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ABSTRACT

We have developed three methods for the automatic pick-
ing of first breaks that can be used for marine, dynamite, or vi-
broseis shot records: a modified Coppens’s method, an entro-
py-based method, and a variogram fractal-dimension meth-
od. The techniques are based on the fact that the transition be-
tween noise and noise plus signal can be automatically identi-
fied by detecting rapid changes in a certain attribute �energy
ratio, entropy, or fractal dimension�, which we calculate
within moving windows along the seismic trace. The applica-
tion of appropriate edge-preserving smoothing operators to
enhance these transitions allowed us to develop an automated
strategy that can be used to easily signal the precise location
of the first-arrival onset. Furthermore, we propose a mispick-
correcting technique to exploit the benefits of the data present
in the entire shot record, which allows us to adjust the trace-
by-trace picks and to discard picks associated with bad or
dead traces. As a result, the consistency of the first-break
picks is significantly improved. The methods are robust un-
der noisy conditions, computationally efficient, and easy to
apply. Results using dynamite and vibroseis field data show
that accurate and consistent picks can be obtained in an auto-
mated manner even under the presence of correlated noise,
bad traces, pulse changes, and indistinct first breaks.

INTRODUCTION

In seismic exploration, first-break picking is the task of determin-
ng, given a set of seismic traces, the onsets of the first signal arrivals
s accurately as possible. In general, these arrivals are associated
ith the energy of refracted waves at the base of the weathering layer
r to the direct wave that travels directly from the source to the re-
eiver.

The accurate determination of the first arrivals onset �first-break
imes� is needed for calculating the static corrections, a fundamental

Manuscript received by the Editor 8 July 2009; revised manuscript receive
1Universidad Nacional de La Plata, La Plata, Facultad de Ciencia

sabbione@fcaglp.unlp.edu.ar; velis@fcaglp.unlp.edu.ar.
2010 Society of Exploration Geophysicists.All rights reserved.
V67

Downloaded 18 Oct 2010 to 163.10.46.12. Redistribution subject to S
tage of seismic data processing. Clearly, the effectiveness of reflec-
ion- and refraction-based methods of static corrections depends on
he picking-process reliability �Yilmaz, 2001, p. 374�.Also, applica-
ions such as near-surface tomographic static corrections �tomostat-
cs� require a precise and rapid automated detection of the signal first
rrivals.

Generally, first-break quality is related to the near-surface struc-
ure, source type, and signal-to-noise ratio �S/N� conditions. As a
onsequence, the automated picking of first breaks can be a very dif-
cult task if data are acquired in complex near-surface scenarios or if

he S/N is low. Moreover, if the source wavelet is zero-phase as when
ibroseis sources are used, the sweep correlation often produces
ide-lobes that arrive before the first break, thus making the picking
rocess even more difficult.

Traditionally, the determination of the signal advent was carried
ut by a visual inspection of the amplitudes and waveform changes
“manual” picking�. Apart from being very time consuming, this
trategy can lead to biased and inconsistent picks because it relies on
he picking-operator subjectivity. With the development of modern
omputers, the use of dedicated software to carry out the picking in-
eractively facilitated the process but in general the whole procedure
s still very time consuming and subjective. Thus, the implementa-
ion of automated computer-based algorithms is very important for
he rapid picking of first breaks in a consistent and objective way.
owadays, the most common strategy is to use an automatic/semi-

utomatic picker as a first step and to correct the results interactively
y visual inspection later. Often, this process needs to be repeated
everal times in certain difficult areas.As a result, when the data vol-
me is large and the data quality is poor, the picking procedure can
ake up to 20–30% of the total processing time.

During the last few decades, numerous techniques have been de-
eloped for determining first breaks automatically or semi-automat-
cally. First attempts were based on the crosscorrelation of adjacent
races to find the delay time between first breaks �Peraldi and Clem-
nt, 1972�. However, these techniques tend to fail when the pulse
hape changes from trace to trace and when bad or dead traces ap-
ear. Hatherly �1982� proposes some cumbersome statistical tests
hat would signal the advent of the first breaks. Gelchinsky and Sh-
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V68 Sabbione and Velis
ivelman �1983� present a technique based on a combination of the
orrelation properties of the signal and a statistical criterion. Other
pproaches, still included in various commercial software packages,
ave focused on the detection of a sudden increase in the signal ener-
y �Coppens, 1985�. As stated by Coppens �1985�, this method is
ery robust when S/N is sufficiently high.As a first approximation to
he location of the first arrivals, Spagnolini �1991� bases his adaptive
icking method on the detection of abrupt changes in the energy. For
onvenience, the mentioned techniques will be referred to as con-
entional methods. Nonconventional methods include relatively
ew algorithms such as those based on neural networks. These ap-
roaches proved to be very useful for first-break detection �Murat
nd Rudman, 1992� but as it is well known an adequate training of
he network often requires a considerable amount of operator time
and expertise�. Without good network training, the results can re-
uire several time-consuming “manual” adjustments, especially
hen data quality is low. Other nonconventional methods involve

he use of higher-order statistics �Yung and Ikelle, 1997; with limita-
ions similar to that of the crosscorrelation-based approaches�, frac-
al-dimension analysis �Boschetti et al., 1996; Jiao and Moon,
000�, and wavelet transform �Tibuleac et al., 2003�. Unfortunately,
hen background noise is high and data quality is poor, these tech-
iques tend to fail and the problem of obtaining consistent and reli-
ble picks in an automated manner remains unresolved.

In this context, we propose some useful improvements for the
oppens and the fractal-dimension-based methods that help to sig-
ificantly enhance their capability for detecting first arrivals auto-
atically. We also present a new algorithm based on the entropy of

urves. The entropy of curves has already been proposed for time-
nd spatial-series segmentation �Denis and Crémoux, 2002�. Here,
he trace entropy is used as a new seismic attribute that quantifies the
tatistical properties of the signal �variability and correlation struc-
ure�.

These three algorithms rely on three seismic “attributes” �energy
atio, fractal dimension, and entropy�, which we calculate within
oving windows in a trace-by-trace process. The basic assumptions

re that the selected attribute behaves differently whether data in the
oving window contains noise only or noise plus signal and that the

ransition between these two regions is abrupt. Thus, the accuracy of
he picking method is clearly related to the accuracy with which the
ttribute change can be determined. In this sense, we propose the use
f an edge-preserving smoothing �EPS� filter �Luo et al., 2002� to
ignificantly enhance this transition. As it will be shown, EPS be-
omes an essential step that significantly improves the results.

Rather than limiting the picking to a trace-by-trace procedure, the
roposed algorithms are devised to exploit the benefits of the whole
hot gather in which first breaks, as it is well known, are approxi-
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igure 1. Windows used in the calculation of the energy-ratio at-
ribute.
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ately aligned along straight lines. So we develop a five-step
ispick-correcting procedure to restrict the search of the first breaks

n the proximity of these lines, which are built by least-squares using
he trace-by-trace picks. As a result, the consistency and spatial co-
erence of the picks are significantly improved. On the other hand,
ispicks associated with bad or dead traces and those associated
ith traces that present indistinct first breaks are corrected or dis-

arded automatically using simple statistical criteria.
First, we illustrate the three proposed algorithms using a single

race. Then we test the complete strategies �including the mispick-
orrection procedure� under different S/N and source-type condi-
ions using field-shot records. For these tests, we selected various
ynamite and vibroseis noisy data sets. The results show that the pro-
osed algorithms are in general very robust and lead to consistent
nd accurate picks even when using vibroseis data, in which the on-
ets are not so distinct. Likewise, they are very efficient in terms of
omputational effort and simple to use.

METHODS

In the proposed methodology, the picking procedure has two stag-
s. The first stage is a trace-by-trace process aimed at identifying
brupt changes in a certain trace attribute �energy ratio, entropy, or
ractal dimension�, which we calculate as a function of time. To en-
ance the attribute changes, the selected attribute is filtered using
PS. Finally, we assign the first-break onset to the time when the de-

ivative of the filtered attribute is at a maximum �or minimum in the
ase of the fractal-dimension method�. In this section, we describe,
llustrate, and compare the three proposed algorithms using the same
ingle field-data trace. The selected trace is trace number 14 from the
ibroseis-source shot-gather number 4 in Yilmaz �2001, p. 71�,
hich was acquired with a sampling interval of 4 ms. For conve-
ience, seismic amplitudes are normalized to ��1,1� before pro-
essing.

The second stage involves the use of the complete set of picks of
he first stage obtained for every trace in the shot gather. This proce-
ure consists of simple statistical criteria that help improve the pick-
ng spatial coherency and automatically detect bad or dead traces.
he objective of this process is to account for the expected approxi-
ate alignment of the picks along the refraction model straight lines.
ispicks can be adjusted or eliminated at this stage.

odified Coppens’s method (MCM)

The basic idea of this strategy is very simple and follows Cop-
ens’s method �Coppens, 1985�. The aim of the method is to distin-
uish the signal from the incoherent or coherent background noise in
erms of their energy difference. For this purpose, we calculate the
nergy of the seismic trace s�t� within two nested windows

E1�t�� �
i�t�n��1

t

si
2, �1�

E2�t�� �
i�1

t

si
2, �2�

here n� is the length of the first �leading� window, a parameter that
s fixed and selected a priori. Note that on the contrary the length of
he second �longer� window increases with time �see Figure 1�. Then
EG license or copyright; see Terms of Use at http://segdl.org/
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Automatic first-breaks picking V69
e calculate the energy ratio

ER�t��E1�t�/�E2�t��� �, �3�

here � is a stabilization constant that helps reduce the rapid fluctu-
tions of ER�t� that might lead to a false first-break pick, especially
hen the background noise is very low. This attribute is assigned to

he last sample of the windows. The nested windows approach guar-
ntees that ER�t� � 1, which is very convenient to control the mag-
itude of this attribute.

The energy-ratio attribute �or the entropy and fractal-dimension
ttributes described in next sections� exhibits a transition between
oise and noise plus signal. Even so, it is a difficult task to determine
hen the seismic signal arrives because of the attribute variability

nd because often the transition is not sufficiently abrupt. To miti-
ate this problem, we propose to filter ER�t� by applying an EPS op-
rator �Luo et al., 2002�. Edge-preserving smoothing can be under-
tood as a simple modification of the running-average smoothing
ethod and was devised to reduce noise while preserving the most

oticeable changes of the data �EPS is described inAppendix A�. Fi-
ally, we assign the first-break onset to the sample in which the de-
ivative of the filtered attribute is largest. This strategy allows us to
inimize the delay usually found between the attribute maximum

nd the actual first-break onset, improving the accuracy of the re-
ults. We will refer to this method as the “modified Coppens’s meth-
d” �MCM�.

From a practical point of view, the MCM requires the user to set
hree parameters: the leading window length n�, the EPS operator
ength ne, and the stabilization constant � . Because the leading win-
ow is supposed to capture the first-arrival energy, we set its length
qual to one period of the first-arrival waveform. In this work, the
eriod is easily determined by measuring the time-distance between
wo wave crests or troughs right after the first-break onset. On the
ther hand, we found good results using EPS lengths between one
nd two signal periods so we fix ne to one and a half periods in all cas-
s. The selection of � provides a means to control the attribute sensi-
ivity to energy changes avoiding false picks. Based on some experi-

ental tuning, we found that the selection of � is not critical to the
ethod and we decided to fix it at 0.2 �recall that the amplitudes are

reviously normalized to ��1,1��.
Despite being old, Coppens’s method �CM� is very robust when

he S/N is high. Coppens’s method and its variations are usually in-
luded in various processing software. If the first break is impulsive
such as in dynamite or marine data�, the performance of the CM is
ery good. However, if the first arrival is not very abrupt �such as in
ibroseis data�, usually ER�t� attains its maximum at a later time,
imiting the capabilities of the CM to detect the exact location of the
rst break. To illustrate the MCM and to compare it with the CM, we

ested both methods using the selected trace shown in Figure 2. By
isual inspection, first arrivals have a period of approximately 80 ms
20 samples� so we set n��20 and ne�30. Note how the first-break
etermination is improved by the use of EPS. If the CM had been
sed without the proposed modifications, the first break would have
een picked approximately 50 ms later.

ntropy method (EM)

We propose a new picking method called the entropy method
EM�, which is based on the entropy of curves, a concept used by De-
is and Crémoux �2002� in the context of the segmentation of time or
patial series. In their work, the entropy of a curve is viewed as a
Downloaded 18 Oct 2010 to 163.10.46.12. Redistribution subject to S
easure of the variability and correlation structure of a time series.
his permits detecting changes in the statistical properties of the sig-
al and thus dividing it into local stationary segments. In this work,
e apply the same concepts to the picking of first arrivals because a

apid change in the statistical properties of the seismic trace is ex-
ected when the first break arrives.

Denis and Crémoux �2002� compute the entropy of a time series
s a function of time �or space� by means of

H�t�� log�L�t�/t�, �4�

here L�t� is the “length” of the time series and is approximated by
he sum of absolute values of first differences.

In computing entropy as an attribute of the seismic trace s�t�, we
stimate H�t� within a moving window of fixed length nh and assign
ts value to the last point of the window. Therefore,

H�t�� log� 1

nh
�

i�t�nh�1

t�1

�si�1�si�� . �5�

In general, the entropy varies significantly when the moving win-
ow encompasses noise only or signal plus noise and thus the advent
f a first break can be identified by detecting rapid changes in this at-
ribute.

It is worth mentioning that if the moving window is too short the
ariability of the entropy would be very large. On the other hand, if it
s too long, time resolution would be diminished. Besides, to com-
letely capture the statistical properties of the first arrival it seems
easonable to select nh as a multiple of the first-arrival period. In all
he tested seismic traces we found good results setting nh equal to
wice the main period of the signal.

Figure 3 illustrates the behavior of the EM when applied to the
ame trace used in the MCM. Because the first-arrival period is ap-
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igure 2. �a� Seismic trace and first break picked by the CM �trian-
le� and the MCM �square�; �b� raw ER�t� attribute �dashed� and fil-
ered attribute �solid�; �c� derivative of the filtered attribute. Its maxi-

um signals the first-arrival onset.
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V70 Sabbione and Velis
roximately 20 samples, we set nh�40. We can observe that the en-
ropy attribute increases significantly at approximately 0.7 s.Again,
his change is then enhanced after the edge-preserving filtering �Fig-
re 3b�. The EPS operator length was fixed to one and a half periods
i.e., 30 samples�, as in the MCM case. The maximum of the deriva-
ive of the filtered attribute clearly signals the onset of the first arriv-
l, which turns out to be very similar to the pick obtained using the
CM �see Figure 2�.

ractal-dimension method (FDM)

Afractal is by definition a set in a metric space for which the Haus-
orff-Besicovitch dimension strictly exceeds the topological dimen-
ion �Mandelbrot, 1983�. The Hausdorff-Besicovitch dimension
eneralizes the topological notion of the set dimension �a natural
umber� to nonnegative real values. In the case of a curve on the
lane, whereas topological curves are one dimensional, a fractal
urve has a fractal dimension D that is in the range 1�D�2. It can
e said that the fractal dimension quantifies the degree of complexity
f a fractal curve. The theoretical basis of the fractal theory can be
ound in Mandelbrot �1983�, Feder �1988�, and Peitgen et al. �1992�.
he use of fractals in geophysics is fully described in Turcotte

1997� and Korvin �1992�.
Fractal curves can be classified as self-similar or self-affine. Ac-

ording to Turcotte �1997�, a formal definition of a self-similar frac-
al in a 2D xy-space is that f�rx,ry� is statistically similar to f�x,y�,
here r is a scaling factor. On the other hand, a formal definition of a

elf-affine fractal is that f�rx,rHay� is statistically similar to f�x,y�,
here Ha is known as the Hausdorff measure. The definition of the

ractal dimension of a self-affine fractal is given by

Ha�2�D . �6�
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igure 3. �a� Seismic trace and first break picked by the EM �square�;
b� raw entropy attribute �dashed� and filtered attribute �solid�; �c�
ltered attribute derivative. Its maximum signals the first-arrival on-
et.
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For time series, an equivalent definition of a self-affine fractal is
he requirement that the variogram V�h� �or the semivariogram,
hich is half the variogram� scales so that �Turcotte, 1997�

V�h� � h2Ha, �7�

here V�h� is defined as the expected value of the squared differenc-
s of the samples of the time series s�t� that are separated by a lag dis-
ance h. In agreement with other authors �e.g., Tosi et al., 1999; Jiao
nd Moon, 2000�, we found that seismic traces satisfy this require-
ent and can be classified as self-affine fractals.
There are different methods to extract the fractal dimension of a

urve, depending on whether the fractal is self-similar or self-affine
Klinkenberg, 1994�. Boschetti et al. �1996� develop a fractal-based
nalysis for detecting first arrivals of seismic traces using the “divid-
r method,” which is devised for self-similar curves. Conversely, we
trongly recommend using methods developed for self-affine curves
hen processing seismic traces �Sabbione and Velis, 2008�. Like-
ise, Jiao and Moon �2000� use the “variance method” to detect re-

raction signals and Tosi et al. �1999� use a variogram analysis to ex-
ract the fractal dimension of seismograms for the detection of seis-

ological events. These two techniques are devised for self-affine
ractals.

The “variogram method” �Korvin, 1992� is one of the most suit-
ble and robust methods for calculating the fractal dimension of self-
ffine curves. The method is based on the power law between the
ariogram and the lag distance h, which — combining equation 6
ith equation 7 — can be written as follows:

V�h� � h4�2D. �8�

n practice, V�h� is calculated for different lag distances h and then
lotted on a log-log plot �known as Mandelbrot-Richardson plot�.
quation 8 states that the fractal dimension D is given by the slope b
f the straight line defined in the Mandelbrot-Richardson plot

D�2�b/2. �9�

e developed a fractal dimension method �FDM� for first-break
icking based on the fact that random noise exhibits a higher fractal
imension than the signal. White noise fractal dimension is two
hereas the fractal dimension of a correlated theoretic signal is one.
hus, the onset of a first arrival can be determined by detecting the

ractal-dimension transition between noise and noise plus signal.
In the method, the fractal dimension is estimated within a sample-

y-sample moving window of length nf and its value is assigned to
he last sample of the window. Experience shows that if nf is too
mall the variogram �and the fractal dimension� cannot be estimated
dequately. On the other hand, if nf is too large rapid changes in the
ractal dimension would not be detected properly. Jiao and Moon
2000� analyze different window lengths and recommend using a
indow of 48 samples. Considering this information and taking into

ccount the signal period T as in the MCM and the EM, we fixed the
indow size to nf �kT, where k is the lowest integer that yields nf

48�T /2.
To complete the description of the FDM, let us analyze the vari-

gram fractal-dimension behavior when low-energy random noise
s added to the data. This point is shown in Figure 4, in which we used
he same trace as in the MCM and the EM. Figure 4a shows the case
ithout noise added whereas Figure 4b shows the case with low-en-

rgy white noise added. Clearly, the fractal dimension before the first
rrival increased after adding the random noise, approaching the
EG license or copyright; see Terms of Use at http://segdl.org/



w
t
t
i
b
n
d
t
l
a
c
s
f
i
t

b
a

f
t
r
s
t
p
t
t
a
t
t
m
u
t
e
a

F

e
t
n
fi
�
f
t
M
t
t
t
F
t
t

P

e
w
l
fi
w
o
r
t
i
m
w
t
p

F
�
w

F
�
t
s

Automatic first-breaks picking V71
hite-noise theoretical value of two. On the other hand, the effect af-
er the first arrival was much smaller. As a result, the transition be-
ween noise and noise plus signal became more apparent, thus mak-
ng the first-break detection easier. This effect, which was also noted
y Jiao and Moon �2000�, can be explained by the fact that the added
oise �with energy similar to that of the background noise� tends to
estroy the correlation structure of the �correlated� noise present in
he trace before the first arrival. Therefore, we systematically add
ow-amplitude white noise to the data when using the FDM. The
mount of added noise must be manually tuned for the given data be-
ause it depends on the background noise of the seismic survey. This
imple strategy significantly improves the capabilities of the FDM
or picking first breaks particularly when processing vibroseis data,
n which high-correlated noise is induced before the first arrival by
he source.

The FDM can be summarized as follows: We consider a sample-
y-sample moving window within the seismic trace s�t� �with noise
dded� and estimate its variogram V�h,t� using

V�h,t��
1

nf �h
�

i�t�nf�1

t�h

�si�h�si�2, �10�

or four lag distances h�1, 2, 3, and 4 samples, which are adequate
o capture the roughness of a noisy seismic trace. This lag distance
ange is in agreement with Jiao and Moon �2000�. After fitting a
traight line to the log-log Mandelbrot-Richardson plot, we estimate
he fractal dimension using equation 9 and assign its value to the last
oint of the window. We subsequently use EPS to enhance the frac-
al-dimension transition between noise and noise plus signal. As in
he case of the MCM and the EM, we set the filter length equal to one
nd a half periods. Finally, because the fractal dimension is supposed
o decrease when the signal arrives, we assign the first arrival onset
o the sample in which the derivative of the filtered attribute is at a

inimum. The FDM is illustrated in Figure 5 using the same trace
sed in the MCM and the EM. In this case, we added white noise so
hat S /N�20, where S/N is calculated as the ratio between the trace
nergy and the noise energy. Because the period of the first-arrival is
pproximately 20 samples, we set nf �60 and ne�30.

At this point, we would like to stress the differences between the
DM proposed in this paper and other fractal-dimension approach-

–1.0

0.0

1.0

1.0

1.5

2.0

A
m

pl
itu

de

F
r a

ct
al

di
m

en
si

on

a)

–1.0

0.0

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
1.0

1.5

2.0

A
m

pl
itu

de

F
r a

ct
al

di
m

en
si

on

Time (s)

b)

igure 4. Seismic trace �dashed� and variogram fractal-dimension
solid�. In �a� the seismic trace was not contaminated with noise
hereas in �b� low-amplitude white noise was added �S /N�20�.
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s. Boschetti et al. �1996� use the divider method to estimate the frac-
al dimension, which yields smooth transitions between noise and
oise plus signal. They use a complicated three-segment scheme to
t the fractal-dimension curve in the proximity of the first arrival
this region is selected manually�. Then they place the first break a
ew samples before the intersection of two of these lines. On the con-
rary, the use of the variance FDM leads to sharp transitions �Jiao and

oon, 2000�, which makes the picking of first arrivals easier. Unfor-
unately, the authors do not explain how they determine the onset of
he first break. Presumably, it is placed at the point where the transi-
ion begins �though this point is not easily identified�, as observed in
igure 12 of their article. In contrast, the use of the variogram FDM

ogether with the edge-preserving filtering allows us to easily signal
he onset of the first arrivals in an automated way.

arameter selection

In the previous section, we recommended a set of parameters for
ach picking method. Table 1 summarizes these quantities together
ith the actual values used for the automatic first-break picking il-

ustrated in the next section. Note that most of the parameters are de-
ned in terms of the approximate main period T of the first breaks,
hich is obtained directly from the data �a single approximate value
f T is required for the whole shot�. Thus, the selection of these pa-
ameters is straightforward. Note also that the EPS window length is
he same for the three methods and the stabilization constant � used
n the MCM is the same for all data sets �provided all traces are nor-

alized as described before�. In the particular case of the moving
indow length of the FDM, the integer k must be selected to guaran-

ee that kT is at least 48�T /2 samples. In the end, the S/N is the only
arameter that must be tuned for the FDM. In general, the smaller the
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igure 5. �a� Seismic trace and first break picked by the FDM
square�; �b� raw fractal-dimension attribute �dashed� and filtered at-
ribute �solid�; �c� derivative of the filtered attribute. Its minimum
ignals the first-arrival onset.
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V72 Sabbione and Velis
/N is, the more delayed the pick. This behavior facilitates the tuning
rocess �usually carried out by visual inspection� required to select
his parameter.

orrecting mispicks and final algorithm

The algorithms described in the previous sections search for the
rst arrival on a single trace but a human first-break picker would

ake into consideration the entire shot gather to select the picks. In
oing so, he or she would certainly pay attention to common-sense
actors such as constant time delays between adjacent traces, time
ncrease with offset distance, first-break alignment along straight
ines, etc. Any pick not meeting these criteria would need to be re-
valuated. These common-sense factors can be included into an au-
omated picking algorithm by using constraints. For this purpose, we
eveloped a mispick-correcting procedure to restrict the search of
he first breaks in the proximity of these lines, which are built by
east-squares using the trace-by-trace picks. As a result, mispicks
an be corrected or discarded �e.g., picks associated with bad or dead
races� using simple criteria.

The mispick correction is implemented via a five-step process.
he first step consists of a trace-by-trace picking using one of the

hree algorithms described in the previous sections. Depending on
ata quality, some of the automatic picks of this first step might be
rong �mispicks�. For example, in a few traces the actual first break

ould exhibit the second or third largest value �or smallest in the
DM� of the filtered attribute derivative instead of the absolute max-

mum �or the absolute minimum in the FDM�. Besides, there might
e some bad traces whose associated picks are naturally wrong and
ust be rejected. To avoid these problems automatically, we fit all

ossible models of two straight lines per gather flank to the current
icks via least-squares regression. This refracted model is devised to
ccommodate the expected direct and refracted arrivals. Then the � 2

oodness-of-fit is evaluated for every model and the one with the
owest � 2 is selected as the most probable. Next, if the a posteriori er-
or of any point �pick� of the least-squares fit is greater than 3�
where � is the standard deviation of the fit� the pick is rejected and
he straight lines are recalculated accordingly. This process is repeat-
d until there are no points �picks� with errors greater than 3� �in
eneral, one to two iterations are enough and only a few step 1 picks
re temporarily rejected�. The final result of this second step is a

able 1. The three field data sets used to illustrate the picking
ampling interval �t is given in milliseconds. The other quant

ethod Parameter Equal to

nl T

CM ne 1.5T

� 0.2

M nh 2T

ne 1.5T

nf kT

DM ne 1.5T

S/N �tune�
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preliminary� refraction model consisting of two straight lines per
ather flank. As an example, Figure 6a shows the results of the pick-
ng using the FDM �step 1� and the preliminary refraction model
step 2� for the field data shown in Figure 7b �next section�. Note that
n this particular case the picks associated with traces 4, 12, 13, 14,
7, and 37 were not considered in the preliminary refraction model
ecause they did not pass the 3� test.
In the third step, the picking process is repeated but the analysis is

ow restricted to a tolerance window of size ntol centered at the pre-
iminary refraction-model straight lines obtained in step 2. We re-
uire that ntol /4 be greater than the largest static delay that one would
xpect on the data, as explained below when describing step 5. The
im of this local repicking is to reevaluate those traces that might
ave been temporarily discarded during step 2 �because of the 3�
est� and whose actual first arrivals are not associated with the global

aximum �or minimum for the FDM� of the derivative of the filtered
ttribute but to a local maximum �or minimum� within the window
tol. Thus, some picks that might have been interpreted as mispicks in
tep 2 are re-evaluated and corrected during step 3 and a new set of
icks is obtained.

The next step �step 4� consists of the same procedure devised for
tep 2 but now using the new set of picks derived after step 3.As a re-
ult, a final refraction model is obtained. Figure 6b shows the results
fter steps 3 and 4. The picks associated with traces 4, 14, and 37
ere corrected and included on the final refraction model. The pick
f trace 27 was not corrected but passed the 3� test for this model.
Finally, in the fifth and last step we analyze the picks trace-by-

race and decide whether to readjust the pick accordingly to the final
efraction model or to reject it. The rejected picks are associated with
ad or dead traces or with traces for which the selected method �i.e.,
he MCM, the EM, or the FDM� was not able to detect the actual first
rrival. In this sense, with the assumption that the first breaks will ap-
roximately follow the straight lines obtained on step 4, we define a
ew tolerance window of half the previous tolerance window-length
entered at the final refraction-model straight lines. Then, the local
aximum �or minimum for the FDM� within this narrower tolerance
indow is picked. Note that the picking is carried out even if the first

rrival is not very clear, thus simulating the way a human picker
ould proceed by following the straight lines of a hypothetical re-

raction model. On the other hand, because the filtered attribute is
onstant for those traces in which the attribute exhibits no abrupt

ess and the selected parameters for each method. The
xcept � and S/N are given in samples.

Dataset1
�t�4

T�13

Dataset2
�t�2

T�32

Dataset3
�t�4

T�20

13 32 20

20 48 30

0.2 0.2 0.2

26 64 40

20 48 30

65 64 60

20 48 30

50 70 20
proc
ities e
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Automatic first-breaks picking V73
hanges within the short tolerance window, there is no local maxi-
um or minimum to select and thus those traces are rejected.
In other words, the final first breaks are picked within the interval

�t� tr��ntol/4, �11�

here tr is the time associated with the straight lines of the final re-
raction model obtained in step 4. Thus, ntol must be selected to guar-
ntee that ntol /4 is greater than the largest static correction expected
n the data. Note that in the final results shown in Figure 6b, picks of
races 12 and 13 were associated with bad or dead traces and reject-
d.

The proposed final five-step picking algorithm can then be sum-
arized as follows:
Step 1. For every trace on a shot gather, the corresponding at-

ribute time series �energy ratio, entropy, or variogram fractal-di-
ension� is calculated. Then the selected attribute is filtered using
PS and the preliminary first-break picks are set at the maximum of

he filtered attribute derivative �the minimum in the case of the
DM�.
Step 2. All picks of the previous step are fitted to the best two

traight lines per flank model. Then those picks with errors larger
han 3� are temporarily rejected and a new model with two straight
ines per flank model is calculated. The process is repeated until
here are no picks with errors larger than 3� .As a result, the prelimi-
ary refraction model is obtained �see Figure 6a�.

Step 3. First breaks are now repicked locally by searching the
aximum �or minimum for the FDM� of the filtered attribute deriva-

ive within a window of size ntol centered at the straight lines of the
reliminary refraction model obtained in the previous step. This pro-
ess usually leads to the correction of some picks.

Step 4. Step 2 is repeated using the updated set of picks of step 3.
ome mispicks that had been corrected in step 3 �and temporarily
iscarded in step 2� are taken into account and the final refraction
odel is obtained �e.g., picks of traces 4, 14, and 37; Figure 6b�.
Step 5. Finally, a narrower window of half the tolerance window

ength is fixed and centered on the final refraction model of step 4.
he picks are adjusted within this new window or rejected if no local
aximum �or minimum in the FDM� is found. Seismic traces with

ejected picks are interpreted as bad or dead traces or as traces for
hich the selected method has failed �e.g., picks of traces 12 and 13,
igure 6b�.
It is worth mentioning that this five-step process, which is fully

utomatic, is computationally efficient because the seismic attribute
s calculated only once at step 1. The simplicity of this correction
rocedure provides great robustness to the final algorithm. The
ispick-correction stage is shot consistent. Thus, problems related

o inhomogeneities that can lead to different refraction models at dif-
erent regions of the same survey are of no concern. Tests with sever-
l field-data records show that this strategy is very useful when data
uality is poor or difficult to pick. However, if a large number of
icks after step 1 are wrong �more than 35%, approximately�, a rea-
onable refraction model might not be obtained and the five-step
ispick-correction process described above might fail.
Finally, we would like to remark that a later process can be added

o the proposed methods to finely adjust the picks and to follow some
redefined criteria �e.g., correcting every pick to the closest inflec-
ion or zero crossing point or moving the pick to nearest trace maxi-

um or minimum�. This later adjustment of the picks is viewed as a
Downloaded 18 Oct 2010 to 163.10.46.12. Redistribution subject to S
econd-order process that in any case represents a criterion that is as
rbitrary as picking the maximum �or minimum� of the derivative of
he filtered attribute.

FIELD-DATA TESTS

In general, marine field data exhibit clear and distinct first breaks
nd thus offer no difficulties for the proposed automated picking al-
orithms. For this reason we do not show examples using this type of
ata. Instead, we illustrate the behavior of the MCM, the EM, and the
DM together with the mispick-correction stage using dynamite and
ibroseis field records. We have selected three shot gathers with dif-
erent background noise levels that we believe are not easy to pick
ecause of the presence of correlated noise, bad traces, pulse chang-
s, and not-so-distinct first breaks. The field data were taken from
ilmaz �2001�, available at http://www.cwp.mines.edu/data/oz.o-

iginal/. Table 1 shows the sampling interval and the signal approxi-
ate periods for each data set with the parameters we used for the

ifferent picking methods. Regarding the mispicks correction stage,
e set ntol equal to four periods for the three shot gathers and for the

hree methods �i.e., 52 samples for data set 1, 128 samples for data
et 2, and 80 samples for data set 3�.

The first selected data set �Figure 7a� is shot number 6 in Yilmaz
2001, p. 72�. The shot was acquired in the Far East with a dynamite
ource. It consists of 48 traces with 100-m trace spacing. Figure 7a
hows the resulting first breaks picked by the MCM �red�, the EM
green�, and the FDM �blue�. Some traces show no clear first break
nd in particular traces 2, 3, 4, 27, and 28 have some problems. In
ome of these traces, the methods could not find an acceptable pick
fter step 5 and thus the traces were automatically marked as bad
races. Despite these facts, all three methods picked the first arrivals
orrectly in most of the traces. The dynamite source provides impul-
ive first breaks and although some traces are rather noisy and some
rst breaks are not distinct they tend to pose no major difficulties for

he proposed methods.
The next shot gather �Figure 7b� is a field record from the San

oaquin Basin �shot number 23 on Yilmaz �2001, p. 76��, which was
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igure 6. Mispick correction procedure. The results correspond to
he FDM applied to the field data shown in Figure 7b. �a� Trace-by-
race picks �step 1� and fitted straight lines corresponding to the pre-
iminary refraction model �step 2�; �b� corrected picks �step 3� and
tted straight lines for the final refraction model �step 4�. Picks of

races 12 and 13 were associated with bad or dead traces and rejected
step 5�.
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V74 Sabbione and Velis
cquired with a vibroseis source. The 48 traces are separated by
7 m �220 ft�. The shot gather and the corresponding first breaks de-
ected by the MCM, the EM, and the FDM are plotted in Figure 7b.
ome traces are problematic �namely traces 4, 12, 13, and 14�. Here,
ome methods succeeded to pick the first breaks and some methods
ailed, as expected due to the presence of bad traces. Also, data ex-
ibit lobes before the first-arrivals onset �because of the zero-phase
avelet of the source� and the first breaks are not very clear. This is a

ommon issue with vibroseis records. The data complexity makes
he methods miss the first break by approximately one period in a
ew traces �see traces 22, 24, 43, and 46� but the results are generally
ery good.

The last example and perhaps the most challenging data set shown
n this paper corresponds to a vibroseis field record collected in Tur-
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ey �shot number 4 in Yilmaz �2001, p. 71��. It consists of 48 traces
ith a 100-m trace interval. The data and the resulting picks are

hown in Figure 7c. Here, conventional automated first-break-pick-
ng algorithms are prone to fail. Recall that the S/N of the added
oise for the FDM was approximately 20 to decorrelate the precur-
or energy of the vibroseis source. Because of the presence of quasi-
onochromatic noise before the first breaks, first arrivals are very

ifficult to detect. Even a trained human picker would find it very
ifficult to decide where to locate the first breaks in some of the trac-
s �see, for example, traces 29–33�. Yilmaz �2001� suggests the pres-
nce of near-surface irregularities, which are more evident by in-
pecting the whole record at later times. Despite the data complexity,
he results of the automated picking are generally very good. The
M tends to delay the onset of the first breaks.

Figure 7. Field-data tests: �a� dynamite shot record
number 6; �b� vibroseis shot record number 23; and
�c� vibroseis shot record number 4. First breaks
picked by the MCM �red�, the EM �green�, and the
FDM �blue�.
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Automatic first-breaks picking V75
ensitivity analysis

In this section, we carry out a sensitivity analysis by repeating the
icking of each shot gather using a large number of different parame-
er sets. In this sense, for every trace in a given shot we calculated the
tandard deviation of the picks, in which each pick was obtained us-
ng a different set of parameters. The leading window length �for the

CM� or the moving windows length �for the EM and the FDM� and
he EPS operator length were varied in a one-period range centered
t the values shown in Table 1. Both � for the MCM and S/N for the
DM were fixed to the values indicated in the same table. The ranges
sed for the sensitivity analysis are shown in Table 2.

Finally, we calculated a mean standard deviation by averaging all
he standard deviations of the picks associated with each individual
race. This quantity is viewed as an indicator of the variability of the
icks for the whole shot gather. Table 3 shows the mean standard de-
iation for each case. Note that the variability of the picks is very
mall, thus validating the parameter-selection criteria. Furthermore,
he parameter selection is not critical within the variation ranges ana-
yzed in this section.

CONCLUSION

We present three new methods to automatically determine the on-
et of the first arrivals in either marine, dynamite, or vibroseis shot
ecords. The methods, which are the modified Coppens’s method
MCM�, the entropy method �EM�, and the fractal dimension meth-
d �FDM�, are based on the analysis of certain trace attributes that
re especially sensitive to the advent of a signal within background
oise. Attributes include the energy ratio, entropy, and the fractal di-
ension, which are calculated along the seismic trace within mov-

ng windows and analyzed to detect abrupt changes when the signal
rrives. The transition between noise and noise plus signal is signifi-
antly enhanced using an EPS filter, leading to an automatic strategy
sed to easily signal the exact location of the onset �maximum or
inimum of the filtered-attribute derivative�. Edge-preserving

able 2. Variation ranges for the different methods
arameters for the sensitivity analysis.

ethod Parameter Ranges

CM n� 0.5T–1.5T
ne T–2T

M nh 1.5T–2.5T
ne T–2T

DM nf �k�0.5�T– �k�0.5�T
ne T–2T

able 3. Mean standard deviation of the picks. Values are
iven in milliseconds.

ethod Data set 1 Data set 2 Data set 3

CM 3.7 7.9 8.9

M 4.8 7.0 12.2

DM 4.1 7.6 12.8
Downloaded 18 Oct 2010 to 163.10.46.12. Redistribution subject to S
moothing represents a very useful tool for tackling the first-break–
icking problem. Furthermore, we propose a mispick-correcting
rocedure that allows us to exploit the benefits of the data present in
he entire shot record, to adjust the trace-by-trace picks, and to dis-
ard picks associated with bad or dead traces.As a result, the accura-
y and consistency of the first-break picks are significantly im-
roved.

The proposed methods are robust for noisy data and provide accu-
ate and consistent picks even under the presence of correlated noise,
ad or dead traces, pulse changes, and indistinct first breaks. Be-
ides, the methods are computationally efficient and easy to apply
ecause the user needs to select only two or three parameters, de-
ending on the selected attribute. Most of the parameters are set
ased on the period of the first-arrival waveforms, which is easily de-
ermined by visual inspection, thus their selection is straightforward.

oreover, a sensitivity analysis shows that the variability of the
icks is very small when different parameter sets are used.

Results show that the performance of the MCM considerably ex-
eeds the performance of the traditional CM, mainly due to the use of
he EPS. The EM, on the other hand, is a new approach for picking
rst breaks that succeeds on most of the tests but tends to detect the
rst breaks a few samples before or after the actual arrival. The FDM
ields very consistent results and overcomes the weaknesses of oth-
r fractal-based methods published in the literature.

In general, we have observed that the MCM is very effective for
icking first breaks that are characterized by a strong energy arrival.
n the other hand, the FDM provides excellent results when dealing
ith vibroseis data when other methods tend to be less effective.
owever, because the three methods perform very well and are com-
utationally efficient, we recommend running the three methods and
electing the one that appears to yield the best results.
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APPENDIX A

EPS

The EPS is a statistically based filtering process devised for re-
ucing noise while preserving the most noticeable changes �edges�
n the data �Luo et al., 2002�. Though we are going to describe the 1D
PS algorithm it can be generalized for two dimensions or three di-
ensions �AlBinHassan et al., 2006�.

The EPS can be viewed as a simple modification of the running-
verage smoothing method. As in the running average, the only pa-
ameter of the EPS algorithm is the window length. We will show
ow it works by means of an example.

Let us consider a five-point EPS operator. Given any arbitrary
ample of the data si, there are five shifted windows that include it:

Window 1: �si�4,si�3,si�2,si�1,si�
Window 2: �s ,s ,s ,s ,s �
i�3 i�2 i�1 i i�1

EG license or copyright; see Terms of Use at http://segdl.org/



t
s
m
p
s
f
a

e
t
m
c
�
s

A

B

C

D

F
G

H

J

K

K
L

M

M

P

P

S

S

T

T

T

Y

Y

F
v
p

V76 Sabbione and Velis
Window 3: �si�2,si�1,si,si�1,si�2�
Window 4: �si�1,si,si�1,si�2,si�3�
Window 5: �si,si�1,si�2,si�3,si�4�

On output, sample si is replaced by the mean of the window with
he smallest standard deviation. This process is repeated for all data
amples. As a result, the filtering process assigns the mean of the
ost homogeneous data window around the ith sample to the ith

oint location. Thus, if a window contains an abrupt change, the
tandard deviation will be high and this window will not be selected
or the EPS output. Consequently, noise is filtered by the averaging
nd edges are preserved.

The EPS is illustrated in Figure A-1. A step function contaminat-
d with random noise is shown in Figure A-1a. Figure A-1b shows
he absolute value of its derivative. Clearly, the step location is

asked by the noise and cannot be easily identified. After the appli-
ation of a 25-point EPS operator, the step location is clearly visible
Figure A-1c� and its exact location can be easily identified by ob-
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igure A-1. �a� Step function contaminated with noise. �b� Absolute
alue of derivative of data in �a�. �c� Data in �b� filtered using a 25-
oint EPS operator. �d�Absolute value of filtered data derivative.
erving the derivative �Figure A-1d�.
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