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Automatic first-breaks picking: New strategies and algorithms

Juan |. Sabbione' and Danilo Velis'

ABSTRACT

We have developed three methods for the automatic pick-
ing of first breaks that can be used for marine, dynamite, or vi-
broseis shot records: a modified Coppens’s method, an entro-
py-based method, and a variogram fractal-dimension meth-
od. The techniques are based on the fact that the transition be-
tween noise and noise plus signal can be automatically identi-
fied by detecting rapid changes in a certain attribute (energy
ratio, entropy, or fractal dimension), which we calculate
within moving windows along the seismic trace. The applica-
tion of appropriate edge-preserving smoothing operators to
enhance these transitions allowed us to develop an automated
strategy that can be used to easily signal the precise location
of the first-arrival onset. Furthermore, we propose a mispick-
correcting technique to exploit the benefits of the data present
in the entire shot record, which allows us to adjust the trace-
by-trace picks and to discard picks associated with bad or
dead traces. As a result, the consistency of the first-break
picks is significantly improved. The methods are robust un-
der noisy conditions, computationally efficient, and easy to
apply. Results using dynamite and vibroseis field data show
that accurate and consistent picks can be obtained in an auto-
mated manner even under the presence of correlated noise,
bad traces, pulse changes, and indistinct first breaks.

INTRODUCTION

In seismic exploration, first-break picking is the task of determin-
ing, given a set of seismic traces, the onsets of the first signal arrivals
as accurately as possible. In general, these arrivals are associated
with the energy of refracted waves at the base of the weathering layer
or to the direct wave that travels directly from the source to the re-
ceiver.

The accurate determination of the first arrivals onset (first-break
times) is needed for calculating the static corrections, a fundamental

stage of seismic data processing. Clearly, the effectiveness of reflec-
tion- and refraction-based methods of static corrections depends on
the picking-process reliability (Yilmaz, 2001, p. 374). Also, applica-
tions such as near-surface tomographic static corrections (tomostat-
ics) require a precise and rapid automated detection of the signal first
arrivals.

Generally, first-break quality is related to the near-surface struc-
ture, source type, and signal-to-noise ratio (S/N) conditions. As a
consequence, the automated picking of first breaks can be a very dif-
ficult task if data are acquired in complex near-surface scenarios or if
the S/N is low. Moreover, if the source wavelet is zero-phase as when
vibroseis sources are used, the sweep correlation often produces
side-lobes that arrive before the first break, thus making the picking
process even more difficult.

Traditionally, the determination of the signal advent was carried
out by a visual inspection of the amplitudes and waveform changes

“manual” picking). Apart from being very time consuming, this
strategy can lead to biased and inconsistent picks because it relies on
the picking-operator subjectivity. With the development of modern
computers, the use of dedicated software to carry out the picking in-
teractively facilitated the process but in general the whole procedure
is still very time consuming and subjective. Thus, the implementa-
tion of automated computer-based algorithms is very important for
the rapid picking of first breaks in a consistent and objective way.
Nowadays, the most common strategy is to use an automatic/semi-
automatic picker as a first step and to correct the results interactively
by visual inspection later. Often, this process needs to be repeated
several times in certain difficult areas. As a result, when the data vol-
ume is large and the data quality is poor, the picking procedure can
take up to 20-30% of the total processing time.

During the last few decades, numerous techniques have been de-
veloped for determining first breaks automatically or semi-automat-
ically. First attempts were based on the crosscorrelation of adjacent
traces to find the delay time between first breaks (Peraldi and Clem-
ent, 1972). However, these techniques tend to fail when the pulse
shape changes from trace to trace and when bad or dead traces ap-
pear. Hatherly (1982) proposes some cumbersome statistical tests
that would signal the advent of the first breaks. Gelchinsky and Sh-
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tivelman (1983) present a technique based on a combination of the
correlation properties of the signal and a statistical criterion. Other
approaches, still included in various commercial software packages,
have focused on the detection of a sudden increase in the signal ener-
gy (Coppens, 1985). As stated by Coppens (1985), this method is
very robust when S/N is sufficiently high. As a first approximation to
the location of the first arrivals, Spagnolini (1991) bases his adaptive
picking method on the detection of abrupt changes in the energy. For
convenience, the mentioned techniques will be referred to as con-
ventional methods. Nonconventional methods include relatively
new algorithms such as those based on neural networks. These ap-
proaches proved to be very useful for first-break detection (Murat
and Rudman, 1992) but as it is well known an adequate training of
the network often requires a considerable amount of operator time
(and expertise). Without good network training, the results can re-
quire several time-consuming “manual” adjustments, especially
when data quality is low. Other nonconventional methods involve
the use of higher-order statistics (Yung and Ikelle, 1997; with limita-
tions similar to that of the crosscorrelation-based approaches), frac-
tal-dimension analysis (Boschetti et al., 1996; Jiao and Moon,
2000), and wavelet transform (Tibuleac et al., 2003). Unfortunately,
when background noise is high and data quality is poor, these tech-
niques tend to fail and the problem of obtaining consistent and reli-
able picks in an automated manner remains unresolved.

In this context, we propose some useful improvements for the
Coppens and the fractal-dimension-based methods that help to sig-
nificantly enhance their capability for detecting first arrivals auto-
matically. We also present a new algorithm based on the entropy of
curves. The entropy of curves has already been proposed for time-
and spatial-series segmentation (Denis and Crémoux, 2002). Here,
the trace entropy is used as a new seismic attribute that quantifies the
statistical properties of the signal (variability and correlation struc-
ture).

These three algorithms rely on three seismic “attributes™ (energy
ratio, fractal dimension, and entropy), which we calculate within
moving windows in a trace-by-trace process. The basic assumptions
are that the selected attribute behaves differently whether data in the
moving window contains noise only or noise plus signal and that the
transition between these two regions is abrupt. Thus, the accuracy of
the picking method is clearly related to the accuracy with which the
attribute change can be determined. In this sense, we propose the use
of an edge-preserving smoothing (EPS) filter (Luo et al., 2002) to
significantly enhance this transition. As it will be shown, EPS be-
comes an essential step that significantly improves the results.

Rather than limiting the picking to a trace-by-trace procedure, the
proposed algorithms are devised to exploit the benefits of the whole
shot gather in which first breaks, as it is well known, are approxi-

1.0 T T T T T

Longer
Window

o
=}

Amplitude

Leading
Window

1.0 1 1 1 1 1 1 1
00 02 04 06 08 10 12 14 16

Time (s)

Figure 1. Windows used in the calculation of the energy-ratio at-
tribute.

mately aligned along straight lines. So we develop a five-step
mispick-correcting procedure to restrict the search of the first breaks
in the proximity of these lines, which are built by least-squares using
the trace-by-trace picks. As a result, the consistency and spatial co-
herence of the picks are significantly improved. On the other hand,
mispicks associated with bad or dead traces and those associated
with traces that present indistinct first breaks are corrected or dis-
carded automatically using simple statistical criteria.

First, we illustrate the three proposed algorithms using a single
trace. Then we test the complete strategies (including the mispick-
correction procedure) under different S/N and source-type condi-
tions using field-shot records. For these tests, we selected various
dynamite and vibroseis noisy data sets. The results show that the pro-
posed algorithms are in general very robust and lead to consistent
and accurate picks even when using vibroseis data, in which the on-
sets are not so distinct. Likewise, they are very efficient in terms of
computational effort and simple to use.

METHODS

In the proposed methodology, the picking procedure has two stag-
es. The first stage is a trace-by-trace process aimed at identifying
abrupt changes in a certain trace attribute (energy ratio, entropy, or
fractal dimension), which we calculate as a function of time. To en-
hance the attribute changes, the selected attribute is filtered using
EPS. Finally, we assign the first-break onset to the time when the de-
rivative of the filtered attribute is at a maximum (or minimum in the
case of the fractal-dimension method). In this section, we describe,
illustrate, and compare the three proposed algorithms using the same
single field-data trace. The selected trace is trace number 14 from the
vibroseis-source shot-gather number 4 in Yilmaz (2001, p. 71),
which was acquired with a sampling interval of 4 ms. For conve-
nience, seismic amplitudes are normalized to (—1,1) before pro-
cessing.

The second stage involves the use of the complete set of picks of
the first stage obtained for every trace in the shot gather. This proce-
dure consists of simple statistical criteria that help improve the pick-
ing spatial coherency and automatically detect bad or dead traces.
The objective of this process is to account for the expected approxi-
mate alignment of the picks along the refraction model straight lines.
Mispicks can be adjusted or eliminated at this stage.

Modified Coppens’s method (MCM)

The basic idea of this strategy is very simple and follows Cop-
pens’s method (Coppens, 1985). The aim of the method is to distin-
guish the signal from the incoherent or coherent background noise in
terms of their energy difference. For this purpose, we calculate the
energy of the seismic trace s(7) within two nested windows

t

E](t) = 2 siz’ (1)

i=t—np+1

Ext) =25, 2)

i=1

where n, is the length of the first (leading) window, a parameter that
is fixed and selected a priori. Note that on the contrary the length of
the second (longer) window increases with time (see Figure 1). Then
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we calculate the energy ratio

ER(1) = E\(t)/(Eo(1) + B), 3)

where S is a stabilization constant that helps reduce the rapid fluctu-
ations of ER(¢) that might lead to a false first-break pick, especially
when the background noise is very low. This attribute is assigned to
the last sample of the windows. The nested windows approach guar-
antees that ER(r) < 1, which is very convenient to control the mag-
nitude of this attribute.

The energy-ratio attribute (or the entropy and fractal-dimension
attributes described in next sections) exhibits a transition between
noise and noise plus signal. Even so, it is a difficult task to determine
when the seismic signal arrives because of the attribute variability
and because often the transition is not sufficiently abrupt. To miti-
gate this problem, we propose to filter ER(¢) by applying an EPS op-
erator (Luo et al., 2002). Edge-preserving smoothing can be under-
stood as a simple modification of the running-average smoothing
method and was devised to reduce noise while preserving the most
noticeable changes of the data (EPS is described in Appendix A). Fi-
nally, we assign the first-break onset to the sample in which the de-
rivative of the filtered attribute is largest. This strategy allows us to
minimize the delay usually found between the attribute maximum
and the actual first-break onset, improving the accuracy of the re-
sults. We will refer to this method as the “modified Coppens’s meth-
od” (MCM).

From a practical point of view, the MCM requires the user to set
three parameters: the leading window length n,, the EPS operator
length n,, and the stabilization constant 8. Because the leading win-
dow is supposed to capture the first-arrival energy, we set its length
equal to one period of the first-arrival waveform. In this work, the
period is easily determined by measuring the time-distance between
two wave crests or troughs right after the first-break onset. On the
other hand, we found good results using EPS lengths between one
and two signal periods so we fix n, to one and a half periods in all cas-
es. The selection of 8 provides a means to control the attribute sensi-
tivity to energy changes avoiding false picks. Based on some experi-
mental tuning, we found that the selection of 8 is not critical to the
method and we decided to fix it at 0.2 (recall that the amplitudes are
previously normalized to ( —1,1)).

Despite being old, Coppens’s method (CM) is very robust when
the S/N is high. Coppens’s method and its variations are usually in-
cluded in various processing software. If the first break is impulsive
(such as in dynamite or marine data), the performance of the CM is
very good. However, if the first arrival is not very abrupt (such as in
vibroseis data), usually ER(7) attains its maximum at a later time,
limiting the capabilities of the CM to detect the exact location of the
first break. To illustrate the MCM and to compare it with the CM, we
tested both methods using the selected trace shown in Figure 2. By
visual inspection, first arrivals have a period of approximately 80 ms
(20 samples) so we setn, = 20 and n, = 30. Note how the first-break
determination is improved by the use of EPS. If the CM had been
used without the proposed modifications, the first break would have
been picked approximately 50 ms later.

Entropy method (EM)

We propose a new picking method called the entropy method
(EM), which is based on the entropy of curves, a concept used by De-
nis and Crémoux (2002) in the context of the segmentation of time or
spatial series. In their work, the entropy of a curve is viewed as a

measure of the variability and correlation structure of a time series.
This permits detecting changes in the statistical properties of the sig-
nal and thus dividing it into local stationary segments. In this work,
we apply the same concepts to the picking of first arrivals because a
rapid change in the statistical properties of the seismic trace is ex-
pected when the first break arrives.

Denis and Crémoux (2002) compute the entropy of a time series
as a function of time (or space) by means of

H(t) = log(L(2) /1), (4)

where L(1) is the “length” of the time series and is approximated by
the sum of absolute values of first differences.

In computing entropy as an attribute of the seismic trace s(z), we
estimate H(r) within a moving window of fixed length r;, and assign
its value to the last point of the window. Therefore,

=
H(t)=10g<n_ X s —sil ). (5)

hi=t—n,+1

In general, the entropy varies significantly when the moving win-
dow encompasses noise only or signal plus noise and thus the advent
of a first break can be identified by detecting rapid changes in this at-
tribute.

It is worth mentioning that if the moving window is too short the
variability of the entropy would be very large. On the other hand, if it
is too long, time resolution would be diminished. Besides, to com-
pletely capture the statistical properties of the first arrival it seems
reasonable to select 7, as a multiple of the first-arrival period. In all
the tested seismic traces we found good results setting n, equal to
twice the main period of the signal.

Figure 3 illustrates the behavior of the EM when applied to the
same trace used in the MCM. Because the first-arrival period is ap-
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Figure 2. (a) Seismic trace and first break picked by the CM (trian-
gle) and the MCM (square); (b) raw ER(?) attribute (dashed) and fil-
tered attribute (solid); (¢) derivative of the filtered attribute. Its maxi-
mum signals the first-arrival onset.
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proximately 20 samples, we set n;, = 40. We can observe that the en-
tropy attribute increases significantly at approximately 0.7 s. Again,
this change is then enhanced after the edge-preserving filtering (Fig-
ure 3b). The EPS operator length was fixed to one and a half periods
(i.e., 30 samples), as in the MCM case. The maximum of the deriva-
tive of the filtered attribute clearly signals the onset of the first arriv-
al, which turns out to be very similar to the pick obtained using the
MCM (see Figure 2).

Fractal-dimension method (FDM)

Afractal is by definition a set in a metric space for which the Haus-
dorft-Besicovitch dimension strictly exceeds the topological dimen-
sion (Mandelbrot, 1983). The Hausdorff-Besicovitch dimension
generalizes the topological notion of the set dimension (a natural
number) to nonnegative real values. In the case of a curve on the
plane, whereas topological curves are one dimensional, a fractal
curve has a fractal dimension D that is in the range 1 =D =2.Itcan
be said that the fractal dimension quantifies the degree of complexity
of a fractal curve. The theoretical basis of the fractal theory can be
found in Mandelbrot (1983), Feder (1988), and Peitgen et al. (1992).
The use of fractals in geophysics is fully described in Turcotte
(1997) and Korvin (1992).

Fractal curves can be classified as self-similar or self-affine. Ac-
cording to Turcotte (1997), a formal definition of a self-similar frac-
tal in a 2D xy-space is that f(rx,ry) is statistically similar to f(x,y),
where r is a scaling factor. On the other hand, a formal definition of a
self-affine fractal is that f(rx,ray) is statistically similar to f(x,y),
where H, is known as the Hausdorff measure. The definition of the
fractal dimension of a self-affine fractal is given by

H,=2-D. 6)
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Figure 3. (a) Seismic trace and first break picked by the EM (square);
(b) raw entropy attribute (dashed) and filtered attribute (solid); (c)
filtered attribute derivative. Its maximum signals the first-arrival on-
set.

For time series, an equivalent definition of a self-affine fractal is
the requirement that the variogram V(h) (or the semivariogram,
which is half the variogram) scales so that (Turcotte, 1997)

V(h) ~ h*a, (7)

where V(h) is defined as the expected value of the squared differenc-
es of the samples of the time series s(7) that are separated by a lag dis-
tance h. In agreement with other authors (e.g., Tosi et al., 1999; Jiao
and Moon, 2000), we found that seismic traces satisfy this require-
ment and can be classified as self-affine fractals.

There are different methods to extract the fractal dimension of a
curve, depending on whether the fractal is self-similar or self-affine
(Klinkenberg, 1994). Boschetti et al. (1996) develop a fractal-based
analysis for detecting first arrivals of seismic traces using the “divid-
er method,” which is devised for self-similar curves. Conversely, we
strongly recommend using methods developed for self-affine curves
when processing seismic traces (Sabbione and Velis, 2008). Like-
wise, Jiao and Moon (2000) use the “variance method” to detect re-
fraction signals and Tosi et al. (1999) use a variogram analysis to ex-
tract the fractal dimension of seismograms for the detection of seis-
mological events. These two techniques are devised for self-affine
fractals.

The “variogram method” (Korvin, 1992) is one of the most suit-
able and robust methods for calculating the fractal dimension of self-
affine curves. The method is based on the power law between the
variogram and the lag distance /4, which — combining equation 6
with equation 7 — can be written as follows:

V(h) ~ h*=2P. (8)

In practice, V(h) is calculated for different lag distances / and then
plotted on a log-log plot (known as Mandelbrot-Richardson plot).
Equation 8 states that the fractal dimension D is given by the slope b
of the straight line defined in the Mandelbrot-Richardson plot

D=2-b/2. (9)

We developed a fractal dimension method (FDM) for first-break
picking based on the fact that random noise exhibits a higher fractal
dimension than the signal. White noise fractal dimension is two
whereas the fractal dimension of a correlated theoretic signal is one.
Thus, the onset of a first arrival can be determined by detecting the
fractal-dimension transition between noise and noise plus signal.

In the method, the fractal dimension is estimated within a sample-
by-sample moving window of length n, and its value is assigned to
the last sample of the window. Experience shows that if n, is too
small the variogram (and the fractal dimension) cannot be estimated
adequately. On the other hand, if n, is too large rapid changes in the
fractal dimension would not be detected properly. Jiao and Moon
(2000) analyze different window lengths and recommend using a
window of 48 samples. Considering this information and taking into
account the signal period 7T as in the MCM and the EM, we fixed the
window size to n, = kT, where k is the lowest integer that yields n,
=48+ T/2.

To complete the description of the FDM, let us analyze the vari-
ogram fractal-dimension behavior when low-energy random noise
is added to the data. This pointis shown in Figure 4, in which we used
the same trace as in the MCM and the EM. Figure 4a shows the case
without noise added whereas Figure 4b shows the case with low-en-
ergy white noise added. Clearly, the fractal dimension before the first
arrival increased after adding the random noise, approaching the
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white-noise theoretical value of two. On the other hand, the effect af-
ter the first arrival was much smaller. As a result, the transition be-
tween noise and noise plus signal became more apparent, thus mak-
ing the first-break detection easier. This effect, which was also noted
by Jiao and Moon (2000), can be explained by the fact that the added
noise (with energy similar to that of the background noise) tends to
destroy the correlation structure of the (correlated) noise present in
the trace before the first arrival. Therefore, we systematically add
low-amplitude white noise to the data when using the FDM. The
amount of added noise must be manually tuned for the given data be-
cause it depends on the background noise of the seismic survey. This
simple strategy significantly improves the capabilities of the FDM
for picking first breaks particularly when processing vibroseis data,
in which high-correlated noise is induced before the first arrival by
the source.

The FDM can be summarized as follows: We consider a sample-
by-sample moving window within the seismic trace s(7) (with noise
added) and estimate its variogram V(,f) using

t—h

2 (Si+h_si)2’ (10)

nf_ hi:t—nf+1

V(h,t) =

for four lag distances 4 = 1, 2, 3, and 4 samples, which are adequate
to capture the roughness of a noisy seismic trace. This lag distance
range is in agreement with Jiao and Moon (2000). After fitting a
straight line to the log-log Mandelbrot-Richardson plot, we estimate
the fractal dimension using equation 9 and assign its value to the last
point of the window. We subsequently use EPS to enhance the frac-
tal-dimension transition between noise and noise plus signal. As in
the case of the MCM and the EM, we set the filter length equal to one
and a half periods. Finally, because the fractal dimension is supposed
to decrease when the signal arrives, we assign the first arrival onset
to the sample in which the derivative of the filtered attribute is at a
minimum. The FDM is illustrated in Figure 5 using the same trace
used in the MCM and the EM. In this case, we added white noise so
that S/N = 20, where S/N is calculated as the ratio between the trace
energy and the noise energy. Because the period of the first-arrival is
approximately 20 samples, we set n, = 60 and nn, = 30.

At this point, we would like to stress the differences between the
FDM proposed in this paper and other fractal-dimension approach-
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Figure 4. Seismic trace (dashed) and variogram fractal-dimension
(solid). In (a) the seismic trace was not contaminated with noise

whereas in (b) low-amplitude white noise was added (S/N = 20).

es. Boschetti etal. (1996) use the divider method to estimate the frac-
tal dimension, which yields smooth transitions between noise and
noise plus signal. They use a complicated three-segment scheme to
fit the fractal-dimension curve in the proximity of the first arrival
(this region is selected manually). Then they place the first break a
few samples before the intersection of two of these lines. On the con-
trary, the use of the variance FDM leads to sharp transitions (Jiao and
Moon, 2000), which makes the picking of first arrivals easier. Unfor-
tunately, the authors do not explain how they determine the onset of
the first break. Presumably, it is placed at the point where the transi-
tion begins (though this point is not easily identified), as observed in
Figure 12 of their article. In contrast, the use of the variogram FDM
together with the edge-preserving filtering allows us to easily signal
the onset of the first arrivals in an automated way.

Parameter selection

In the previous section, we recommended a set of parameters for
each picking method. Table 1 summarizes these quantities together
with the actual values used for the automatic first-break picking il-
lustrated in the next section. Note that most of the parameters are de-
fined in terms of the approximate main period T of the first breaks,
which is obtained directly from the data (a single approximate value
of T is required for the whole shot). Thus, the selection of these pa-
rameters is straightforward. Note also that the EPS window length is
the same for the three methods and the stabilization constant 8 used
in the MCM is the same for all data sets (provided all traces are nor-
malized as described before). In the particular case of the moving
window length of the FDM, the integer k must be selected to guaran-
tee that kT'is atleast 48 + 7/2 samples. In the end, the S/N is the only
parameter that must be tuned for the FDM. In general, the smaller the
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Figure 5. (a) Seismic trace and first break picked by the FDM
(square); (b) raw fractal-dimension attribute (dashed) and filtered at-
tribute (solid); (c) derivative of the filtered attribute. Its minimum
signals the first-arrival onset.
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S/N is, the more delayed the pick. This behavior facilitates the tuning
process (usually carried out by visual inspection) required to select
this parameter.

Correcting mispicks and final algorithm

The algorithms described in the previous sections search for the
first arrival on a single trace but a human first-break picker would
take into consideration the entire shot gather to select the picks. In
doing so, he or she would certainly pay attention to common-sense
factors such as constant time delays between adjacent traces, time
increase with offset distance, first-break alignment along straight
lines, etc. Any pick not meeting these criteria would need to be re-
evaluated. These common-sense factors can be included into an au-
tomated picking algorithm by using constraints. For this purpose, we
developed a mispick-correcting procedure to restrict the search of
the first breaks in the proximity of these lines, which are built by
least-squares using the trace-by-trace picks. As a result, mispicks
can be corrected or discarded (e.g., picks associated with bad or dead
traces) using simple criteria.

The mispick correction is implemented via a five-step process.
The first step consists of a trace-by-trace picking using one of the
three algorithms described in the previous sections. Depending on
data quality, some of the automatic picks of this first step might be
wrong (mispicks). For example, in a few traces the actual first break
could exhibit the second or third largest value (or smallest in the
FDM) of the filtered attribute derivative instead of the absolute max-
imum (or the absolute minimum in the FDM). Besides, there might
be some bad traces whose associated picks are naturally wrong and
must be rejected. To avoid these problems automatically, we fit all
possible models of two straight lines per gather flank to the current
picks via least-squares regression. This refracted model is devised to
accommodate the expected direct and refracted arrivals. Then the y?
goodness-of-fit is evaluated for every model and the one with the
lowest y?is selected as the most probable. Next, if the a posteriori er-
ror of any point (pick) of the least-squares fit is greater than 3o
(where o is the standard deviation of the fit) the pick is rejected and
the straight lines are recalculated accordingly. This process is repeat-
ed until there are no points (picks) with errors greater than 3o (in
general, one to two iterations are enough and only a few step 1 picks
are temporarily rejected). The final result of this second step is a

(preliminary) refraction model consisting of two straight lines per
gather flank. As an example, Figure 6a shows the results of the pick-
ing using the FDM (step 1) and the preliminary refraction model
(step 2) for the field data shown in Figure 7b (next section). Note that
in this particular case the picks associated with traces 4, 12, 13, 14,
27, and 37 were not considered in the preliminary refraction model
because they did not pass the 3o test.

In the third step, the picking process is repeated but the analysis is
now restricted to a tolerance window of size n,, centered at the pre-
liminary refraction-model straight lines obtained in step 2. We re-
quire that n,,/ 4 be greater than the largest static delay that one would
expect on the data, as explained below when describing step 5. The
aim of this local repicking is to reevaluate those traces that might
have been temporarily discarded during step 2 (because of the 3o
test) and whose actual first arrivals are not associated with the global
maximum (or minimum for the FDM) of the derivative of the filtered
attribute but to a local maximum (or minimum) within the window
ny. Thus, some picks that might have been interpreted as mispicks in
step 2 are re-evaluated and corrected during step 3 and a new set of
picks is obtained.

The next step (step 4) consists of the same procedure devised for
step 2 but now using the new set of picks derived after step 3. As are-
sult, a final refraction model is obtained. Figure 6b shows the results
after steps 3 and 4. The picks associated with traces 4, 14, and 37
were corrected and included on the final refraction model. The pick
of trace 27 was not corrected but passed the 3o test for this model.

Finally, in the fifth and last step we analyze the picks trace-by-
trace and decide whether to readjust the pick accordingly to the final
refraction model or to reject it. The rejected picks are associated with
bad or dead traces or with traces for which the selected method (i.e.,
the MCM, the EM, or the FDM) was not able to detect the actual first
arrival. In this sense, with the assumption that the first breaks will ap-
proximately follow the straight lines obtained on step 4, we define a
new tolerance window of half the previous tolerance window-length
centered at the final refraction-model straight lines. Then, the local
maximum (or minimum for the FDM) within this narrower tolerance
window is picked. Note that the picking is carried out even if the first
arrival is not very clear, thus simulating the way a human picker
would proceed by following the straight lines of a hypothetical re-
fraction model. On the other hand, because the filtered attribute is
constant for those traces in which the attribute exhibits no abrupt

Table 1. The three field data sets used to illustrate the picking process and the selected parameters for each method. The
sampling interval At is given in milliseconds. The other quantities except 8 and S/N are given in samples.

Dataset1 Dataset2 Dataset3
At=4 At=2 At=4
Method Parameter Equal to =13 T=32 T=20
n T 13 32 20
MCM n, 1.5T 20 48 30
B 0.2 0.2 0.2 0.2
EM n, 2T 26 64 40
n, 1.5T 20 48 30
ny kT 65 64 60
FDM n, 1.5T 20 48 30
S/N (tune) 50 70 20
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changes within the short tolerance window, there is no local maxi-
mum or minimum to select and thus those traces are rejected.
In other words, the final first breaks are picked within the interval

|t_tr|<ntol/4v (11)

where 7, is the time associated with the straight lines of the final re-
fraction model obtained in step 4. Thus, n,,, must be selected to guar-
antee that n,,;/4 is greater than the largest static correction expected
on the data. Note that in the final results shown in Figure 6b, picks of
traces 12 and 13 were associated with bad or dead traces and reject-
ed.

The proposed final five-step picking algorithm can then be sum-
marized as follows:

Step 1. For every trace on a shot gather, the corresponding at-
tribute time series (energy ratio, entropy, or variogram fractal-di-
mension) is calculated. Then the selected attribute is filtered using
EPS and the preliminary first-break picks are set at the maximum of
the filtered attribute derivative (the minimum in the case of the
FDM).

Step 2. All picks of the previous step are fitted to the best two
straight lines per flank model. Then those picks with errors larger
than 30 are temporarily rejected and a new model with two straight
lines per flank model is calculated. The process is repeated until
there are no picks with errors larger than 30. As aresult, the prelimi-
nary refraction model is obtained (see Figure 6a).

Step 3. First breaks are now repicked locally by searching the
maximum (or minimum for the FDM) of the filtered attribute deriva-
tive within a window of size n,, centered at the straight lines of the
preliminary refraction model obtained in the previous step. This pro-
cess usually leads to the correction of some picks.

Step 4. Step 2 is repeated using the updated set of picks of step 3.
Some mispicks that had been corrected in step 3 (and temporarily
discarded in step 2) are taken into account and the final refraction
model is obtained (e.g., picks of traces 4, 14, and 37; Figure 6b).

Step 5. Finally, a narrower window of half the tolerance window
length is fixed and centered on the final refraction model of step 4.
The picks are adjusted within this new window or rejected if no local
maximum (or minimum in the FDM) is found. Seismic traces with
rejected picks are interpreted as bad or dead traces or as traces for
which the selected method has failed (e.g., picks of traces 12 and 13,
Figure 6b).

It is worth mentioning that this five-step process, which is fully
automatic, is computationally efficient because the seismic attribute
is calculated only once at step 1. The simplicity of this correction
procedure provides great robustness to the final algorithm. The
mispick-correction stage is shot consistent. Thus, problems related
to inhomogeneities that can lead to different refraction models at dif-
ferent regions of the same survey are of no concern. Tests with sever-
al field-data records show that this strategy is very useful when data
quality is poor or difficult to pick. However, if a large number of
picks after step 1 are wrong (more than 35%, approximately), a rea-
sonable refraction model might not be obtained and the five-step
mispick-correction process described above might fail.

Finally, we would like to remark that a later process can be added
to the proposed methods to finely adjust the picks and to follow some
predefined criteria (e.g., correcting every pick to the closest inflec-
tion or zero crossing point or moving the pick to nearest trace maxi-
mum or minimum). This later adjustment of the picks is viewed as a

second-order process that in any case represents a criterion that is as
arbitrary as picking the maximum (or minimum) of the derivative of
the filtered attribute.

FIELD-DATA TESTS

In general, marine field data exhibit clear and distinct first breaks
and thus offer no difficulties for the proposed automated picking al-
gorithms. For this reason we do not show examples using this type of
data. Instead, we illustrate the behavior of the MCM, the EM, and the
FDM together with the mispick-correction stage using dynamite and
vibroseis field records. We have selected three shot gathers with dif-
ferent background noise levels that we believe are not easy to pick
because of the presence of correlated noise, bad traces, pulse chang-
es, and not-so-distinct first breaks. The field data were taken from
Yilmaz (2001), available at http://www.cwp.mines.edu/data/oz.o-
riginal/. Table 1 shows the sampling interval and the signal approxi-
mate periods for each data set with the parameters we used for the
different picking methods. Regarding the mispicks correction stage,
we set 1, equal to four periods for the three shot gathers and for the
three methods (i.e., 52 samples for data set 1, 128 samples for data
set 2, and 80 samples for data set 3).

The first selected data set (Figure 7a) is shot number 6 in Yilmaz
(2001, p. 72). The shot was acquired in the Far East with a dynamite
source. It consists of 48 traces with 100-m trace spacing. Figure 7a
shows the resulting first breaks picked by the MCM (red), the EM
(green), and the FDM (blue). Some traces show no clear first break
and in particular traces 2, 3, 4, 27, and 28 have some problems. In
some of these traces, the methods could not find an acceptable pick
after step 5 and thus the traces were automatically marked as bad
traces. Despite these facts, all three methods picked the first arrivals
correctly in most of the traces. The dynamite source provides impul-
sive first breaks and although some traces are rather noisy and some
first breaks are not distinct they tend to pose no major difficulties for
the proposed methods.

The next shot gather (Figure 7b) is a field record from the San
Joaquin Basin (shot number 23 on Yilmaz [2001, p. 76]), which was

a) 0.0
0.4
0.8
1.2
16
2.0
2.4

Time (s)

=

) 0.0
0.4
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1.2
1.6
2.0

2'4 1 1 1 1 1 1 1
6 12 18 24 30 36 42 48
Trace number

Time (s)

Figure 6. Mispick correction procedure. The results correspond to
the FDM applied to the field data shown in Figure 7b. (a) Trace-by-
trace picks (step 1) and fitted straight lines corresponding to the pre-
liminary refraction model (step 2); (b) corrected picks (step 3) and
fitted straight lines for the final refraction model (step 4). Picks of
traces 12 and 13 were associated with bad or dead traces and rejected
(step 5).

Downloaded 18 Oct 2010 to 163.10.46.12. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



V74

acquired with a vibroseis source. The 48 traces are separated by
67 m (220 ft). The shot gather and the corresponding first breaks de-
tected by the MCM, the EM, and the FDM are plotted in Figure 7b.
Some traces are problematic (namely traces 4, 12, 13, and 14). Here,
some methods succeeded to pick the first breaks and some methods
failed, as expected due to the presence of bad traces. Also, data ex-
hibit lobes before the first-arrivals onset (because of the zero-phase
wavelet of the source) and the first breaks are not very clear. This is a
common issue with vibroseis records. The data complexity makes
the methods miss the first break by approximately one period in a
few traces (see traces 22, 24,43, and 46) but the results are generally
very good.

The last example and perhaps the most challenging data set shown
in this paper corresponds to a vibroseis field record collected in Tur-

Trace number
30

a)

20

Sabbione and Velis

key (shot number 4 in Yilmaz [2001, p. 71]). It consists of 48 traces
with a 100-m trace interval. The data and the resulting picks are
shown in Figure 7c. Here, conventional automated first-break-pick-
ing algorithms are prone to fail. Recall that the S/N of the added
noise for the FDM was approximately 20 to decorrelate the precur-
sor energy of the vibroseis source. Because of the presence of quasi-
monochromatic noise before the first breaks, first arrivals are very
difficult to detect. Even a trained human picker would find it very
difficult to decide where to locate the first breaks in some of the trac-
es (see, for example, traces 29-33). Yilmaz (2001) suggests the pres-
ence of near-surface irregularities, which are more evident by in-
specting the whole record at later times. Despite the data complexity,
the results of the automated picking are generally very good. The
EM tends to delay the onset of the first breaks.

Figure 7. Field-data tests: (a) dynamite shot record
number 6; (b) vibroseis shot record number 23; and
(c) vibroseis shot record number 4. First breaks
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Table 2. Variation ranges for the different methods
parameters for the sensitivity analysis.

Method Parameter Ranges

MCM ng 0.5T-1.5T
n, T7-2T

EM n, 1.5T-2.5T
n, T-2T

FDM ny (k—0.5)T-(k+ 0.5T
n, T-2T

Table 3. Mean standard deviation of the picks. Values are
given in milliseconds.

Method Data set 1 Data set 2 Data set 3
MCM 3.7 7.9 8.9
EM 4.8 7.0 12.2
FDM 4.1 7.6 12.8

Sensitivity analysis

In this section, we carry out a sensitivity analysis by repeating the
picking of each shot gather using a large number of different parame-
ter sets. In this sense, for every trace in a given shot we calculated the
standard deviation of the picks, in which each pick was obtained us-
ing a different set of parameters. The leading window length (for the
MCM) or the moving windows length (for the EM and the FDM) and
the EPS operator length were varied in a one-period range centered
at the values shown in Table 1. Both B for the MCM and S/N for the
FDM were fixed to the values indicated in the same table. The ranges
used for the sensitivity analysis are shown in Table 2.

Finally, we calculated a mean standard deviation by averaging all
the standard deviations of the picks associated with each individual
trace. This quantity is viewed as an indicator of the variability of the
picks for the whole shot gather. Table 3 shows the mean standard de-
viation for each case. Note that the variability of the picks is very
small, thus validating the parameter-selection criteria. Furthermore,
the parameter selection is not critical within the variation ranges ana-
lyzed in this section.

CONCLUSION

We present three new methods to automatically determine the on-
set of the first arrivals in either marine, dynamite, or vibroseis shot
records. The methods, which are the modified Coppens’s method
(MCM), the entropy method (EM), and the fractal dimension meth-
od (FDM), are based on the analysis of certain trace attributes that
are especially sensitive to the advent of a signal within background
noise. Attributes include the energy ratio, entropy, and the fractal di-
mension, which are calculated along the seismic trace within mov-
ing windows and analyzed to detect abrupt changes when the signal
arrives. The transition between noise and noise plus signal is signifi-
cantly enhanced using an EPS filter, leading to an automatic strategy
used to easily signal the exact location of the onset (maximum or
minimum of the filtered-attribute derivative). Edge-preserving

smoothing represents a very useful tool for tackling the first-break—
picking problem. Furthermore, we propose a mispick-correcting
procedure that allows us to exploit the benefits of the data present in
the entire shot record, to adjust the trace-by-trace picks, and to dis-
card picks associated with bad or dead traces. As aresult, the accura-
cy and consistency of the first-break picks are significantly im-
proved.

The proposed methods are robust for noisy data and provide accu-
rate and consistent picks even under the presence of correlated noise,
bad or dead traces, pulse changes, and indistinct first breaks. Be-
sides, the methods are computationally efficient and easy to apply
because the user needs to select only two or three parameters, de-
pending on the selected attribute. Most of the parameters are set
based on the period of the first-arrival waveforms, which is easily de-
termined by visual inspection, thus their selection is straightforward.
Moreover, a sensitivity analysis shows that the variability of the
picks is very small when different parameter sets are used.

Results show that the performance of the MCM considerably ex-
ceeds the performance of the traditional CM, mainly due to the use of
the EPS. The EM, on the other hand, is a new approach for picking
first breaks that succeeds on most of the tests but tends to detect the
first breaks a few samples before or after the actual arrival. The FDM
yields very consistent results and overcomes the weaknesses of oth-
er fractal-based methods published in the literature.

In general, we have observed that the MCM is very effective for
picking first breaks that are characterized by a strong energy arrival.
On the other hand, the FDM provides excellent results when dealing
with vibroseis data when other methods tend to be less effective.
However, because the three methods perform very well and are com-
putationally efficient, we recommend running the three methods and
selecting the one that appears to yield the best results.
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APPENDIX A

EPS

The EPS is a statistically based filtering process devised for re-
ducing noise while preserving the most noticeable changes (edges)
in the data (Luo et al., 2002). Though we are going to describe the 1D
EPS algorithm it can be generalized for two dimensions or three di-
mensions (AlBinHassan et al., 2006).

The EPS can be viewed as a simple modification of the running-
average smoothing method. As in the running average, the only pa-
rameter of the EPS algorithm is the window length. We will show
how it works by means of an example.

Let us consider a five-point EPS operator. Given any arbitrary
sample of the data s;, there are five shifted windows that include it:

Window 1: (- 4,8 3,8 2,8 1,5;)
Window 2: (; 3,8 2,8 1,8:,8i+1)
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Figure A-1. (a) Step function contaminated with noise. (b) Absolute
value of derivative of data in (a). (c) Data in (b) filtered using a 25-
point EPS operator. (d) Absolute value of filtered data derivative.

Window 3: (8;-2.8;— 1,858+ 1,51+2)
Window 4: (5;-1,8:,8i+ 1,8 +2,51+3)
WiIndow 5: (8,84 1,8+ 2,81+ 3.5+ 4)

On output, sample s, is replaced by the mean of the window with
the smallest standard deviation. This process is repeated for all data
samples. As a result, the filtering process assigns the mean of the
most homogeneous data window around the ith sample to the ith
point location. Thus, if a window contains an abrupt change, the
standard deviation will be high and this window will not be selected
for the EPS output. Consequently, noise is filtered by the averaging
and edges are preserved.

The EPS is illustrated in Figure A-1. A step function contaminat-
ed with random noise is shown in Figure A-1la. Figure A-1b shows
the absolute value of its derivative. Clearly, the step location is
masked by the noise and cannot be easily identified. After the appli-
cation of a 25-point EPS operator, the step location is clearly visible
(Figure A-Ic) and its exact location can be easily identified by ob-
serving the derivative (Figure A-1d).
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