.e., as probably carcinogenic in humans (IARC 

2015). In contrast, the United States Environmental Protection Agency (US EPA) 

considers there are no risks to public health when GP is used in accordance with its current 

label (US EPA 2020). Nevertheless, several studies associate human exposure to GBHs 

with a higher risk of developing diseases such as non-Hodgkin lymphoma, multiple 

myeloma, and other cancers (Zhang et al. 2019; Portier 2020). Adverse effects on the 

nervous system of mammals, including humans, have also been described (Madani and 

Carpenter 2022). Other reports indicate that AMPA might be more toxic than GP due its 

longer persistence in the environment (Meftaul et al. 2020). Concerns about the possible 

environmental impact of GP have increased in recent years, due to its widespread use and 

the large amounts applied annually. The literature contains varying values for GP and 

AMPA levels in the soil and water, depending on location. Very low GP concentrations 

(up to 2.5 µg L-1) were observed in surface waters in some European countries, while 

higher concentrations (up to 200 µg L-1) were measured in the US, Denmark, and France 

(Meftaul et al. 2020). A recent study by Ayoola et al. (2023) found that GP concentrations 

in water and soil samples from Nigerian farms were higher during the wet season than 

during the dry season, with the highest concentrations being around 25 mg Kg-1 in top 

soil and 2.5 mg L-1 in groundwater. On the other hand, concentrations between 35 and 
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1,502 mg kg-1 for GP and between 299 and 2,256 mg kg-1 for AMPA were detected in 

Argentinean soils (Aparicio et al. 2013). A study that focused on the Mesopotamian 

Pampas agroecosystem found 8,105 mg kg-1 of GP and 38,939 mg kg-1 of AMPA in the 

soil (Primost et al. 2017). Bento et al. (2019) observed that GP and AMPA levels were 

between 1.1 and 17.5 times higher in water-eroded sediments than in soil, and that 

whereas AMPA can persist and accumulate in the soil, both GP and AMPA are prone to 

off-site transport into adjacent fields and surface water through water erosion. Similarly, 

groundwater has been described to have higher GP and AMPA levels than surface water 

(Lutri et al. 2020). This is likely because the long-term application of the herbicide within 

current agricultural schemes far exceeds the potential for its degradation in the soil and 

the unsaturated zone. 

While photodegradation and chemical degradation play a minor part in GP’s fate and 

behavior in the soil, the native microbiota is a key player (Sviridov et al. 2015). Bacterial 

and fungal strains that can degrade the herbicide have been isolated from soils exposed 

to pesticides (Singh and Singh 2016; Mohy-Ud-Din et al. 2023), as well as from pristine 

soils rich in organic matter and fungal saprobes (Correa et al. 2021). The most frequently 

isolated fungi with these characteristics belong to the genera Penicillium, Aspergillus, and 

Trichoderma. Given that filamentous fungi can colonize and oxidize various organic 

substrates, even under adverse environmental conditions, they are powerful 

biotechnological tools for bioremediation (Vaksmaa et al. 2023). 

Earlier, Aspergillus oryzae AM2 and Mucor circinelloides 166 were isolated from 

agricultural soil in the south of the province of Córdoba (Argentina). When studied in 

GP-supplemented media, their growth parameters (lag phase and growth rate) showed 

that both were able to grow in the presence of GBHs as a source of phosphorus or nitrogen 

(Carranza et al. 2016; Aluffi et al. 2020). The two strains were then tested separately and 
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in mixed cultures in microcosm assays (60 days). They survived in the presence of native 

microbiota and removed GP under nonoptimal humidity conditions (Carranza el al. 2019; 

Aluffi et al. 2023, personal communication). However, their effectiveness in removing 

GP had not been investigated in situ until now. The present study evaluated different 

inocula prepared with A. oryzae AM2 and/or M. circinelloides 166 in terms of their ability 

to dissipate GP in agricultural soil exposed to GBHs under field conditions. The 

experiment was carried out in Córdoba, Argentina, from December 2019 to May 2020. 

The levels of AMPA, the main metabolite of GP degradation, were also quantified.   

 

2- MATERIALS AND METHODS 

2.1. Fungal strains and inocula 

The two strains used in this study were Aspergillus oryzae AM2 and Mucor circinelloides 

166. In previous studies, they had been isolated from agricultural soil and they proved 

capable of removing GP from culture media and soil microcosms (Carranza et al. 2019; 

Aluffi et al. 2020; 2022). The nucleotide sequences for the calmodulin and ß-tubulin 

genes of the first strain were deposited in GenBank under accession numbers KX298158 

and KX306817, respectively. The nucleotide sequences for the ITS gene of the second 

strain were deposited in GenBank under accession number ON645978. Both strains have 

been classified as GRAS species (Generally Recognized as Safe) (Han et al. 2004; He et 

al. 2019). 

To prepare the inocula, the strains were grown on malt extract agar (MEA) for 7 days at 

25°C. Spore suspensions of M. circinelloides 166 and conidial suspensions of A. oryzae 

AM2 were obtained by harvesting the spores and conidia from the surface of the MEA 

plates, and placing them inside tubes containing distilled water and 0.1% Tween 80 

(dispersing agent). Then, they were filtered through sterile glass wool to remove hyphal 
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fragments and conidia clumps (i.e., to make the suspensions homogeneous). The spores 

and conidia were counted in a hemocytometer chamber (Boeco, Germany), and the water 

volume was adjusted to reach concentrations of 106 or 103 spores/conidia mL-1, depending 

on the strain. The viability of the suspensions was confirmed by the standard plate count 

method on MEA (Pitt and Hocking 2009). 

2.2. Experimental design 

The experiment was performed in an arable field that belongs to the National University 

of Río Cuarto (Córdoba, Argentina) (33°06’05’’S 64°17’16’’W). The soil has a fine 

sandy loam texture (Gorgas 2006) and has been physicochemically characterized 

(Walkley and Black 1965; Sparks 1996). At the beginning of the assay, it contained 242.4 

kg ha-1 of extractable phosphorus, 95.4 kg/ha of nitrate nitrogen, 11.13 kg ha-1 of sulfur 

sulfate, 60.48 kg ha-1 of organic matter, and 3.36 kg ha-1 of nitrogen. All these nutrients 

were likely to become mineralized during the summer. The climate in the area is 

temperate and semiarid. For the duration of the assay, there was little rainfall and the 

mean air temperature was between 18 and 28°C (BCCBA 2019; 2020). 

For the assay, a 10 m x 2 m plot was selected and divided into 2 m x 1 m subplots, 

demarcated with wooden stakes. The sector where this plot is located has a long history 

of exposure to pesticides. In the past, corn was grown there through conventional tillage, 

with the pre-emergence application of atrazine and metolachlor and the post-emergence 

application of GP. For this reason, GP and AMPA residues were measured in samples 

taken before the start of the experiment (Aparicio et al. 2013; De Gerónimo et al. 2028). 

Their values were respectively 0.5 mg kg-1 and 2.0 mg kg-1.  Moreover, at the time of the 

experiment corn was being cultivated in proximity to the experimental plot. The crop was 

at the V4 stage. 

8            



Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      

Using a manual sprayer (Crossmaster, Buenos Aires, Argentina), all the subplots were 

sprayed at a distance of 35 cm from the soil surface with a commercial aqueous 

formulation of GP (N-phosphonomethyl-glycine, 72% amine salt, Monsanto 

Laboratories). The chosen dose (3 kg ha-1) is within the standard GBH dose range 

recommended for the control of weeds in agricultural soils (Diaz and Prado 2018). The 

control subplot was sprayed with the same volume of distilled water. 

The herbicide was allowed to become adsorbed onto soil particles for two days. After 

that, each subplot was inoculated with the conidia and/or spore suspensions (200 mL). 

Inoculation was implemented according to a completely randomized three-block design, 

which involved 5 treatments with 6 replicates each. Six replicates were also done for the 

control, and the entire experiment was repeated twice. The treatments were as follows: 

(a) 106 conidia mL-1 of A. oryzae AM2; (b) 106 spores mL-1 of M. circinelloides 166; (c) 

106 conidia mL-1 of A. oryzae AM2 and 103 spores mL-1 of M. circinelloides 166; and (d) 

106 spores mL-1 of M. circinelloides 166 and 103 conidia mL-1 of A. oryzae AM2. The 

fifth treatment (control) consisted of 200 mL of distilled water and 0.1% Tween 80. 

The assay lasted 150 days. This duration was chosen considering the half-life for GP and 

AMPA reported in the province of Córdoba (Bento et al. 2019). Immediately after 

inoculation (initial time) and at the end of the assay (150 days), ten samples were 

randomly collected from each subplot at a 0–10 cm depth, following a diagonal direction 

(Buduba et al. 2004). In the laboratory, these samples were homogenized, air-dried at 25–

30 °C, and sieved to separate soil from debris. After being used for each sample, the sieve 

was disinfected with 1% sodium hypochlorite, rinsed with sterile distilled water, and 

dried. This was done to prevent cross-contamination with fungi and/or pesticides. 

The samples from each subplot were organized into two pools of approximately 2 kg 

each: one consisting of the ten samples obtained at the initial time, and another made up 
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of the ten samples obtained after 150 days. Given that the entire experiment was repeated 

twice, there were four pools for each subplot in total. Subsamples (300 g each) were taken 

in triplicate from each pool, sealed in a plastic bag, and stored at−20°C until the analysis 

was performed. Figure 1 summarizes the main steps of the methodology. 

 

2.3. GP and AMPA determination 

To measure residual GP and AMPA, 10 g were taken from each of the 300 g subsamples 

prepared in the previous step. Two g out of this quantity were enriched with isotopically-

labeled GP (1.2-13C, 15N, Sigma-Aldrich, Argentina) and allowed to stabilize for 30 min. 

Then, 25 mL of an extraction solution (100 mM Na2B4O710H2O/100 mM K3PO4, pH=9) 

were added, and the mix was sonicated and centrifuged to obtain different phases. Two 

ml of the liquid phase were derivatized with the same volume of 9-fluorenylmethyl 

chloroformate (FMOC-CL) (Sigma Aldrich, Argentina), and incubated overnight in the 

dark. After that, 4.5 mL of dichloromethane (CH3Cl2) were added, followed by vigorous 

mixing to eliminate organic impurities and excess FMOC. The mix was centrifuged at 

3,000 rpm for 10 min. The aqueous fraction was collected, filtered (0.22 μm Microclar, 

Buenos Aires, Argentina), and transferred into a vial for analysis. This was conducted by 

ultra-high performance liquid chromatography (UPLC ESI MS/MS) (Waters Inc., 

Milford, MA, USA) coupled to triple quadrupole mass spectrometry, using a source of 

electrospray ionization (ESI) with a Z-spray design, following Aparicio et al. (2013) and 

De Gerónimo et al. (2018). 

UPLC ESI MS/MS is a widely used method to measure GP and AMPA in environmental 

matrices such as soil, sediments, and water (Aparicio et al. 2013; 2018; Lupi et al. 2019; 

Pérez et al. 2021; Gen et al. 2021). Standard curves were prepared with GP and AMPA 

(PESTANAL®, 99.9%, Buenos Aires, Argentina). To evaluate the analytical efficiency 
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of the method, each point in the curve was fortified with the same amount of isotopically-

labeled GP as the samples. The limit of detection (LD), defined as the lowest 

concentration that the analysis can reliably differentiate from background levels, was 

estimated for a signal-to-noise ratio of three from the chromatograms of standards at low 

concentration levels (0.05–1 μg L-1). The limit of quantification (LQ) was established as 

the lowest concentration for which the method was fully validated using spiked samples 

with satisfactory recovery (between 70% and 120%) and precision (RSD⩽20%). The LQ 

values were 0.0119 mg kg-1 for GP and 0.0016 mg kg-1 for AMPA. The LD values were 

0.0036 mg kg-1 for GP and 0.0041 mg kg-1 for AMPA. 

Separation was carried out with a Waters® ACQUITY® UPLC (C18 column 1.7 μm x 

50, 2.1 mm, Teknokroma Analytical SA, Spain). The mobile phase consisted of Milli-Q 

grade water with 5 mM ammonium acetate (phase A), with a flow rate of 0.4 mL min-1, 

and a methanol concentration gradient modified with 5 mM ammonium acetate (phase 

B). For MS/MS analysis, the cone gas and desolvation gas flows (both nitrogen) were 

optimized at 2 and 600 L h-1, respectively. Gaseous argon (99.99%, PRAXAIR, Buenos 

Aires, Argentina) was used as collision gas at 4.04 x 103 mbar in the T-Wave cell for ion 

fragmentation. The gas solvation temperature was set at 400°C and the source 

temperature at 120°C. Instrumental operation and data acquisition and analysis were 

performed on Masslynx NT v 4.1 (Waters, Manchester, UK). 

 

2.4. Statistical analysis 

The GP and AMPA data were subjected to analysis of variance. Means were compared 

with a linear mixed model and Fisher’s protected least significant difference (LSD) test. 

Significant differences were determined between the GP and AMPA means measured for 
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different treatments. The data were statistically analyzed on InfoStat v 2017 (Di Rienzo 

et al. 2017). 

 

3- RESULTS AND DISCUSSION 

At the beginning of the assay (two days after a commercial GP formulation had been 

applied), the mean GP and AMPA levels in the samples from the fumigated subplots 

ranged from 31.65 to 67.6 mg kg-1 and from 970.5 to 2,755 mg kg-1, respectively. At the 

end (150 days), GP levels were significantly lower in all the treatments. The most 

significant reductions (p<0.001) were 97%, which was obtained after inoculation with A. 

oryzae AM2 (106 conidia mL-1), and 93%, which corresponded to the combination of M. 

circinelloides 166 (106 spores mL-1) and A. oryzae AM2 (103 conidia mL-1), i.e., 

treatments (a) and (d). Other treatments associated with high removal percentages were 

M. circinelloides 166 (106 spores mL-1) and the uninoculated control, which respectively 

reduced GP levels by 84 and 74%. In contrast, no significant differences with respect to 

the uninoculated control (p<0.001) were recorded in the subplot treated with the 

combination of A. oryzae AM2 (106 conidia mL-1) and M. circinelloides 166 (103 spores 

mL-1) (Figure 2). 

As for AMPA, the most remarkable decreases after 150 days were obtained with the same 

treatments that proved most successful in removing GP, and the removal percentages 

were similar. A. oryzae AM2 (106 conidia mL-1) reduced AMPA levels by 79%, and M. 

circinelloides 166 (106 spores mL-1) combined with A. oryzae AM2 (103 conidia mL-1) 

lowered them by 73%. These values significantly exceeded (p<0.001) the one obtained 

in the uninoculated treatment, which was itself significant with respect to the control 

(32%) (Figure 3). 
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An analysis of variance was performed to find out the effect of single factors (treatment 

and time) and their two-way interactions on the results. It revealed that both factors on 

their own and all their interactions were statistically significant (p<0.001) in relation to 

the GP and AMPA levels detected (Tables 1 and 2). 

The findings show that the inocula tested here differed in their ability to reduce GP levels 

under field conditions. Two treatments, A. oryzae AM2 (106 conidia mL-1) alone and the 

combination of M. circinelloides 166 (106 spores mL-1) with A. oryzae AM2 (103 conidia 

mL-1), were the most effective in reducing GP levels and those of its degradation 

metabolite (AMPA) 150 days after being inoculated. Both of them outperformed natural 

GP attenuation by the native microbial species (73%), whose activity was assayed in the 

uninoculated control. Nevertheless, although the two inocula were highly efficient, the 

results obtained with the mix of strains did not improve upon those achieved with A. 

oryzae AM2 alone. The opposite had occurred in microcosms subjected to hydric stress 

(30% field capacity) and contaminated with 30 mM of GP (Aluffi et al. 2023, personal 

communication). In that assay, a co-culture of M. circinelloides 166 (106 spores mL-1) and 

A. oryzae AM2 (103 conidia mL-1) removed 80% of the herbicide, while A. oryzae AM2 

(103 conidia mL-1) by itself removed 57%. This demonstrates the importance of field 

studies to ascertain the real remediating ability of fungal strains. 

In the last decades, numerous studies worldwide have reported potentially concerning GP 

and AMPA levels in soils and surface water (Primost et al. 2017; Aparicio et al. 2018; 

Bento el al. 2018; Lupi et al. 2019; Lutri et al. 2020; Meftaul et al. 2020; Pérez et al. 

2021). One way of dealing with this issue would be to treat contaminated sites with 

microorganisms that can remove the herbicide. Several bacterial taxonomic groups 

isolated from soils have proven able to degrade GP in microcosms or soil columns assays. 

Fungal strains isolated from the same ecosystems and with the same ability are restricted 
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only to a few taxa, which for the most part use the herbicide as a phosphorus source and 

degrade it through the AMPA pathway (Zabaloy et al. 2022). 

In situ studies have used abiotic controls to demonstrate the crucial role of native soil 

microbiota in GP degradation, and the influence of temperature, soil moisture and other 

soil properties on their metabolic activity (Bento et al. 2016; 2019; Tang et al. 2019; Sun 

et al. 2019; Muskus et al. 2020). However, most of what is known about the ability of 

inoculated microbial cultures to stimulate this natural attenuation has been discovered by 

using bacterial strains in vitro or in microcosms. Little information is available on what 

occurs with inoculated microorganisms under field conditions (Ermakova et al. 2010; 

Shushkova et al. 2010; Li et al. 2022; Nguyen et al. 2022; Zhang et al. 2022; Mohy-Ud-

Din et al. 2023), although some in situ research has corroborated that many of the factors 

that affect degradation in vitro also do so on the field, e.g., soil type, texture, and 

physicochemical characteristics; climatic conditions; native biota, etc. (Guijarro et al. 

2018; Mercado and Mactal 2021). In our study, as mentioned before, supplementation of 

the soil with A. oryzae AM2 (106 conidia mL-1) on its own or with the combination of M. 

circinelloides 166 (106 spores mL-1) and A. oryzae AM2 (103 conidia mL-1) led to a 

noticeable improvement in the removal rate of the native microbiota under field 

conditions. 

Another study carried out in the field (Ermakova et al. 2010) found that GP levels in the 

soil, which were initially tenfold higher than the recommended doses, had decreased 

dramatically within 14 days after the inoculation of two native bacterial strains. 

Achromobacter sp. Kg 16 lowered GP by 75.2%, and Ochrobactrum anthropi GPK 3 did 

so by 61.5%. In both cases, these percentages were two- to threefold the degradation rate 

of the native microbial community. The two most efficient fungal inocula in our 

experiment were responsible for even higher GP removal percentages, but the period of 
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time assayed was also much longer. Similar GP degradation percentages to those of the 

present study were obtained by Mohy-Ud-Din et al. (2023), although their research 

involved rhizobacterial strains and was carried out in potted soil. Most of the strains they 

evaluated degraded 97 to 100% of the herbicide in pots containing 100 mg kg-1 GP. At 

the highest concentration assayed (200 mg kg-1 GP), the degradation percentages were 

under 40%.    

Despite having their own limitations with respect to in situ research, microcosm assays 

approximate real-world degradation more closely than in vitro experiments in pure 

cultures. Guo et al. (2022) used soil microcosms (pots containing 60 mg kg-1 GP) to 

examine the degrading capabilities of Fusarium verticillioides strain C-2. After 28 days 

of incubation, the fungus removed 89% of the herbicide in unsterilized soil and 72% in 

sterilized soil. The first percentage is similar to the ones obtained with the two most 

effective inocula in the present study. 

On the other hand, assessing AMPA levels in the soil is just as important as measuring 

GP levels, since it can provide information not only about potential pollution risks but 

also about how GP degradation takes place. Most GP-degrading microorganisms appear 

to use it as their sole phosphorus source, whereas a few use it as a source of nitrogen or 

carbon (Feng et al. 2020). According to Guo et al. (2022), F. verticillioides C-2 used GP 

as the only source of carbon for its growth. Data gathered in vitro about the strains in the 

present study showed that A. oryzae AM2 used GP as a source of phosphorus and nitrogen 

(Carranza et al. 2019), and that M. circinelloides 166 grew best in mineral media supplied 

with GP as the only phosphorus source (Aluffi et al. 2020). Nonetheless, as stated earlier, 

the co-inoculation containing M. circinelloides 166 was effective in removing GP and 

AMPA on the field, but not as much as A. oryzae AM2 alone. 
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There are two known pathways for the degradation of GP. The first consists of cleaving 

the C–P bond in the GP molecule, and produces sarcosine. It is usually induced upon 

exogenous phosphorus deficiency, which rarely occurs in agricultural soils. In the second 

pathway, the C–N bond in the herbicide molecule is cleaved by glyphosate 

oxidoreductase (GOR). This yields AMPA and glyoxylate (Sviridov et al. 2015). In 

several fungal species, AMPA is an intermediate metabolite of GP degradation. A. oryzae 

A-F02, for instance, was reported to metabolize AMPA into methylamine, and then into 

other simple and less toxic products (Fu et al. 2017). AMPA can also be metabolized into 

phosphono formaldehyde by transaminase, then into formaldehyde by phosphonatase, 

and later enter the central microbial metabolism (Singh et al. 2020). 

The decrease in GP and AMPA observed in the present study after inoculation with A. 

oryzae AM2 and M. circinelloides 166 could have been due to degradation via one of 

those metabolic pathways. Given that GP degradation was not associated with a 

concomitant increase in AMPA levels in the subplots that received the two most 

successful treatments, the C-P lyase pathway that generates sarcosine is more likely to 

have been deployed (Okada et al. 2019). Alternatively, synergic interactions between the 

inoculated fungi and the native microbiota might have contributed to the degradation of 

the metabolite as well as to that of the parent molecule (La Cecilia and Maggi 2018). 

Wirsching et al. (2022) evaluated the degradation of GP by the native microbial 

community in an arable field in southern Germany. They did so by quantifying the 

abundance and expression of functional genes involved in the two known GP degradation 

pathways: goxA (for the AMPA pathway) and sarc (for the sarcosine pathway). 

Degradation through the AMPA pathway predominated at first, as evidenced by an 

increase in AMPA, in goxA transcription, and in goxA-harboring microorganisms. The 

authors suggest that this might have been due to fungi rapidly initiating degradation, with 

16            



Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      

Gram positive bacteria taking over later and at a slower rate. Something similar could 

have occurred in the present work, in which a significant decrease was observed not only 

in GP but also in AMPA levels after inoculation with A. oryzae AM2 (103 conidia mL-1) 

alone and with the combination of M. circinelloides 166 (106 conidia mL-1) and A. oryzae 

AM2 (103 spores mL-1). To better elucidate this, the specific metabolic pathways for GP 

and AMPA degradation should be studied in these two fungal strains. 

Seeing that GP and AMPA pose substantial risks of soil and water contamination, 

strategies are necessary to stimulate their natural degradation rate in the soil. The results 

presented here contribute to the characterization of A. oryzae AM2 and M. circinelloides 

166 as potential candidates for bioaugmentation aimed at improving natural GP and 

AMPA attenuation in agricultural soils. The effects of inoculating these strains 

(separately and mixed) for GP and AMPA removal after the fumigation season should be 

studied further, especially considering their immobilization in one substrate, the activity 

of native microbiota, and the influence of changing redox conditions in the soil and 

persistent droughts as a consequence of climate change. 

 

4- CONCLUSIONS 

This study provides first-time evidence on the ability of A. oryzae AM2 and M. 

circinelloides 166, two fungal strains native to Argentinean agricultural soils, to remove 

GP and AMPA under field conditions. Both have great potential for the implementation 

of bioaugmentation strategies in sites polluted with herbicides. 

 

FIGURE CAPTIONS 

Fig. 1 Main steps of the methodology. 
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Fig. 2 Effect of inoculation with A. oryzae and M. circinelloides on glyphosate (GP) levels 

at the beginning of the assay and after 150 days. Control: without inoculation. Inocula 

166: 106 spores mL-1 M. circinelloides 166. Inocula AM2: 106 conidia mL-1 A. oryzae 

AM2. Inocula 166/AM2: 106 spores mL-1 M. circinelloides 166 and 103 conidia mL-1 A. 

oryzae AM2. Inocula AM2/166: 106 conidia mL-1 A. oryzae AM2 and 103 spores mL-1 

M. circinelloides 166. Mean values with different letters indicate significant differences 

according to Fisher’s LSD test (p<0.001). 

 

Fig. 3 Effect of inoculation with A. oryzae and M. circinelloides on 

aminomethylphosphonic acid (AMPA) levels at the beginning of the assay and after 150 

days. Control: without inoculation. Inocula 166: 106 spores mL-1 M. circinelloides 166. 

Inocula AM2: 106 conidia mL-1 A. oryzae AM2. Inocula 166/AM2: 106 spores mL-1 M. 

circinelloides 166 and 103 conidia mL-1 A. oryzae AM2. Inocula AM2/166: 106 conidia 

mL-1 A. oryzae AM2 and 103 spores mL-1 M. circinelloides 166. Mean values with 

different letters indicate significant differences according to Fisher’s LSD test (p<0.001). 
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Table 1 Analysis of variance on the effect of treatment. time and their interactions on GP 

levels 

 

Source of variation dfa MSb Fc p-value 

Model 9 7.63877485 82.7619051 0 

Time 1 44.9101893 486.5770884 0* 
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Treatment 4 3.83094577 41.50618087 8.1098E-12* 

Time x treatment 4 2.12875031 23.0638335 8.6773E-09* 
 

a Degrees of freedom. 
b Mean square. 
C F-Snedecor. 

∗Significant p < 0.001. 

 

Table 2 Analysis of variance on the effect of treatment, time and their interactions on 

AMPA levels 

 

Source of variation dfa MSb Fc p-value 

Model 9 2847310.11 9.22 0 

Time 1 4386677.82 14.2 0* 

Treatment 4 4499325.21 14.57 0* 

Time x treatment 4 810453.08 2.62 0,0005* 

 
a Degrees of freedom. 
b Mean square. 
C F-Snedecor. 

∗Significant p < 0.001 
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